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Abstract: Recently, the automatic program generation from protocol specification comes 
to be used in order to increase the efficiency of protocol program 
implementation. In the field of OSI, it can be applied successfully to the 
application protocol programs over ROSE. However, the conventional RO 
program generators have problems that they cannot generate complete protocol 
programs. This paper proposes a full-automatic implementation method of 
OSf application protocols over ROSE. Our RO program generator supports 
the program generation for more than one application protocols over ROSE 
such as MHS P2IP7, and enables the presentation context handling. As a 
result, we have succeeded to generate a complete MHS P2 I P7 protocol 
program. This paper the detailed design of our RO program 
generator and the results of implementation of P2IP7 program and its 
performance evaluation. The work which we did for the implementation was 
just to specify 370 line P2/ P7 protocol specification. The automatically 
generated P2 I P7 program can provide about 100 operations per second. 
Therefore, the proposed implementation method is considered to achieve as 
high performance as applicable to the practical usage. 
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1. INTRODUCTION 

Recently, the automatic program generation from protocol specification 
comes to be used in order to increase the efficiency of protocol program 
implementation. The stub generator of RPC (remote procedure call) is a 
typical example (Birrel and Nelson, 1984). In the field of OSI, an ASN.l 
(Abstract Syntax Notation One) (ITU Rec. 208 and X.209, 1987) compiler, 
which automatically generates encoder and decoder programs from the 
ASN.l specification of Presentation and Application POUs (Protocol Oata 
Units), is an example of program generation (Hasegawa, Nomura and Kato, 
1992) (Neufeld and Yang, 1990). Since the encoding rule of ASN.1 is quite 
complicated, the ASN.l compilers are indispensable in the OSI protocol 
program implementation. However, the program generation by ASN.l 
compilers is limited to encoder and decoder programs because ASN.l 
specifies only the data type of POUs. Implementers need to write the rest 
parts of programs. 

The program generation can be applied successfully to the OSI 
application protocol programs working over ROSE (Remote Operation 
Service Element) (ITU Rec. X.219 and X.229, 1988), which is considered as 
an extension of RPC in the OSI environment. In the case of those protocols, 
such as MHS (Message Handling System) P21P7 protocols (ITU Rec.x.413, 
X.419 and X.420, 1988) and CMIP (Common Management Information 
Protocol) (ITU Rec. X.71O and X.711, 1988), the protocol behaviors are 
defined in ROSE, and the data types of POUs and service primitives 
provided for their users are defined in the RO-notation. Therefore, it is 
possible to generate the protocol programs from the specification in RO­
notation, including the programs for POU encoding and decoding, and for 
protocol behavior handling, similarly with RPC stub generators. For 
example, the ISOOE software (Rose, 1990), which is a public domain OSI 
software widely used for an experimental purpose, uses a Remote Operation 
(RO) program generator called rosy (Remote Operations Stub-generator 
(YACC-based» for protocols over ROSE (Rose, Onions and Robbins, 
1991). 

However, the conventional RO program generators have some problems 
that they cannot generate complete protocol programs, in the following 
points. 
(1) In the OSI application layer, there are some cases that more than one 
protocols are used over ROSE. In MRS P2IP7 protocols, P7 protocol, 
which specifies the requests and responses between UA (User Agent) and 
MS (Message Store), transfers interpersonal messages defined by P2 
protocol as user data. In CMIP, data types of managed object information 
transferred by CMIP POUs are defined in different specification from CMIP 
itself. In such cases, the program generation needs to be performed for more 
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than one protocol specifications. But, the conventional RO program 
generators cannot handle these cases. 
(2) In the OSI communications, the data types of POUs are managed by the 
abstract syntax, and the presentation context containing the object identifier 
value of abstract syntax needs to be defined for an individual presentation 
connection. The conventional RO program generators do not generate 
protocol programs handling the presentation context. 

