
SDL-Pattern based Development of a
Communication Subsystem for CAN *

B. Geppert, A. Kiihlmeyer, F. Rofiler, and M. Schneider
University of Kaiserslautern, Computer Science Department
P.o. Box 3049, 67653 Kaiserslautern, Germany
{geppert, akuehlm, roessler, schneider}@informatik.uni-kl.de

Abstract
SDL patterns are reusable software artifacts. They represent generic solutions for
recurring design problems with SDL as applied design language. We have developed a
construction set of protocol building blocks consisting of a pool of SDL patterns and
an accompanying methodology for the incremental design of communication proto­
cols. In this paper, we present a case study on the specification of communication pro­
tocols based on SDL patterns. The case study is part of a more comprehensive project,
where a real-time communication subsystem was developed on top of a Controller
Area Network (CAN) installation. We demonstrate how the protocols supporting user
communication and certain management tasks were configured. We also applied the
SDT Cadvanced code generator to implement the resulting design specification on a
PC cluster. Generally, it turned out that SDL-pattern based configuring of communica­
tion protocols yields more systematic designs, i.e., readability and maintainability is
improved and less design errors occur, since the design decisions are well founded and
documented.

1. Introduction

The reuse of predesigned solutions for recurring design problems is of major concern
in object-oriented software development. During the past few years, design patterns
have emerged as an especially fruitful approach to software reuse [2] [5]. Contrary to
the traditional paradigm of class and function libraries, which is solely concerned with
code reuse, design patterns aim to focus on the invariant parts of a design solution and
offer by far more flexibility for adaptation to the embedding context. That is, the
potential of reuse is substantially increased. There are several advantages commonly
attributed to design patterns: patterns capture solutions, which have evolved over time
and serve as an elegant way to make designs more flexible, modular, reusable, and
understandable. They reflect experiences gained in prior developments and therefore
help designers to reuse successful designs and architectures. As a consequence, the
design process becomes faster and the number of design errors decreases.

* This work is supported by the German Science Foundation (DFG) as part of the Sonderforschungsbereich
SFB 501 Development of Large Systems with Generic Methods.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

198

In [6] [7] we present the SOL-pattern approach that integrates the design patterns
concept with SOL [11]. Generally speaking, SOL patterns describe generic solutions
for recurring design problems, which can be customized for a particular context. While
conventional design patterns are specified independently from a possible design lan­
guage, it is assumed that the target language for SOL pattern instantiation is SOL.
Thereby we benefit from the formal basis provided by SOL, so that SOL patterns actu­
ally characterize as formalized design patterns. Instead of specifying and applying the
patterns rather informally, a formal target language such as SOL offers the possibility
to precisely specify how to apply a specific pattern, under which assumptions this will
be allowed, and what properties result for the embedding context. This is a major
improvement compared to conventional design patterns, which mainly rely on natural
language based pattern description and still have to leave pattern application to a large
degree to the personal skills of the system designer. However, we do not deal with for­
malizing design patterns in general. Instead of formalizing reuse concepts we aim to
support reusability within the formal methods area.

In this paper, we present a case study on the specification of communication proto­
cols based on SOL patterns. The case study is part of a more comprehensive project,
where a real-time communication subsystem was developed on top of a Controller
Area Network (CAN) [3] installation. We demonstrate how the protocols supporting
user communication and certain management tasks were configured. We also applied
the SOT Cadvanced code generator to implement the resulting design specification on
a PC cluster running under the real-time operating system QNX.

The remainder of the paper is organized as follows: Section 2 introduces the SOL­
pattern approach. In Section 3 we demonstrate how a real working communication
subsystem for CAN was configured using SOL patterns. The development steps for
(semi-)automatic code generation of the resulting SOL design are outlined in
Section 4. Finally, we summarize the results in Section 5.

2. The construction set of protocol building blocks

This section summarizes concepts for a construction set of protocol building blocks,
from which a protocol designer can select SOL patterns and configure them to a cus­
tomized, formal protocol specification.

2. 1. SOL patterns

An SOL pattern describes a generic solution for a recurring, context-specific design
problem. It is assumed that the target language for pattern instantiation is SOL.
Though the concept is not restricted to a specific application domain, we are mainly
concerned with communication protocols.

