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Abstract 
SDL patterns are reusable software artifacts. They represent generic solutions for 
recurring design problems with SDL as applied design language. We have developed a 
construction set of protocol building blocks consisting of a pool of SDL patterns and 
an accompanying methodology for the incremental design of communication proto­
cols. In this paper, we present a case study on the specification of communication pro­
tocols based on SDL patterns. The case study is part of a more comprehensive project, 
where a real-time communication subsystem was developed on top of a Controller 
Area Network (CAN) installation. We demonstrate how the protocols supporting user 
communication and certain management tasks were configured. We also applied the 
SDT Cadvanced code generator to implement the resulting design specification on a 
PC cluster. Generally, it turned out that SDL-pattern based configuring of communica­
tion protocols yields more systematic designs, i.e., readability and maintainability is 
improved and less design errors occur, since the design decisions are well founded and 
documented. 

1. Introduction 

The reuse of predesigned solutions for recurring design problems is of major concern 
in object-oriented software development. During the past few years, design patterns 
have emerged as an especially fruitful approach to software reuse [2] [5]. Contrary to 
the traditional paradigm of class and function libraries, which is solely concerned with 
code reuse, design patterns aim to focus on the invariant parts of a design solution and 
offer by far more flexibility for adaptation to the embedding context. That is, the 
potential of reuse is substantially increased. There are several advantages commonly 
attributed to design patterns: patterns capture solutions, which have evolved over time 
and serve as an elegant way to make designs more flexible, modular, reusable, and 
understandable. They reflect experiences gained in prior developments and therefore 
help designers to reuse successful designs and architectures. As a consequence, the 
design process becomes faster and the number of design errors decreases. 

* This work is supported by the German Science Foundation (DFG) as part of the Sonderforschungsbereich 
SFB 501 Development of Large Systems with Generic Methods. 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation 

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29


198 

In [6] [7] we present the SOL-pattern approach that integrates the design patterns 
concept with SOL [11]. Generally speaking, SOL patterns describe generic solutions 
for recurring design problems, which can be customized for a particular context. While 
conventional design patterns are specified independently from a possible design lan­
guage, it is assumed that the target language for SOL pattern instantiation is SOL. 
Thereby we benefit from the formal basis provided by SOL, so that SOL patterns actu­
ally characterize as formalized design patterns. Instead of specifying and applying the 
patterns rather informally, a formal target language such as SOL offers the possibility 
to precisely specify how to apply a specific pattern, under which assumptions this will 
be allowed, and what properties result for the embedding context. This is a major 
improvement compared to conventional design patterns, which mainly rely on natural 
language based pattern description and still have to leave pattern application to a large 
degree to the personal skills of the system designer. However, we do not deal with for­
malizing design patterns in general. Instead of formalizing reuse concepts we aim to 
support reusability within the formal methods area. 

In this paper, we present a case study on the specification of communication proto­
cols based on SOL patterns. The case study is part of a more comprehensive project, 
where a real-time communication subsystem was developed on top of a Controller 
Area Network (CAN) [3] installation. We demonstrate how the protocols supporting 
user communication and certain management tasks were configured. We also applied 
the SOT Cadvanced code generator to implement the resulting design specification on 
a PC cluster running under the real-time operating system QNX. 

The remainder of the paper is organized as follows: Section 2 introduces the SOL­
pattern approach. In Section 3 we demonstrate how a real working communication 
subsystem for CAN was configured using SOL patterns. The development steps for 
(semi-)automatic code generation of the resulting SOL design are outlined in 
Section 4. Finally, we summarize the results in Section 5. 

2. The construction set of protocol building blocks 

This section summarizes concepts for a construction set of protocol building blocks, 
from which a protocol designer can select SOL patterns and configure them to a cus­
tomized, formal protocol specification. 

2. 1. SOL patterns 

An SOL pattern describes a generic solution for a recurring, context-specific design 
problem. It is assumed that the target language for pattern instantiation is SOL. 
Though the concept is not restricted to a specific application domain, we are mainly 
concerned with communication protocols. 