We have taken account of those problems and implemented our RO 
program generator which can generate protocol programs fully supporting 
application protocols over ROSE. The above problems come from the fact 
that the RO-notation and ASN.l specification cannot describe the mapping 
between POUs specified independently nor assignments of the object 
identifier of abstract syntax. Therefore, we have extended the RO-notation 
and developed a program generator for the specification. Our RO program 
generator is also designed so as to generate protocol programs which have 
more flexible user programming interface than conventional RO program 
generators, and which realize high performance by avoiding data copying. 

This paper describes the detailed design of our RO program generator 
which realizes the full-automatic implementation of OSI application 
protocols over ROSE, and the results that we applied it to the 
implementation of MHS P21P7 protocol programs. Section 2 briefly 
introduces ROSE protocols and section 3 describes the design principles and 
overview of our RO program generator. Section 4 describes the detailed 
design and section 5 shows the results of implementing MHS P21P7 protocol 
programs. 

2. BRIEF INTRODUCTION TO ROSE 

ROSE (ITU Rec. X.218 and X.219, 1988) is an application service 
element of OSl, and uses a protocol stack illustrated in Fig. I... Among the 
protocols in Fig. 1, an application protocol and ROSE which are shaded are 
targets of automatic implementation. ROSE provides a request-response 
style communication for application protocols such as MHS P21P7 and 
CMIP, and this request-response is called a remote operation. An entity of 
application protocol (a requester) requests an operation which has some 
arguments using ROSE. Receiving the operation, the peer entity (responder) 
sends back a response which has a result of the operation to the requester 
using ROSE. 

The data types of POUs of application protocols over ROSE are defined 
using four macros of RO-notation : operation, bind, unbind and error 
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macros. The operation macro is used to specify two kinds of application 
POUs : an argument and a result of an operation. The bind and unbind 
macros are used to specify application POUs transferred when an 
application association is established and released, respectively. The error 
macro is used to specify application POUs which informs a requester of the 
error of operation. Among the application POUs, those defined by the 
operation and error macros are transferred using ROSE protocol, and those 
defined by the bind and unbind macros are transferred using ACSE. 

Application Protocol (CMtP. MHS) 

ACSE X.227 I ROSEX.229 

OSI Presentation Layer X.216, X.226 

OSI Session Layer X.215, X.225 

OSI Transport Layer X.214, X.224 

OSI Connection Oriented 
Network Service 

Figure 1. Protocol Stack 
The ROSE protocol uses four ROSE POUs: ROIV (RO-INVOKE), RORS 

(RO-RESULT), ROER (RO-ERROR) and RORJ (RO-REJECT). A ROSE 
POU transfers not only an application POU as user data, but also the 
following ROSE protocol control information: operation value which 
specifies a type of operation, and an invoke identifier which is used to map 
the request and response of an operation. 

It should be noted that the service primitives of the application protocols 
over ROSE have the same parameters as their POUs, and therefore, the data 
types of the service primitives are also defined by RO-notation. 

3. DESIGN PRINCIPLES AND OVERVIEW OF RO 
PROGRAM GENERATOR 

3.1 DESIGN PRINCIPLES 

We have adopted the following principles for our RO program generator. 
(1) As described above, RO-notation is not powerful enough for describing 
a complete application protocol specification. Therefore, our RO program 
generator allows the following specifications to be added into RO-notation. 
• A data type contained in ANY DEFINED BY type and OCTET STRING 

type. This specification defines the mappings between POUs of more 
than one protocols over ROSE. 
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• The object identifier value for the abstract syntax for the POU 
definitions. 

• A role of operation, i.e. an operation is requested by the initiator of the 
application association, the acceptor, or both. 