For the specification of SOL patterns we have defined a standard description tem­
plate with the main items sketched in the following. The mere syntactical part of the
design solution is defined by a generic SDLfragment, which has to be instantiated and
textually embedded into the context specification when applying the pattern. SOL
fragments represent context invariant parts of the design solution. Instantiation and

199

embedding of SDL fragments is prescribed in terms of syntactical embedding rules,
which, e.g., guide renaming of generic identifiers or of embedding
design elements. Usually pattern semantics is not completely captured by an SDL frag­
ment. Due to language constraints this would otherwise result in an overspecification
of the design solution and reduce potential of reuse. Thus additional semantic proper­
ties are included specifying preconditions for pattern application as well as behavioral
changes of the embedding context. Though semantic properties are currently stated in
natural language, it is possible to express them precisely in a temporal logic. Also,
restrictions on the refinement of pattern instances are specified in order to prevent a
pattern's intent from being destroyed by subsequent development steps. A more
detailed discussion of the SDL-pattern description template and a comparison to exist­
ing description templates of conventional design patterns is given in [6].

The current pool of protocol building blocks contains SDL patterns that deal with
interaction behavior of distributed objects, error control (lost or duplicated messages),
lower layer interfacing, or dynamic creation of protocol entities. To further illustrate
the functional scope of SDL patterns we shortly introduce some examples. Note that
the SDL patterns below are not completely specified. We basically summarize a pat­
tern's intent and skip the description items explained above.

• BlockingRequestReply: The BlockingRequestReply pattern introduces a con­
firmed interaction (two-way handshake) between two given automata. After a trig­
ger from the embedding context, the first automaton sends a request and is blocked
until receiving a reply. The request is eventually received by the second automaton,
which replies and finally releases the first automaton from its waiting state.

• DynamicEntitySet: Consider a given server entity that provides its service exactly
one time and terminates thereafter. In order to offer this service several times (e.g.,
to more than one client), the DynamicEntitySet pattern is applied. For each client a
new server entity is dynamically created by a special entity administrator. Subse­
quently, the administrator acts as a proxy from the perspective of the clients, which
forwards service requests to the corresponding server entity.

• Codex: The Codex pattern provides mechanisms to allow two (or more) entities,
which interact directly through SDL channels, to cooperate by the means of a given
communication service. In general, the introduction of a basic service involves
many specialities. Among others, these are segmentation, reassembly, upgrade of
basic service quality (e.g., in case of loss, disruption or duplication of messages),
lower layer connection setup, or routing decisions. The Codex pattern is only con­
cerned about a minimal subset of these functionalities, namely interfacing with the
basic service by the means of service primitives. That is, Codex essentially pro­
vides a mapping from protocol data units to basic service primitives and vice versa.

2.2. Configuration process

For the design of SDL protocol specifications we have defined a configuration process
supporting the reuse of protocol building blocks represented as SDL patterns
(Figure 1). The configuration process suggests an incremental protocol design, where

200

the whole set of communication requirements is first decomposed, i.e., partitioned and
(where appropriate) simplified. Decomposition classifies as an analysis task that iden­
tifies separate protocol functionalities. Thereby it is possible to consider a protocol
functionality under different assumptions. For instance, interaction sequences for con­
nection establishment are less complex on top of a reliable basic service instead of an
unreliable basic service. Experience has shown that protocol functionalities can often
be specified one after the other and - in addition - be stepwise completed (e.g., adapted
to the non-ideal properties of an underlying basic service). This suggests that we per­
form an individual development step in order to incorporate an additional protocol
functionality or relax a corresponding simplification. Thereby each development step
divides into analysis, design, and validation and yields an executable SDL design
specification. In the following the different activities within a development step are
sketched.

First, an object-oriented analysis of the current protocol functionality is performed.
This results in an updated analysis model from the previous development step. It is
suggested to provide an UML [1] object model and an MSC [12] use case model,
which together identify participating objects and typical interaction scenarios.

