
Full-Automatic Implementation of Protocol Programs
for OSI Application Protocols over ROSE

Tom Hasegawa, Akira Idoue, Toshihiko Kato and Kenji Suzuki
KDD R&D Laboratories
2-1-15 Ohara, Kamifukuoka-shi, Saitama 356-8502, Japan
(Phone) +81-492-78-7368
(Fax.) +81-492-78-7510
(E-mail)hasegawa@hsc.lab.kdd.co.jp

Key words: ASN.l (Abstract Syntax Notation One), ROSE (Remote Operation Service
Element), OSI, Automatic Program Generation

Abstract: Recently, the automatic program generation from protocol specification comes
to be used in order to increase the efficiency of protocol program
implementation. In the field of OSI, it can be applied successfully to the
application protocol programs over ROSE. However, the conventional RO
program generators have problems that they cannot generate complete protocol
programs. This paper proposes a full-automatic implementation method of
OSf application protocols over ROSE. Our RO program generator supports
the program generation for more than one application protocols over ROSE
such as MHS P2IP7, and enables the presentation context handling. As a
result, we have succeeded to generate a complete MHS P2 I P7 protocol
program. This paper the detailed design of our RO program
generator and the results of implementation of P2IP7 program and its
performance evaluation. The work which we did for the implementation was
just to specify 370 line P2/ P7 protocol specification. The automatically
generated P2 I P7 program can provide about 100 operations per second.
Therefore, the proposed implementation method is considered to achieve as
high performance as applicable to the practical usage.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

310

1. INTRODUCTION

Recently, the automatic program generation from protocol specification
comes to be used in order to increase the efficiency of protocol program
implementation. The stub generator of RPC (remote procedure call) is a
typical example (Birrel and Nelson, 1984). In the field of OSI, an ASN.l
(Abstract Syntax Notation One) (ITU Rec. 208 and X.209, 1987) compiler,
which automatically generates encoder and decoder programs from the
ASN.l specification of Presentation and Application POUs (Protocol Oata
Units), is an example of program generation (Hasegawa, Nomura and Kato,
1992) (Neufeld and Yang, 1990). Since the encoding rule of ASN.1 is quite
complicated, the ASN.l compilers are indispensable in the OSI protocol
program implementation. However, the program generation by ASN.l
compilers is limited to encoder and decoder programs because ASN.l
specifies only the data type of POUs. Implementers need to write the rest
parts of programs.

The program generation can be applied successfully to the OSI
application protocol programs working over ROSE (Remote Operation
Service Element) (ITU Rec. X.219 and X.229, 1988), which is considered as
an extension of RPC in the OSI environment. In the case of those protocols,
such as MHS (Message Handling System) P21P7 protocols (ITU Rec.x.413,
X.419 and X.420, 1988) and CMIP (Common Management Information
Protocol) (ITU Rec. X.71O and X.711, 1988), the protocol behaviors are
defined in ROSE, and the data types of POUs and service primitives
provided for their users are defined in the RO-notation. Therefore, it is
possible to generate the protocol programs from the specification in RO­
notation, including the programs for POU encoding and decoding, and for
protocol behavior handling, similarly with RPC stub generators. For
example, the ISOOE software (Rose, 1990), which is a public domain OSI
software widely used for an experimental purpose, uses a Remote Operation
(RO) program generator called rosy (Remote Operations Stub-generator
(YACC-based» for protocols over ROSE (Rose, Onions and Robbins,
1991).

However, the conventional RO program generators have some problems
that they cannot generate complete protocol programs, in the following
points.
(1) In the OSI application layer, there are some cases that more than one
protocols are used over ROSE. In MRS P2IP7 protocols, P7 protocol,
which specifies the requests and responses between UA (User Agent) and
MS (Message Store), transfers interpersonal messages defined by P2
protocol as user data. In CMIP, data types of managed object information
transferred by CMIP POUs are defined in different specification from CMIP
itself. In such cases, the program generation needs to be performed for more

311

than one protocol specifications. But, the conventional RO program
generators cannot handle these cases.
(2) In the OSI communications, the data types of POUs are managed by the
abstract syntax, and the presentation context containing the object identifier
value of abstract syntax needs to be defined for an individual presentation
connection. The conventional RO program generators do not generate
protocol programs handling the presentation context.