(2) Our RO program generator implements protocol programs supporting 
application protocols and ROSE. The protocol program interfaces between 
user programs for the upper layer side, and ACSE (Application Control 
Service Element) and PL (Presentation Layer) programs for the lower layer 
side. Since the application protocols over ROSE often require the 
invocation of an operation during waiting for a response of another 
operation, the subroutine call based user programming interface which is 
used in RPC stub and ISOOE is not sufficient for flexible programming. 
Therefore, the user programming interface of the protocol programs 
automatically implemented adopts the exchange of individual service 
primitives through queues between the user programs and the protocol 
programs. 
(3) As described above, the service primitives and POUs of the application 
protocols contain the corresponding parameters, and the user programming 
interface of the automatically implemented protocol programs uses the 
service primitives. In order to avoid data copying, the encoder and decoder 
programs generated by our RO program generator encode POUs from 
service primitive data and decode POUs into service primitive buffer 
without using any intermediate working buffers. 

3.2 OVERVIEW 

(1) Our RO program generator consists of the extended ASN.l compiler and 
the protocol behavior routines as shown in Fig. 2. Since individual 
application protocols use the same protocol behavior defined by ROSE, the 
protocol behavior is realized by pre-implemented library routines, i.e. the 
protocol behavior routines. On the contrary, the extended ASN.l compiler 
generates the following application protocol specific programs and data 
from a specification in the RO-notation: primitive data types, ASN.l 
encoder / decoder routines, and an operation table containing control data. 
(2) The structure of generated program is shown in Fig. 3. The program 
provides the programming interface based on exchanging service primitives 
through interface queues to user programs. The data types of service 
primitives are generated by the extended ASN.l compiler. The behavior 
routines perform the application protocol behaviors using the encoder / 
decoder routines and the operation table. The encoder / decoder routines 
are used to encode and decode ROSE POUs and application POUs. The 



314 

operation table holds the static infonnation for all operations, a bind and an 
unbind. For each operation, the data includes an operation value, pointers to 
encoder and decoder routines for the PDU and error list. 

Extended ASN;l 
. Compiler 

r-------""" 
1.-----. 
1 Protocol 
1 Betiovfor 
1 Routines 

1 
1"'--- ------ --
1 
1 
1 Primitive Operation 
1 Data Types Table 
1 
I ______ 

Figure 2. Structure of RO Program Generator 

Application Protocol Program 

O t· '---ASN1-ASN'1--
pera Ion I Encoder Decoder 

I Routines Routines 

I 

PL 

Application Protocol Primitive 

ACSE Primitive with Application PDU [::I.. PL Primitive with Application and 
ROSE PDUs 

Figure 3. Structure of Generated Program 
(3) The protocol behavior routines realize the application protocol 
processing in the following way. 
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• They use a control structure such that they receive a primitive from either 
a user program or a lower layer program (ACSE program or PL 
program), analyze the primitive, make a primitive and sends it to the 
lower layer program or the user program. 

• When encoding a POU from a service primitive and when decoding a 
POU into a service primitive, they obtain a pointer to the encoder routine 
and the decoder routine by referring to the operation table. 
They use two kinds of tables in order to manage the dynamic 

information. An association table is prepared for each application 
association. In each association table, a request-response table for mapping 
the request and response is provided. 

4. DETAILED DESIGN 

4.1 INPUT SPECIFICATION TO EXTENDED ASN.l 
COMIPLER 

An example of input specification to the extended ASN.l compiler is 
shown in Fig. 4, which is a part of MHS P2 / P7 protocol specification. In 
this specification, a bind and an operation are defined by RO-notation 
extended as described above. MSBind is a bind, and MessageSubmission is 
an operation. The argument and result of MessageSubmission operation 
have SubmissionArg and SubmissionRes types, respectively, and the 
operation value is 3. These types are defined in ASN.l. For example, 
SubmissionArg type is defined using SEQUENCE type with two elements, 
envelope and content. 