The analysis model is implemented in the following design activity. Here, SDL
patterns come into place. Starting point is the context SDL specification, i.e., the SDL
design specification obtained from the previous development step. This may, e.g., be a
protocol specification, which relies on a reliable basic service. Hence, the design prob­
lem (stated in the analysis model) could then be to suit the protocol to an unreliable
basic service. In order to meet the new requirements a number of design steps are per­
formed that apply separate SDL patterns to the context specification. Note that for
some design problems the pool of predefined protocol building blocks may not contain
an adequate solution, so that an ad hoc solution must be found. The selection of an
SDL pattern is supported by several items of the SDL pattern description template,
namely intent, motivation, structure, message scenario, semantic properties and coop­
erative usage. As patterns represent generic design solutions, the corresponding SDL
fragment has to be adapted in order to seamlessly fit the embedding context. This is
instructed by the renaming parts of the syntactical embedding rules and the refinement
rules. The resulting pattern instance finally has to be composed with the embedding
context, which is prescribed by the composition part of the syntactical embedding rules
and also by the refinement rules of embedding pattern instances.

The result of this design activity is an intermediate SDL design specification,
which is subsequently validated against the analysis use case model. Also, the correct­
ness of the SDL specification concerning general properties such as freedom from
deadlocks is checked. If any faults are discovered, a return to one of the previous
development or design steps is needed (not shown in Figure 1). Otherwise the vali­
dated specification serves as the context specification for the next development step. If
all simplifications are eliminated and all requirement subsets are implemented the final
design specification is given by the validated design specification of the last develop­
ment step.

201

oa.. u: 11IkJCr:- I
,. de¥dopmc:Iw Aq) CCUMer - /

---------,

I --. . ·

• - - .. procIooct - (\8<OIIpIao) I
---+ """"".""""",- .

Figure 1. Configuration process (excerpt)

3. Configuring a communication subsystem for CAN

Controller Area Network (CAN) is a field-bus standard originally developed for
mobile systems. However, due to exceptional features such as high data rates and fault
tolerance, CAN became also established in other areas of the field-bus domain [3]. We
have configured a real-time communication subsystem for CAN using SDL patterns.
Note that the presentation below follows the configuration process introduced in
Section 2.2.

202

Figure 2. CAN subsystem architecture

3.1. Communication requirements

Communication between intelligent sensors, actuators, and controller components
imposes stringent requirements on timeliness and predictability. Thus CAN employs
bitwise bus arbitration based on message identifiers to support deterministic media
access. Message identifiers are to be interpreted as priorities and therefore a global,
priority-driven scheduling of message transfers is realized. As timeliness and predicta­
bility strongly depend on worst case traffic load, field-bus installation normally pre­
cedes a configuration step, where communicating peers as well as traffic loads are
identified and priorities are assigned accordingly. This step is carried out prior to sys­
tem operation and works fine for static settings. Nevertheless, the operator or owner of
a field-bus installation may change communicating devices or applications dynami­
cally (e.g., in building automation). Though dynamic insertion and removal of com­
municating devices is generally supported by CAN, timeliness guarantees have to be
concerned from scratch.

Therefore a communication subsystem shall be developed on top of CAN that per­
forms admission control, priority assignment, and traffic policing automatically during
system operation. This can be seen as a kind of "plug and play" functionality for time­
liness guarantees, i.e., when, for instance, a new communicating device is inserted, the
system automatically handles priority assignment with respect to timeliness require­
ments and under consideration of the already existing traffic load. If there are not
enough network resources left, the system shall deny additional communicating peers.

3.2. Decomposition

The real-time CAN subsystem (Figure 2) is based on a generic QoS architectural
framework [8]. This framework was also previously instantiated for a real-time com­
munication subsystem on top of a Token-Ring network [9]. Essentially, the subsystem
for CAN contains protocol functionalities for initialization of CAN modules (network
management), resource management, and object-based user communication (e.g.,
access to remote read-only-variables). With the additional simplification that commu­
nicating peers exchange protocol data units (PDU) directly, i.e., without using an
underlying basic service, we get the decomposition of Figure 3. The chronological
order of the performed development steps is also illustrated.

203

3.3. Development steps

3.3.1. Development step I: Initializing CAN modules, directly connected peers.
Before communication can start, some CAN modules must be initialized (e.g. , pro­
grams or parameters are downloaded). This process would consume many CAN iden­
tifiers that are permanently assigned to individual modules. In order to save resources,
it is suggested to share CAN identifiers for initialization purposes. As a consequence, a
special control protocol for medium access is needed, which was specified in the first
development step. The protocol is implemented by a network slave on each CAN mod­
ule and a central network manager.

The interaction between the network manager and a network slave is structured
into different phases. When the slave requests access to the CAN bus, the correspond­
ing request message contains no data in order to avoid collisions. Thus, the network
manager must identify the slave before it can be addressed. This is done by a binary
search that broadcasts identification messages, which contain an interval of valid mod­
ule identifiers. Only those slaves with a valid module identifier are allowed to reply.