We have taken account of those problems and implemented our RO
program generator which can generate protocol programs fully supporting
application protocols over ROSE. The above problems come from the fact
that the RO-notation and ASN.l specification cannot describe the mapping
between POUs specified independently nor assignments of the object
identifier of abstract syntax. Therefore, we have extended the RO-notation
and developed a program generator for the specification. Our RO program
generator is also designed so as to generate protocol programs which have
more flexible user programming interface than conventional RO program
generators, and which realize high performance by avoiding data copying.

This paper describes the detailed design of our RO program generator
which realizes the full-automatic implementation of OSI application
protocols over ROSE, and the results that we applied it to the
implementation of MHS P21P7 protocol programs. Section 2 briefly
introduces ROSE protocols and section 3 describes the design principles and
overview of our RO program generator. Section 4 describes the detailed
design and section 5 shows the results of implementing MHS P21P7 protocol
programs.

2. BRIEF INTRODUCTION TO ROSE

ROSE (ITU Rec. X.218 and X.219, 1988) is an application service
element of OSl, and uses a protocol stack illustrated in Fig. I... Among the
protocols in Fig. 1, an application protocol and ROSE which are shaded are
targets of automatic implementation. ROSE provides a request-response
style communication for application protocols such as MHS P21P7 and
CMIP, and this request-response is called a remote operation. An entity of
application protocol (a requester) requests an operation which has some
arguments using ROSE. Receiving the operation, the peer entity (responder)
sends back a response which has a result of the operation to the requester
using ROSE.

The data types of POUs of application protocols over ROSE are defined
using four macros of RO-notation : operation, bind, unbind and error

312

macros. The operation macro is used to specify two kinds of application
POUs : an argument and a result of an operation. The bind and unbind
macros are used to specify application POUs transferred when an
application association is established and released, respectively. The error
macro is used to specify application POUs which informs a requester of the
error of operation. Among the application POUs, those defined by the
operation and error macros are transferred using ROSE protocol, and those
defined by the bind and unbind macros are transferred using ACSE.

Application Protocol (CMtP. MHS)

ACSE X.227 I ROSEX.229

OSI Presentation Layer X.216, X.226

OSI Session Layer X.215, X.225

OSI Transport Layer X.214, X.224

OSI Connection Oriented
Network Service

Figure 1. Protocol Stack
The ROSE protocol uses four ROSE POUs: ROIV (RO-INVOKE), RORS

(RO-RESULT), ROER (RO-ERROR) and RORJ (RO-REJECT). A ROSE
POU transfers not only an application POU as user data, but also the
following ROSE protocol control information: operation value which
specifies a type of operation, and an invoke identifier which is used to map
the request and response of an operation.

It should be noted that the service primitives of the application protocols
over ROSE have the same parameters as their POUs, and therefore, the data
types of the service primitives are also defined by RO-notation.

3. DESIGN PRINCIPLES AND OVERVIEW OF RO
PROGRAM GENERATOR

3.1 DESIGN PRINCIPLES

We have adopted the following principles for our RO program generator.
(1) As described above, RO-notation is not powerful enough for describing
a complete application protocol specification. Therefore, our RO program
generator allows the following specifications to be added into RO-notation.
• A data type contained in ANY DEFINED BY type and OCTET STRING

type. This specification defines the mappings between POUs of more
than one protocols over ROSE.

313

• The object identifier value for the abstract syntax for the POU
definitions.

• A role of operation, i.e. an operation is requested by the initiator of the
application association, the acceptor, or both.

(2) Our RO program generator implements protocol programs supporting
application protocols and ROSE. The protocol program interfaces between
user programs for the upper layer side, and ACSE (Application Control
Service Element) and PL (Presentation Layer) programs for the lower layer
side. Since the application protocols over ROSE often require the
invocation of an operation during waiting for a response of another
operation, the subroutine call based user programming interface which is
used in RPC stub and ISOOE is not sufficient for flexible programming.
Therefore, the user programming interface of the protocol programs
automatically implemented adopts the exchange of individual service
primitives through queues between the user programs and the protocol
programs.
(3) As described above, the service primitives and POUs of the application
protocols contain the corresponding parameters, and the user programming
interface of the automatically implemented protocol programs uses the
service primitives. In order to avoid data copying, the encoder and decoder
programs generated by our RO program generator encode POUs from
service primitive data and decode POUs into service primitive buffer
without using any intermediate working buffers.