As described in section 3.2, the object identifier of the abstract syntax is 
specified at the line marked with (a) in Fig. 4. The line marked with (b) 
specifies the role of generated program for MessageSubmission operation. 
This operation is invoked by the initiator of an association. The line marked 
with (c) specifies that a P2 POU whose data type is InformationObject is 
contained inside the content element whose data type is OCTET STRING. 
The line marked with (d) specifies the case that the ANY DEFINED BY type 
contains another data. In this case, the data types contained in the values 
element depends on the value of atype element whose data type is OBJECT 
IDENTIFIER type. The two lines followed by mark (d) specify pairs of the 
data type of contained data and the values of the atype element. 
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P2P7 DEFINITIONS 
BEGIN 
ABSSYN { 2 6 0 1 4 ) -- (a) presentation context 
MSBind ::= BIND -- bind 

ABSSYN { 2 6 0 2 1 } -- (a) 
MessageSubrnission OPERATION 
!! INITIATOR -- requester (b) 

ARGUMENT SubrnissionArg 
RESULT SubrnissionRes 
ERRORS {. . . .. } 

::= 3 operation value 
-- P7 PDU 
SubrnissionArg ::= SEQUENCE 

envelope Envelope, 
content Content} 

Content::= OCTET STRING {type = InforrnationObject } --(c) 
Attribute::= SEQUENCE { 

atype AttributeType, 
values ANY DEFINED atype -- (d) 

(heading SeqOfHeading { 2 6 1 7 0 }, 
body SeqOfBody { 2 6 1 8 0 }, ...... ) 

AttribueType ::= OBJECT IDENTIFIER 
SeqofHeading ::= SEQUENCE OF Heading 
Heading SEQUENCE { ... } 
-- P2 PDU 
InforrnationObeject ::= CHOICE 

iprn IPM, } 
-- ROSE PDU 
ROSEApdus :: = 

Figure 4. Example Specification (P21P7) 

4.2 SERVICE PRIMITIVE TYPE GENERATION 

The extended ASN.l compiler generates two service primitive data types 
in C language from each operation, bind and unbind definitions. One data 
type is' for a request primitive and an indication primitive, and the other is 
for a response primitive and a confirm primitive. 

A service primitive data type consists of the following elements: 
• header: common information for all. primitives such as a layer identifier, 

an indicator of a request, indication, response or confirm, and an 
association identifier. 

• parameters of lower layer protocols : information needed to encode and 
decode ROSE POUs and parameters exchanged between lower layers 
and a user program. 

• application POU 
The data type of an application POU is specified in ASN.l, and the C 

data type corresponding to that is generated by the extended ASN.l 
compiler. As described above, the application POU field is used both as a 
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working buffer in ASN.1 encoding / decoding and as a parameter of a 
primitive. 

/ Indication Primitive */ 
{ 
/* header */ 
/* invoke identifier */ 

/* MessageSubmission Request 
struct MessageSubmission_req 

prim_header_t PrimHead; 
long InvokeId; 
SubmissionArg_t param; 

/* SubmissionArg Data Type 
struct SubmissionArg { 

Envelope_t envelope; 
Contetnt_t content;}; 

typedef struct SubmissionArg 

/* application PDU : 
argument of operation */ }; 

*/ 

SubmissionArg_t; 

/* MessageSubmission Response / Confirm Primitive */ 
struct MessageSubmission_rsp { 

prim_header_t PrimHead; /* header */ 
long InvokeId; /* invoke identifier */ 
long resultFlag; /* Result: Success/Failure */ 
union 

SubmissionRes t acc; 

rej; 

/* SubmissionRes Data Type 
struct SubmissionRes { 

} ; 

/* application PDU : 
Response of operation */ 

/* Error Response */; 
result; }; 
*/ 

typedef struct SubmissionRes SubmissionRes_t; 

Figure 5. Service Primitive Oata Types of Operation 

Figure 5 shows the request and response primitive data types generated 
from an MessageSubmission operation specified in Fig. 4. The primitive 
data types are defined using C data type struct which holds the above 
mentioned information. For example, as for the request / indication 
primitive, invokelD element is an invoke identifier of ROSE POU, and is 
used for encoding and decoding a ROSE POU. Param element is a 
parameter of application POU, i.e., an argument of operation, and the data 
type is specific to each operation. The response and confirm primitives 
include the following elements as well as invokeID element. ResultFlag 
element is a flag indicating whether the operation has been successfully 
performed by the responder or not. Result element is realized by C union 
structure and is either a result application POU which is specific to each 
operation or an error application POU. Acc element is the result application 
POU, and rej element is the error application POU. 