A slave enters the next phase, when an initialization message with its own module
identifier is received. As already mentioned, the initialization protocol employs CAN
identifiers that are shared among all slaves. In order to avoid collisions on the CAN
bus their use is coordinated by sequencing the initialization phases of individual
slaves.

The interaction scenario is implemented by cooperative application of several SDL
patterns such as SendReceive, BlockingRequestReply or SingleRequestMultipleReplies.
For instance, the exchange of the request and initialization message follows the Block­
ingRequestReply pattern, while the binary search for identification of network slaves
applies SingleRequestMultipleReplies. Because of space limitations we skip further
details here.

3.3.2. Development step n: Resource reservation, directly connected peers.
Before communication can take place a certain amount of network resources must be
reserved in order to guarantee quality of service (QoS). Figure 4 illustrates the interac­
tion between a resource slave and the central resource manager. The application asks
its local resource slave to establish a connection with certain QoS (SP _id.req) and is

step

II

111

IV

ba ic ervice

directly connected

protocol functionalitie

initialization of CAN modules

resource reservation

object-based user communication:
"ItUd-only-object
oYo'litc-only-object
·uncomrolled-event-object
-ston:d-event-object
oread-write-object

Figure 3. Decomposition and chronological order of selection

204

resource slave establishConnection resource manager

la resource s ve resource manager

haracter.QoSParametet
PDU id_reserve(Character. QoSParameterl

I admission control I

PDU id reserved(Character. CANld.CANId)

I open object I

haracter.CANld.CANId)

Figure 4. Analysis model of development step II (excerpt)

infonned about the result by a corresponding reply (SP _id.conj). Embedded into this
interaction is a two-way handshake between the slave and the resource manager. The
slave sends a PDU_idJeserve message with a flow specification containing all rele­
vant QoS parameters. The resource manager then decides, if the connection will be
established and assigns unique CAN identifiers to the communication object that will
be used for data transfer. The identifiers are returned within the PDU_idJeserved
message. The interaction is realized by a cascaded application of the BlockingRequest­
Reply pattern. The shaded parts of Figure 5 determine the renamed SDL fragments of
the embedded pattern instances.

3.3.3. Development step ill: Object-based communication, directly connected.
The CAN subsystem supports object-based user communication. That is, a connection
is established by common access to the same communication object, which, e.g., rep­
resents a physical quantity or event of a technical process. Access to remote objects is
realized according to the Client/Server paradigm. Thereby the server side is responsi­
ble for updating the logical communication object with its physical counterpart, while
the client side offers remote access. We defined six types of communication objects
with different access characteristics, such as read-only or write-only objects (Figure 6).
An object consists of a certain number of clients and servers, which are usually located
on different nodes. In case of a read-write object (RWobject) the object consists of one
server and a maximum of one clients (Figure 6). The MSC diagrams describe interac­
tions between server and client for opening, reading, writing, and closing such an
object. In the following, we will only consider RWobjects. It should be noted that
communication based on other objects can be specified independently from each other.

Design of object-based communication divides into two major steps. At first, it is
assumed that no more than one server and one client of each type of communication
object exists per node. Figure 7 shows a possible architecture. Two processes are
added to the context specification that resulted from development step II (Figure 5),
one for the client and one for the server of a RWobject. The client is assumed to be
located on node Com} and the corresponding server on node Com3. For definition of
the behavior SDL patterns are applied. In the following, we will concentrate on the

System CANsubsystem

Block Com1

Process netSlave

Process resSlave

Block Man

BiockCom2

Process net Manager

Process resManager BiockCom3

Process res Slave Process resManager

0Cl reason reasonType:
OCL "",,,,,gorAnswe< rno""f/O<Ans_Type;

OCL nsp aosP mo!er,

OCL Idon12 CANId;

Procedure askManagar
;natum.1 Ql\$W'8r managerAnswSfType: IOCl ... son reasonType:

User communication (BlockingRequestReply, replier)

205

c::::J Communication between protocol instances (BlockingRequestReply, requester & replier)

Figure 5. Design specification of development step II (excerpt)

206

SP

object
CANidl
logName

open
close

RWc1ient

RWclient

accept Requests

CANid2

read
write

SP
PDU readRW(CANld)

communicate

RWserver

RWserver

acceptRequests

r SP readRW.ind(Character)