3.2 OVERVIEW

(1) Our RO program generator consists of the extended ASN.l compiler and
the protocol behavior routines as shown in Fig. 2. Since individual
application protocols use the same protocol behavior defined by ROSE, the
protocol behavior is realized by pre-implemented library routines, i.e. the
protocol behavior routines. On the contrary, the extended ASN.l compiler
generates the following application protocol specific programs and data
from a specification in the RO-notation: primitive data types, ASN.l
encoder / decoder routines, and an operation table containing control data.
(2) The structure of generated program is shown in Fig. 3. The program
provides the programming interface based on exchanging service primitives
through interface queues to user programs. The data types of service
primitives are generated by the extended ASN.l compiler. The behavior
routines perform the application protocol behaviors using the encoder /
decoder routines and the operation table. The encoder / decoder routines
are used to encode and decode ROSE POUs and application POUs. The

314

operation table holds the static infonnation for all operations, a bind and an
unbind. For each operation, the data includes an operation value, pointers to
encoder and decoder routines for the PDU and error list.

Extended ASN;l
. Compiler

r-------"""
1.-----.
1 Protocol
1 Betiovfor
1 Routines

1
1"'--- ------ --
1
1
1 Primitive Operation
1 Data Types Table
1
I ______

Figure 2. Structure of RO Program Generator

Application Protocol Program

O t· '---ASN1-ASN'1--
pera Ion I Encoder Decoder

I Routines Routines

I

PL

Application Protocol Primitive

ACSE Primitive with Application PDU [::I.. PL Primitive with Application and
ROSE PDUs

Figure 3. Structure of Generated Program
(3) The protocol behavior routines realize the application protocol
processing in the following way.

315

• They use a control structure such that they receive a primitive from either
a user program or a lower layer program (ACSE program or PL
program), analyze the primitive, make a primitive and sends it to the
lower layer program or the user program.

• When encoding a POU from a service primitive and when decoding a
POU into a service primitive, they obtain a pointer to the encoder routine
and the decoder routine by referring to the operation table.
They use two kinds of tables in order to manage the dynamic

information. An association table is prepared for each application
association. In each association table, a request-response table for mapping
the request and response is provided.

4. DETAILED DESIGN

4.1 INPUT SPECIFICATION TO EXTENDED ASN.l
COMIPLER

An example of input specification to the extended ASN.l compiler is
shown in Fig. 4, which is a part of MHS P2 / P7 protocol specification. In
this specification, a bind and an operation are defined by RO-notation
extended as described above. MSBind is a bind, and MessageSubmission is
an operation. The argument and result of MessageSubmission operation
have SubmissionArg and SubmissionRes types, respectively, and the
operation value is 3. These types are defined in ASN.l. For example,
SubmissionArg type is defined using SEQUENCE type with two elements,
envelope and content.

As described in section 3.2, the object identifier of the abstract syntax is
specified at the line marked with (a) in Fig. 4. The line marked with (b)
specifies the role of generated program for MessageSubmission operation.
This operation is invoked by the initiator of an association. The line marked
with (c) specifies that a P2 POU whose data type is InformationObject is
contained inside the content element whose data type is OCTET STRING.
The line marked with (d) specifies the case that the ANY DEFINED BY type
contains another data. In this case, the data types contained in the values
element depends on the value of atype element whose data type is OBJECT
IDENTIFIER type. The two lines followed by mark (d) specify pairs of the
data type of contained data and the values of the atype element.

316

P2P7 DEFINITIONS
BEGIN
ABSSYN { 2 6 0 1 4) -- (a) presentation context
MSBind ::= BIND -- bind

ABSSYN { 2 6 0 2 1 } -- (a)
MessageSubrnission OPERATION
!! INITIATOR -- requester (b)

ARGUMENT SubrnissionArg
RESULT SubrnissionRes
ERRORS {. }

::= 3 operation value
-- P7 PDU
SubrnissionArg ::= SEQUENCE

envelope Envelope,
content Content}

Content::= OCTET STRING {type = InforrnationObject } --(c)
Attribute::= SEQUENCE {

atype AttributeType,
values ANY DEFINED atype -- (d)

(heading SeqOfHeading { 2 6 1 7 0 },
body SeqOfBody { 2 6 1 8 0 },)

AttribueType ::= OBJECT IDENTIFIER
SeqofHeading ::= SEQUENCE OF Heading
Heading SEQUENCE { ... }
-- P2 PDU
InforrnationObeject ::= CHOICE

iprn IPM, }
-- ROSE PDU
ROSEApdus :: =

Figure 4. Example Specification (P21P7)

4.2 SERVICE PRIMITIVE TYPE GENERATION

The extended ASN.l compiler generates two service primitive data types
in C language from each operation, bind and unbind definitions. One data
type is' for a request primitive and an indication primitive, and the other is
for a response primitive and a confirm primitive.