It should be noted that the data types have the structure allocated in a 
contiguous memory area without using pointers as long as possible. The 
SEQUENCE and SET types which have nested structures do not use pointers 
to child components, but contain the values of child components themselves. 
In Fig. 5, C struct SubmissioArg corresponds to SubmissionArg of 
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SEQUENCE types, and have C struct themselves such as Envelope_t and 
Contenct. 

The SEQUENCE OF and SET OF types which include ordered and 
unordered component values, respectively, have C data types which consist 
of an integer indicating a component value number, and a pointer to 
component values themselves. Figure 6 shows the C data types 
corresponding to SeqOjHeading type in Fig. 4. Cnt element and data 
element are the number of heading values and the pointer to the array of 
heading values. The memory area for storing heading values is allocated as 
a contiguous array, not as a list with individual heading values linked by 
pointers 
struct { 

u_long cnt; /* Number of Component Values */ 
Heading_t *data; /* Pointer to Array of Heading Values */ }; 

Figure 6. C Data Types of SEQUENCE OF Type 

4.3 ENCODER I DECODER GENERATION 

The extended ASN.l compiler generates a C data type and encoder I 
decoder routines for a data type which is newly defined using structured 
types of ASN.l such as SEQUENCE and SET. On the contrary, those for 
primitive types such as INTEGER and OCTET STRING types are pre­
implemented as a library. 

In order to deal with PDUs containing upper layer PDUs as user data, the 
mapping function is added to ANY DEFINED BY type and OCTET STRING 
type in the following way. 
(1) A data type of upper layer PDU is defined using DEFINED BY phrase as 
shown in (d) of Fig. 4. The actual data type is dynamically chosen among 
the candidate data types. i.e, SeqOjHeading and SeqOfBody of Fig. 4. The 
data types are determined dynamically by an object identifier value at atype 
element. For example, when the object identifier value of type is {2 6 1 7 
A}, the data type of values is SeqOjHeading. 
(2) The data type of ANY with DEFINED BY phrase is a C data structure 
union which consists of all data types defined by DEFINED BY phrase, and 
it is generated by the extended ASN.l compiler. Figure 7 shows the C data 
type generated from Attribute type which includes ANY DEFINED BY type. 
Atype element contains an object identifier value indicating data type of 
values element. Values element is a union of the C data types corresponding 
to the above candidate date types. 
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struct O-Attribute 
{ AttributeType_t atype; /* Object Identifier */ 
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union /* Union of Candidate Types */ 
SeqOfHeading_t heading; /* Candidate Type 1 */ 
SeqOfBody_t body; /* Candidate Type 2 */ 

values; }; 

Figure 7. C Data Type for Attribute 

(3) When encoding the parameter of ANY, an encoder routine first checks 
an object identifier value of atype element of working buffer, and then calls 
the encode routine corresponding to the object identifier value. On the 
contrary, when decoding, a decoder routine first decodes the atype element 
of POD, and then calls the decoder routine corresponding to the decoded 
object identifier value. 

void decodeAttribute(var, edata, index, 
error, ida) 

char *var; STRING *edata; 
u_long *index; ERROR *error; 
ID * ida; 
Attribute 
long cnt = 0; 
u_long next_obj = 0; 
/* decoding identifier and length octets */ 
cnt = skp_idlenN(edata, index, &next_obj, ida, error); 
next_obj += *index; 