IpU readRW success(CANId,Data)
SP readRW,res(Character,Data)

readRW,conf(Character,Data)

RWclient RWserver

acceptRequ8sts acceplRequests

SP
r PDU writeRW(CANld,Data)--," SP writeRW.ind(Character,D,)

SP _writeRW,res(Character)
SP writeRW,conf(Character) j'DU writeRW success(CANld)

RWserver

closeRWserver(CANld)

Figure 6, Analysis model of development step III (excerpt)

interactions for reading the object. Write access is specified accordingly. It follows
from the corresponding MSC of Figure 6 that the interactions actually describe three
cascaded two-way handshakes between the application and RWclient, RWclient and
RWserver, and finally between RWserver and the application, An SDL pattern generat­
ing a two-way handshake is BlockingRequestReply. We applied the pattern three times,
resulting in the chained BlockingRequestReply instances of Figure 7, For the first pat­
tern instance, which is shaded BIll only the replier is specified, because the request-

System CANsubsyslem

BiockCom1

nelSlave)

resSlave)

Process RWclienl

Process RWclienl

Block Man

(process

BiockCom2

BiockCom3

C!'rocess nelS lave)

C!'rocess resSlave)

Process RWserver

Process RWserver

DCl logName Charade<;
DCl data Data;
DCl klontt CANkI;
OCl ident2 CANIII;

207

Procedure ,eadObjecl I
;ratums answIH serverAnswerTypeR: OCl reason reasonType; I Procedure gelValue I

;raturns I!II'ISWet a.prAAns MTypeR; Del raal500 re8S(1nTypo;

Chained BlockingRequestReply Chained BlockingRequestReply

Figure 7. Design specification of development step III: Part 1 (excerpt)

208

System CANsubsystem

BiockCom1

netSlave) resSlave)

(RWclient) Process RWc (0,): RWclient

Block Man

(RWserver) RWs (0,): Rwserv,

Process objectAdmin

Process objectAdmin
ggt
ggt
DCL id2 CANld;
DCL object Pld;

DynamicEntitySet

BiockCom2

BiockCom3

Figure 8. Design specification of development step III: Part 2 (excerpt)

ing application is part of the environment. The requester of the second pattern instance
(shaded c::::J) is embedded in the first one and defined by the procedure readObject.
The corresponding replier is located in RWserver and also shaded c::::J. The
requester of the third BlockingRequestReply instance is given by the procedure get­

Value (shaded _). The corresponding replier is part of the application on the
server side and therefore not explicitly specified.

In the second major design step we relax the assumption that no more than one
server or client of each object type be allowed per node. In order to realize this we
applied the DynamicEntitySet pattern. According to the syntactical embedding rules
the server and client processes are replaced by process sets with corresponding process
types. For instance, the process RWserver is replaced by a process type of the same
name and a corresponding process set RWs (Figure 8). Additionally, an administrator

209

process object Admin is introduced, which is responsible for dynamically creating the
processes, whenever a new object is opened. Subsequently, objectAdmin forwards
incoming signals to the right instance of the process set. As a consequence, certain sig­
nal routes must be re-routed, i.e., disconnected from the client and server processes
and connected to the administrator, which itself must be connected to the process sets.
For reasons of readability, channels and signal routes are not shown in Figure 8.

3.3.4. Development step IV: Introducing the CAN basic service. Finally, we re­
place the direct connections between the communicating peers by the CAN basic serv­
ice. We therefore have to map POUs to service primitives offered by CAN. A pattern
dealing with that problem is Codex (Section 2.1). Its application results in a new SOL
process for each communication node. We skip further details here.

4. Generating the implementation

The design specification must finally be transformed into executable code. Note that
this is actually not part of the configuration process discussed in Section 2.2, but is
added to cover the whole development cycle. Implementation can be done manually or
using a code generator such as the SOT Cadvanced Compiler. For our case study, we
followed the implementation activity of the SOMT method [10] belonging to the SOT
development tool set. That is, we first partitioned the SOL design to define the differ­
ent run-time modules according to the light integration for the real-time operating sys­
tem QNX. Environment functions are to be implemented, which are responsible for
interfacing the generated code with its physical environment. Next the implementation
must be generated using the SOT Cadvanced compiler with its run-time library for
QNX. As the development tool set does not run under QNX but is implemented on our
SUN cluster running Solaris, the generated C files must be downloaded and compiled
on the QNX-PCs.