A service primitive data type consists of the following elements:
• header: common information for all. primitives such as a layer identifier,

an indicator of a request, indication, response or confirm, and an
association identifier.

• parameters of lower layer protocols : information needed to encode and
decode ROSE POUs and parameters exchanged between lower layers
and a user program.

• application POU
The data type of an application POU is specified in ASN.l, and the C

data type corresponding to that is generated by the extended ASN.l
compiler. As described above, the application POU field is used both as a

317

working buffer in ASN.1 encoding / decoding and as a parameter of a
primitive.

/ Indication Primitive */
{
/* header */
/* invoke identifier */

/* MessageSubmission Request
struct MessageSubmission_req

prim_header_t PrimHead;
long InvokeId;
SubmissionArg_t param;

/* SubmissionArg Data Type
struct SubmissionArg {

Envelope_t envelope;
Contetnt_t content;};

typedef struct SubmissionArg

/* application PDU :
argument of operation */ };

*/

SubmissionArg_t;

/* MessageSubmission Response / Confirm Primitive */
struct MessageSubmission_rsp {

prim_header_t PrimHead; /* header */
long InvokeId; /* invoke identifier */
long resultFlag; /* Result: Success/Failure */
union

SubmissionRes t acc;

rej;

/* SubmissionRes Data Type
struct SubmissionRes {

} ;

/* application PDU :
Response of operation */

/* Error Response */;
result; };
*/

typedef struct SubmissionRes SubmissionRes_t;

Figure 5. Service Primitive Oata Types of Operation

Figure 5 shows the request and response primitive data types generated
from an MessageSubmission operation specified in Fig. 4. The primitive
data types are defined using C data type struct which holds the above
mentioned information. For example, as for the request / indication
primitive, invokelD element is an invoke identifier of ROSE POU, and is
used for encoding and decoding a ROSE POU. Param element is a
parameter of application POU, i.e., an argument of operation, and the data
type is specific to each operation. The response and confirm primitives
include the following elements as well as invokeID element. ResultFlag
element is a flag indicating whether the operation has been successfully
performed by the responder or not. Result element is realized by C union
structure and is either a result application POU which is specific to each
operation or an error application POU. Acc element is the result application
POU, and rej element is the error application POU.

It should be noted that the data types have the structure allocated in a
contiguous memory area without using pointers as long as possible. The
SEQUENCE and SET types which have nested structures do not use pointers
to child components, but contain the values of child components themselves.
In Fig. 5, C struct SubmissioArg corresponds to SubmissionArg of

318

SEQUENCE types, and have C struct themselves such as Envelope_t and
Contenct.

The SEQUENCE OF and SET OF types which include ordered and
unordered component values, respectively, have C data types which consist
of an integer indicating a component value number, and a pointer to
component values themselves. Figure 6 shows the C data types
corresponding to SeqOjHeading type in Fig. 4. Cnt element and data
element are the number of heading values and the pointer to the array of
heading values. The memory area for storing heading values is allocated as
a contiguous array, not as a list with individual heading values linked by
pointers
struct {

u_long cnt; /* Number of Component Values */
Heading_t *data; /* Pointer to Array of Heading Values */ };

Figure 6. C Data Types of SEQUENCE OF Type

4.3 ENCODER I DECODER GENERATION

The extended ASN.l compiler generates a C data type and encoder I
decoder routines for a data type which is newly defined using structured
types of ASN.l such as SEQUENCE and SET. On the contrary, those for
primitive types such as INTEGER and OCTET STRING types are pre­
implemented as a library.