= (Attribute *) var; 
/* decoding type */ 

. type, edata, index, 
error, id_infoN + 31, (u_1ong) 0); } 

if (( *error) . errlevel < 2) { 
if (obj_chk . type, &headingId) == TRUE) { 

decodeSeqOfHeading( 
.value.heading, 

edata, index, error, id_info + 44); } 
else if (obj_chk . type, &bodyId) == TRUE) ( 

.value.body, 
edata, index, error, id_info + 45); } 

else { 
ERRSETN (error, FAT.ALN, 10, ida, * index) ; 

/* Object Identifier Values: Constants */ 
OBJID headingld { { 2, 6, 1, 7, O}, 5}; 
OBJID bodyld {{ 2, 6, 1, 8, O}, 5}; 

Figure 8. Decoder Routine of Attribute Type 

Figure 8 shows a part of decoder routine of Attribute type in FigA which 
includes the above ANY DEFINED BY type. Octets to be decoded are stored 
in edata variable, and the decode result is set in var variable. First, the 
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decoder routine decodes identifier and length in the octets to be decoded 
using skip_idlenN library routine. Secondly, the decoder routine decodes 
object identifier of atype using decodeobjectN library routine. The decoded 
object identifier value is set in atype element of var variable. Thirdly, the 
routine compares the decoded object identifier value and candidate values 
using obLchk library routine. The variables which hold candidate object 
identifier values are generated from an ANY DEFINED BY phrase by the 
extended ASN.l compiler. Headingld and bodyld variables in Fig. 8 are the 
examples, and they are used as arguments to obLchk routine. Eventually, 
the decoder routine finds the decoder routine corresponding to the object 
identifier value, and calls the decoder routine, I.e., either 
decodeSeqOfHeading routine or decodeSeqOfBody routine which are 
generated by the extended ASN.l compiler. 

s. MHS P21P7 IMPLEMENTATION AND COMMUNICATION 
EXPERIMENT 

5.1 MHS P21P7 PROTOCOL PROGRAM GENERATION 

MHS P2IP7 protocol, which is defined over ROSE, is used to transfer an 
IPM (Interpersonal Message) between UAs (User Agents) and MSs 
(Message Stores). P2 protocol defines the format of IPM. P7 protocol 
defines the protocol between UAs and MSs, such as the submission of a 
message to an MS and fetch of a message stored in an MS. 

We have developed the P2 1P7 program using the proposed 
implementation method. We have written a P2 ! P7 specification in the 
extended RO- notation and generated the program using the extended ASN.l 
compiler. The specification supports three operations : list, fetch and 
deletion of a message, and its size is 370 lines. From the specification, 
about 11 Kline C programs are generated. The details are shown in Table 
1. Since protocol behavior routines are about 2.4 K lines, the total P2 ! P7 
program size is about 13.4 K lines. 

Among the 370 lines of the P2! P7 specification, the 350 lines have been 
just copied from the specification in the ITU Recommendations (ITU Rec. 
X.413, X.419 and X.420), and just the 20 lines which specify the mapping 
of POUs, presentation context identifiers and so on have been additionally 
written. It has taken just two days to write the specification and to generate 
the programs from the specification. 



Table I. Sizes of Specification and Generated Program 
specification lines program lines 
RO-notation 

ASN.l 

80 

290 

operation table 120 
primitive data types 240 
encoder / decoder 10,640 

5.2 COMMUNICATION EXPERIMENT 
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In order to run the P2 / P7 program, U A and MS programs for testing 
have been developed. The P2 / P7 program, UA or MS program are built 
into the previously developed OSI program which supports from ACSE to 
LLC protocols. The total OSI program, whose structure is shown in Figure 
9, is run as a single process on UNIX operating system. The execution of 
the above programs is controlled by a pseudo-kernel program which 
provides the scheduling function and inter-program communication 
function. For evaluating the generated program, we performed the 
following experiments. 