4. 1. Partitioning and light integration

Cadvanced allows two types of integration into other operating systems, which mainly
differ in the way SOL processes are mapped to operating system (OS) processes. The
tight integration creates an OS process for every SOL process, while the light integra­
tion creates a single OS process that handles all SOL processes of the SOL partition.
We decided to use light integration, because at the time of implementation only the
light integration supported SOL services, which our specification heavily relied on.

We prepared two different partitions. One that covers the protocol functionalities
of a slave node (where only network and resource slaves reside, Figure 2) and one for
the manager node (where additionally the network and resource managers reside,
Figure 2). The hardware-specific low-level CAN driver was hand-implemented. For
performance reasons, we also decided to integrate the communication objects
(Figure 2) into the low-level driver.

210

4.2. Interfacing with the environment

The generated modules communicate with the environment by the environment func­
tions xInEnv and xOutEnv. xInEnv provides the functionality to somehow receive
messages from the environment and transmit the messages as signals to the generated
module. xOutEnv is the counterpart of xInEnv. It forwards SDL signals from the spec­
ification to the environment.

4.2.1. Interface to the low-level driver. The low-level driver provides the functional­
ity to transmit messages of up to 8 bytes (the maximum length of a CAN frame). A
second part of the interface relates to the object-based user communication. We focus
on the basic routines for sending and receiving simple messages, because the gener­
ated modules only communicate this way. The send routine has three parameters: the
CAN identifier of the message type, a pointer to a buffer, where the message is stored,
and the size of the message. The send procedure blocks the calling process until the
message is delivered. The receive function has the same parameters, while it is non­
blocking.

4.2.2. Interface to the applications. The SDL design defines signals to indicate the
initialization phase and to start communication. To realize this we provide two func­
tions that block the application until the corresponding signal is received. Addition­
ally, we define a function that calls the local reservation slave via QNX specific IPC
mechanisms in order to establish a communication object.

4.3. Environment functions

For every signal that enters or leaves the specification, we define a C data type named
by the signal. For example, for the signal PDU_iden_rem, specified as

PDU_iden_ram(integer, integer)

we define the data type

typedef struct
char sigtype;
short intl, int2;

sigtype is a unique number to identify the signals. Instances of these types are then
transferred via the CAN bus.

The environment function xOutEnv. There are two types of signals: the signals that
have to be transferred via the CAN bus and the signals that realize the communication
to the application.

The signals to the low-level driver are implemented by simply allocating an
instance of the corresponding data type, filling it with the supplied arguments of the
SDL signal, and sending it by calling the low-level send function. For example, the
code for the PDU_iden_rem signal looks as follows:

else if((*S)->NameNode == PDU_iden_rem) {
PDU_iden_rem_T data;
data.sigtype = SIG_PDU_iden_rem;
data.intl = «YPDef_PDU_iden_rem *)(*S»->param2;
data.int2 = «yPDef_PDU_iden_rem *)(*S»->ParamJ;
send («YPDef_PDU_iden_rem *)(*S»->pareml.ident,

1* ID *1 &data, sizeof(data));
else if •••

211

SIG_PDU_iden_rem is a unique number for this signal. Expressions such as
«YPDef_PDU_iden_rem *) (*S» ->Pareml are the Cadvanced standard method to pro­
vide signal parameters to the environment.

Communication with the application is realized differently: an application requests
a service via IPC. When the request is handled, the protocol entity first stores the
application's process identifier. If the answer is available, the stored process identifier
will then be used to reply the answer to the right requester.

The environment function xlnEnv. Again there are two types of signals: requests
from applications and messages from the low-level driver.

To receive signals from the low-level driver, one has to poll the driver by calling its
receive function. For every message type there normally exists a different CAN identi­
fier. So, the xInEnv function calls the receive function sequentially for every possible
CAN identifier of incoming messages. A typical piece of code looks as follows:

if(receive (ID_PDU_iden_rem, data, sizeof(PDU_iden_rem_T» > 0)
S = xGetSignal (PDU_iden_rem, xNotDefPld, xBnv);
«YPDef_PDU_iden_rem *)(S»->Pareml.ident = ID_PDU_iden_rem;
«YPDef_PDU_iden_rem *)(S»->Param2 =

}

«PDU_iden_r8mLT *)(data»->intl;
«YPDef_PDU_iden_rem *)(S»->ParamJ =

«PDU_iden_rem_T *)(data»->int2;
SDL_Output(S, xSigprioPar(xdefaultPrioSignal) (xldNode *)0);

The code inside the if block is the Cadvanced standard method for creating a signal
instance, defining the parameters, and sending it to the generated module. The code for
receiving a request from the application is basically the same, only that the message is
received via the QNX specific "Creceive" call and the signals are differentiated by the
first byte (the signal identifier sigtype).