In order to deal with PDUs containing upper layer PDUs as user data, the
mapping function is added to ANY DEFINED BY type and OCTET STRING
type in the following way.
(1) A data type of upper layer PDU is defined using DEFINED BY phrase as
shown in (d) of Fig. 4. The actual data type is dynamically chosen among
the candidate data types. i.e, SeqOjHeading and SeqOfBody of Fig. 4. The
data types are determined dynamically by an object identifier value at atype
element. For example, when the object identifier value of type is {2 6 1 7
A}, the data type of values is SeqOjHeading.
(2) The data type of ANY with DEFINED BY phrase is a C data structure
union which consists of all data types defined by DEFINED BY phrase, and
it is generated by the extended ASN.l compiler. Figure 7 shows the C data
type generated from Attribute type which includes ANY DEFINED BY type.
Atype element contains an object identifier value indicating data type of
values element. Values element is a union of the C data types corresponding
to the above candidate date types.

/* C data type for Attribute */
struct O-Attribute
{ AttributeType_t atype; /* Object Identifier */

319

union /* Union of Candidate Types */
SeqOfHeading_t heading; /* Candidate Type 1 */
SeqOfBody_t body; /* Candidate Type 2 */

values; };

Figure 7. C Data Type for Attribute

(3) When encoding the parameter of ANY, an encoder routine first checks
an object identifier value of atype element of working buffer, and then calls
the encode routine corresponding to the object identifier value. On the
contrary, when decoding, a decoder routine first decodes the atype element
of POD, and then calls the decoder routine corresponding to the decoded
object identifier value.

void decodeAttribute(var, edata, index,
error, ida)

char *var; STRING *edata;
u_long *index; ERROR *error;
ID * ida;
Attribute
long cnt = 0;
u_long next_obj = 0;
/* decoding identifier and length octets */
cnt = skp_idlenN(edata, index, &next_obj, ida, error);
next_obj += *index;

= (Attribute *) var;
/* decoding type */

. type, edata, index,
error, id_infoN + 31, (u_1ong) 0); }

if ((*error) . errlevel < 2) {
if (obj_chk . type, &headingId) == TRUE) {

decodeSeqOfHeading(
.value.heading,

edata, index, error, id_info + 44); }
else if (obj_chk . type, &bodyId) == TRUE) (

.value.body,
edata, index, error, id_info + 45); }

else {
ERRSETN (error, FAT.ALN, 10, ida, * index) ;

/* Object Identifier Values: Constants */
OBJID headingld { { 2, 6, 1, 7, O}, 5};
OBJID bodyld {{ 2, 6, 1, 8, O}, 5};

Figure 8. Decoder Routine of Attribute Type

Figure 8 shows a part of decoder routine of Attribute type in FigA which
includes the above ANY DEFINED BY type. Octets to be decoded are stored
in edata variable, and the decode result is set in var variable. First, the

320

decoder routine decodes identifier and length in the octets to be decoded
using skip_idlenN library routine. Secondly, the decoder routine decodes
object identifier of atype using decodeobjectN library routine. The decoded
object identifier value is set in atype element of var variable. Thirdly, the
routine compares the decoded object identifier value and candidate values
using obLchk library routine. The variables which hold candidate object
identifier values are generated from an ANY DEFINED BY phrase by the
extended ASN.l compiler. Headingld and bodyld variables in Fig. 8 are the
examples, and they are used as arguments to obLchk routine. Eventually,
the decoder routine finds the decoder routine corresponding to the object
identifier value, and calls the decoder routine, I.e., either
decodeSeqOfHeading routine or decodeSeqOfBody routine which are
generated by the extended ASN.l compiler.

s. MHS P21P7 IMPLEMENTATION AND COMMUNICATION
EXPERIMENT

5.1 MHS P21P7 PROTOCOL PROGRAM GENERATION

MHS P2IP7 protocol, which is defined over ROSE, is used to transfer an
IPM (Interpersonal Message) between UAs (User Agents) and MSs
(Message Stores). P2 protocol defines the format of IPM. P7 protocol
defines the protocol between UAs and MSs, such as the submission of a
message to an MS and fetch of a message stored in an MS.

We have developed the P2 1P7 program using the proposed
implementation method. We have written a P2 ! P7 specification in the
extended RO- notation and generated the program using the extended ASN.l
compiler. The specification supports three operations : list, fetch and
deletion of a message, and its size is 370 lines. From the specification,
about 11 Kline C programs are generated. The details are shown in Table
1. Since protocol behavior routines are about 2.4 K lines, the total P2 ! P7
program size is about 13.4 K lines.