Pseudo­
Kernel 

LLC Program 

Ethernet Interface 

Figure 9. Program Structure 

(1) Communication with Other MHS P2 / P7 Program 
In order to validate the correctness of the automatically generated P2 / 

P7 program, we have performed the communication experiment between the 
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generated P2! P7 program with MS program and a VA program which we 
previously manually developed. The MS program is run on a Sun SS-20 
workstation and the VA program is run on a personal computer. These are 
connected via a serial line. The message submit, list and fetch operations 
are executed between the both programs, and the generated P2IP7 program 
with the MS program provides the correct MS behavior. 
(2) Overall Performance Measurement 

In order to measure the performance, the communication experiments are 
performed between the generated P2 ! P7 program with V A program and the 
P2 IP7 program with MS program. The network configuration is shown in 
Fig. 10. The two Sun SS-20 workstations (SuparSPARC II 60 MHz) which 
are connected via Ethernet LAN are used. 

SS-20 SS-20 read 

write 

I UA Program I I MS Program I Mail 
Box 

-
1 Ethernet I 

Figure 10. Network Configuration 

We have measured the response times of list and fetch operations under 
the following conditions. 
• list operation : The MS program searches the mail box, and returns a 

response which contains an originator name, a recipient name, a subject 
and a message identifier. 

• fetch operation : The MS program reads a message whose body size is 1 
K bytes, and returns a response which contains the message as a body. 
The response times are measured by running 10,000 operations 

consecutively, and the measurement is performed ten times for each 
operation. A response time is a duration between the time when the VA 
program sends a request of operation and the time when it receives the 
response. The average response times of list and fetch operations are about 
8.8 ms and 10.8 ms, respectively. As for a fetch operation, the processing 
tines of P2 ! P7 programs of VA and MS sides are about 0.59 ms and 0.56 
ms, respectively. As shown in the results, the automatically generated P2 ! 
P7 program can support about 100 operations per second. 
(3) Detailed Performance Measurement 

We have evaluated the performance improvement caused by the 
proposed implementation method. The duration from the time of receiving a 
fetch request primitive from the MS program to the time of sending a P­
DATA request primitive to the PL program is measured for both the 
proposed implementation method and the traditional method. 
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As for the proposed method, the duration is measured during the 
performance measurement of (2), and it is about 0.29 ms. On the contrary, 
as for the traditional method, we have developed a testing program for 
estimating the duration. The testing program uses a traditional method and a 
traditional ASN.l compiler (Hasegawa, Nomura and Kato, 1992). The 
working buffer for an application PDU of fetch argument is not a parameter 
of a fetch request primitive. Therefore, the testing program converts the 
parameter of the fetch request primitive to the working buffer before it 
encodes using the ASN.l encoder routine generated by the ASN.I compiler. 
The duration is measured running the testing program on the same sun SS-
20 workstation, and it is about 0.38 ms. The result shows that proposed 
direct encoding improves the P21P7 program performance at about 30 %. 

6. CONCLUSION 

This paper has proposed a full-automatic implementation method of OSI 
application protocols over ROSE. We have realized a RO program 
generator consisting of the extended ASN.l compiler and the protocol 
behavior routines. They support the program generation for more than one 
application protocols over ROSE such as MHS P21P7, and enables the 
handling the presentation context. We have implemented MHS P2 I P7 
protocol using our RO program generator. The results of implementation 
and communication experiment have made clear the following. 
• The proposed method has achieved the full-automatic P2 I P7 protocol 

implementation. It took a few days to implement it since the required 
work was just to specify 370 line P2 IP7 protocol specification. Besides, 
since we did not need write any programming code at all, we did not 
encounter any program bug during the implementation. 

• The automatically generated P2 I P7 program can provide about 100 
operations per second. Besides, the processing time of P2 I P7 process is 
less than 1 ms. Ttierefore, the proposed implementation method is 
considered to achieve as high performance as applicable to the practical 
usage. 
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