5. Conclusion

We have presented a case study on the SOL-pattern based configuring of communica­
tion protocols. SOL patterns characterize as formalized design patterns. However, we
do not deal with formalizing design patterns in general. That is, instead of formalizing
reuse concepts we aim to increase reusability within the formal methods area. Thereby
we naturally benefit from the formal basis provided by SOL. SOL-pattern based proto­
col configuring leads to formal specifications, which can be further used for validation
and code generation. This is supported by existing SOL development tools.

212

As compared to SDL specifications that have been developed the usual way, SDL­
pattern based configuring leads to a more systematic design. This is due to the fact that
design decisions are well founded and documented. As a consequence, readability of
the specification and communication among team members is improved. Also confi­
dence in the correctness of the resulting product increases. It is worth mentioning, that
a very large portion of the final specification resulted from SDL patterns, where each
pattern has been applied several times. This provides some evidence that the prede­
signed patterns have been well chosen. From these observations we infer that our
approach has the potential of substantially reducing the effort for customizing and
maintaining communication protocols, which seems to be a prerequisite for develop­
ing protocols that support applications in the best possible way. Though these state­
ments result from experience of several test projects, we intend to validate them in a
stronger sense. In [4] we present an approach for the experimental evaluation of empir­
ical properties of SDL patterns.

References

[1] G. Booch, 1. Rumbaugh, and I. Jacobson, Unified Modeling Language, Version 1.0,
Rational Software Corporation, 1997

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Soft­
ware Architecture -A System of Patterns, John Wiley & Sons, 1996

[3] K. Etschberger, CAN Controller-Area-Network - Basics, Protocols, Building Blocks, Appli­
cations (in German), Hanser Verlag, 1994

[4] R. L. Feldmann, B. Geppert, and F. Rt>Bler, Towards an Experimental Evaluation ofSDL­
Pattern based Protocol Design, SFB 501 Report 04198, Computer Science Department,
University of Kaiserslautern, Germany, 1998

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

[6] B. Geppert, R. Gotzhein, and F. Rt>Bler, Configuring Communication Protocols Using SDL
Patterns, SDL'97 Time for Testing - SDL, MSC and Trends, Proceedings of the 8th SDL
Forum, ParislEvry, France, 1997

[7] B. Geppert and F. Rt>Bler, Generic Engineering of Communication Protocols - Current
Experience and Future Issues, Proceedings of the 1st IEEE International Conference on
Formal Engineering Methods, ICFEM'97, Hiroshima, Japan, 1997

[8] F. Rt>Bler and B. Geppert, Applying Quality of Service Architectures to the Field-Bus
Domain, Proceedings of the 2nd IEEE International Workshop on Factory Communication
Systems, WFCS'97, Barcelona, Spain, 1997

[9] F. Rt>Bler, A. Kiihlmeyer, Implementing Real-Time Communication on a Token-Ring Net­
work, Proceedings of the 6th Open Workshop on High Speed Networks, Stuttgart, October,
1997

[10] Telelogic, TAU 3.3 Methodology Guidelines - PartI: The SOMT Method, Te1elogic, Swe­
den, 1998

[11] Z.l00 CCITT Specification and Description Language (SDL), ITU-T, 1996
[12] Z.120 Message Sequence Chart (MSC), ITU-T, 1996

	SDL-Pattern based Development of a
Communication Subsystem for CAN *
	1. Introduction
	2. The construction set of protocol building blocks
	2. 1. SOL patterns
	2.2. Configuration process

	3. Configuring a communication subsystem for CAN
	3.1. Communication requirements
	3.2. Decomposition
	3.3. Development steps

	4. Generating the implementation
	4. 1. Partitioning and light integration
	4.2. Interfacing with the environment
	4.3. Environment functions

	5. Conclusion
	References