Among the 370 lines of the P2! P7 specification, the 350 lines have been
just copied from the specification in the ITU Recommendations (ITU Rec.
X.413, X.419 and X.420), and just the 20 lines which specify the mapping
of POUs, presentation context identifiers and so on have been additionally
written. It has taken just two days to write the specification and to generate
the programs from the specification.

Table I. Sizes of Specification and Generated Program
specification lines program lines
RO-notation

ASN.l

80

290

operation table 120
primitive data types 240
encoder / decoder 10,640

5.2 COMMUNICATION EXPERIMENT

321

In order to run the P2 / P7 program, U A and MS programs for testing
have been developed. The P2 / P7 program, UA or MS program are built
into the previously developed OSI program which supports from ACSE to
LLC protocols. The total OSI program, whose structure is shown in Figure
9, is run as a single process on UNIX operating system. The execution of
the above programs is controlled by a pseudo-kernel program which
provides the scheduling function and inter-program communication
function. For evaluating the generated program, we performed the
following experiments.

Pseudo­
Kernel

LLC Program

Ethernet Interface

Figure 9. Program Structure

(1) Communication with Other MHS P2 / P7 Program
In order to validate the correctness of the automatically generated P2 /

P7 program, we have performed the communication experiment between the

322

generated P2! P7 program with MS program and a VA program which we
previously manually developed. The MS program is run on a Sun SS-20
workstation and the VA program is run on a personal computer. These are
connected via a serial line. The message submit, list and fetch operations
are executed between the both programs, and the generated P2IP7 program
with the MS program provides the correct MS behavior.
(2) Overall Performance Measurement

In order to measure the performance, the communication experiments are
performed between the generated P2 ! P7 program with V A program and the
P2 IP7 program with MS program. The network configuration is shown in
Fig. 10. The two Sun SS-20 workstations (SuparSPARC II 60 MHz) which
are connected via Ethernet LAN are used.

SS-20 SS-20 read

write

I UA Program I I MS Program I Mail
Box

-
1 Ethernet I

Figure 10. Network Configuration

We have measured the response times of list and fetch operations under
the following conditions.
• list operation : The MS program searches the mail box, and returns a

response which contains an originator name, a recipient name, a subject
and a message identifier.

• fetch operation : The MS program reads a message whose body size is 1
K bytes, and returns a response which contains the message as a body.
The response times are measured by running 10,000 operations

consecutively, and the measurement is performed ten times for each
operation. A response time is a duration between the time when the VA
program sends a request of operation and the time when it receives the
response. The average response times of list and fetch operations are about
8.8 ms and 10.8 ms, respectively. As for a fetch operation, the processing
tines of P2 ! P7 programs of VA and MS sides are about 0.59 ms and 0.56
ms, respectively. As shown in the results, the automatically generated P2 !
P7 program can support about 100 operations per second.
(3) Detailed Performance Measurement

We have evaluated the performance improvement caused by the
proposed implementation method. The duration from the time of receiving a
fetch request primitive from the MS program to the time of sending a P­
DATA request primitive to the PL program is measured for both the
proposed implementation method and the traditional method.

323

As for the proposed method, the duration is measured during the
performance measurement of (2), and it is about 0.29 ms. On the contrary,
as for the traditional method, we have developed a testing program for
estimating the duration. The testing program uses a traditional method and a
traditional ASN.l compiler (Hasegawa, Nomura and Kato, 1992). The
working buffer for an application PDU of fetch argument is not a parameter
of a fetch request primitive. Therefore, the testing program converts the
parameter of the fetch request primitive to the working buffer before it
encodes using the ASN.l encoder routine generated by the ASN.I compiler.
The duration is measured running the testing program on the same sun SS-
20 workstation, and it is about 0.38 ms. The result shows that proposed
direct encoding improves the P21P7 program performance at about 30 %.

6. CONCLUSION

This paper has proposed a full-automatic implementation method of OSI
application protocols over ROSE. We have realized a RO program
generator consisting of the extended ASN.l compiler and the protocol
behavior routines. They support the program generation for more than one
application protocols over ROSE such as MHS P21P7, and enables the
handling the presentation context. We have implemented MHS P2 I P7
protocol using our RO program generator. The results of implementation
and communication experiment have made clear the following.
• The proposed method has achieved the full-automatic P2 I P7 protocol

implementation. It took a few days to implement it since the required
work was just to specify 370 line P2 IP7 protocol specification. Besides,
since we did not need write any programming code at all, we did not
encounter any program bug during the implementation.

• The automatically generated P2 I P7 program can provide about 100
operations per second. Besides, the processing time of P2 I P7 process is
less than 1 ms. Ttierefore, the proposed implementation method is
considered to achieve as high performance as applicable to the practical
usage.

REFERENCES

Birrel, A. and Nelson, B. (1984) Implementing Remote Procedure Calls, ACM Trans. Compo
Syst. vol. 2, no. 1.

lTV Recommendations X.208 and X.209 (1987).

324

Hasegawa, T., Nomura, S. and Kato, T (1992) Implementation and Evaluation of ASN.I
Compiler, IPSJ Journal ofINFORMATION PROCESSING, vo1.l5, no.2, 157-167.

Neufeld, G. and Yang, Y. (1990) An ASN.1 to Compiler, IEEE Trans. SE, vo1.16, no.lD,
1209-20 ..

ITU Recommendations X.219 and X.229 (1988).
ITU Recommendations XA13, XAI9 and XA20 (1988).
ITU Recommendations X.71O and X.711 (1988).
Rose, M. T (1990) THE OPEN BOOK, Prentice-Hall.
Rose, M. T., Onions, 1. P. and Robbins, C. 1. (1991) The ISO Development Environment:

User's Manual Volume 4 : The Application Cookbook.

BIOGRAPHY

Toru Hasegawa is a senior research engineer of High Speed Communications Lab. in KDD
R&D Laboratories, Inc. Since joining KDD in 1984, he worked in the field of formal
description technique (FDT) of communication protocols. From 1990 to 1991, he was a
visiting researcher at Columbia University. His current interests include FDT, high-speed
protocol and ATM. He received the B.S. and the M.S. Degree in information engineering
from Kyoto University, Japan, in 1982 and 1984, respectively. He received IPSJ Convention
Award in 1987.

Akira Idoue is a senior research engineer of High Speed Communications Lab. in KDD R&D
Laboratories, Inc. Since joining KDD in 1986, he worked in the field of computer
communication. His current research interests include implementation of high performance
communication protocols and communication systems. He received the B.S. and M.E.
Degrees of electrical engineering from Kobe University, Kobe, Japan, in 1984 and 1986
respectively.

Toshihiko Kato is the senior manager of High Speed Communications Lab. in KDD R&D
Laboratories, Inc. Since joining KDD in1983, he has been working in the field of OSI,
formal specification and conformance testing, distributed processing, ATM and high speed
protocols. He received the B.S., M.E. and Dr. Eng. Degrees of electrical engineering from the
University of Tokyo, in 1978, 1980 and 1983 respectively. From 1987 to 1988, he was a
visiting scientist at Carnegie Melon University. Since 1993, he has been a Guest Associate
Professor of Graduate School of Information Systems, in the University of Electro­
Communications.

Kenji Suzuki is the executive vice president of KDD R&D Laboratories, Inc. Since joining
KDD in 1976, he worked in the field of computer communication. He received the B.S.,
M.E. and Dr. Eng. Degrees of electrical engineering from Waseda University, Tokyo, Japan,
in 1969, 1972 and 1976 respectively. He received Maejima Award from Communications
Association of Japan in 1988, Achievement Award from the Institute of Electronics,
Information and Communication Engineers in 1993, and Commendation by the Minister of
State for Science and Technology (Persons of scientific and technological research merit) in
1995. Since 1993, he has been a Guest Professor of Graduate School of Information Systems,
in the University of Electro-Communications.

	Full-Automatic Implementation of Protocol Programs
for OSI Application Protocols over ROSE
	1. INTRODUCTION
	2. BRIEF INTRODUCTION TO ROSE
	3. DESIGN PRINCIPLES AND OVERVIEW OF RO
PROGRAM GENERATOR
	3.1 DESIGN PRINCIPLES
	3.2 OVERVIEW

	4. DETAILED DESIGN
	4.1 INPUT SPECIFICATION TO EXTENDED ASN.l
COMIPLER
	4.2 SERVICE PRIMITIVE TYPE GENERATION
	4.3 ENCODER I DECODER GENERATION

	5.
MHS P21P7 IMPLEMENTATION AND COMMUNICATION EXPERIMENT
	5.1 MHS P21P7 PROTOCOL PROGRAM GENERATION
	5.2 COMMUNICATION EXPERIMENT

	6. CONCLUSION
	REFERENCES
	BIOGRAPHY