For the specification of SOL patterns we have defined a standard description tem­
plate with the main items sketched in the following. The mere syntactical part of the 
design solution is defined by a generic SDLfragment, which has to be instantiated and 
textually embedded into the context specification when applying the pattern. SOL 
fragments represent context invariant parts of the design solution. Instantiation and 
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embedding of SDL fragments is prescribed in terms of syntactical embedding rules, 
which, e.g., guide renaming of generic identifiers or of embedding 
design elements. Usually pattern semantics is not completely captured by an SDL frag­
ment. Due to language constraints this would otherwise result in an overspecification 
of the design solution and reduce potential of reuse. Thus additional semantic proper­
ties are included specifying preconditions for pattern application as well as behavioral 
changes of the embedding context. Though semantic properties are currently stated in 
natural language, it is possible to express them precisely in a temporal logic. Also, 
restrictions on the refinement of pattern instances are specified in order to prevent a 
pattern's intent from being destroyed by subsequent development steps. A more 
detailed discussion of the SDL-pattern description template and a comparison to exist­
ing description templates of conventional design patterns is given in [6]. 

The current pool of protocol building blocks contains SDL patterns that deal with 
interaction behavior of distributed objects, error control (lost or duplicated messages), 
lower layer interfacing, or dynamic creation of protocol entities. To further illustrate 
the functional scope of SDL patterns we shortly introduce some examples. Note that 
the SDL patterns below are not completely specified. We basically summarize a pat­
tern's intent and skip the description items explained above. 

• BlockingRequestReply: The BlockingRequestReply pattern introduces a con­
firmed interaction (two-way handshake) between two given automata. After a trig­
ger from the embedding context, the first automaton sends a request and is blocked 
until receiving a reply. The request is eventually received by the second automaton, 
which replies and finally releases the first automaton from its waiting state. 

• DynamicEntitySet: Consider a given server entity that provides its service exactly 
one time and terminates thereafter. In order to offer this service several times (e.g., 
to more than one client), the DynamicEntitySet pattern is applied. For each client a 
new server entity is dynamically created by a special entity administrator. Subse­
quently, the administrator acts as a proxy from the perspective of the clients, which 
forwards service requests to the corresponding server entity. 

• Codex: The Codex pattern provides mechanisms to allow two (or more) entities, 
which interact directly through SDL channels, to cooperate by the means of a given 
communication service. In general, the introduction of a basic service involves 
many specialities. Among others, these are segmentation, reassembly, upgrade of 
basic service quality (e.g., in case of loss, disruption or duplication of messages), 
lower layer connection setup, or routing decisions. The Codex pattern is only con­
cerned about a minimal subset of these functionalities, namely interfacing with the 
basic service by the means of service primitives. That is, Codex essentially pro­
vides a mapping from protocol data units to basic service primitives and vice versa. 

2.2. Configuration process 

For the design of SDL protocol specifications we have defined a configuration process 
supporting the reuse of protocol building blocks represented as SDL patterns 
(Figure 1). The configuration process suggests an incremental protocol design, where 
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the whole set of communication requirements is first decomposed, i.e., partitioned and 
(where appropriate) simplified. Decomposition classifies as an analysis task that iden­
tifies separate protocol functionalities. Thereby it is possible to consider a protocol 
functionality under different assumptions. For instance, interaction sequences for con­
nection establishment are less complex on top of a reliable basic service instead of an 
unreliable basic service. Experience has shown that protocol functionalities can often 
be specified one after the other and - in addition - be stepwise completed (e.g., adapted 
to the non-ideal properties of an underlying basic service). This suggests that we per­
form an individual development step in order to incorporate an additional protocol 
functionality or relax a corresponding simplification. Thereby each development step 
divides into analysis, design, and validation and yields an executable SDL design 
specification. In the following the different activities within a development step are 
sketched. 

First, an object-oriented analysis of the current protocol functionality is performed. 
This results in an updated analysis model from the previous development step. It is 
suggested to provide an UML [1] object model and an MSC [12] use case model, 
which together identify participating objects and typical interaction scenarios. 

The analysis model is implemented in the following design activity. Here, SDL 
patterns come into place. Starting point is the context SDL specification, i.e., the SDL 
design specification obtained from the previous development step. This may, e.g., be a 
protocol specification, which relies on a reliable basic service. Hence, the design prob­
lem (stated in the analysis model) could then be to suit the protocol to an unreliable 
basic service. In order to meet the new requirements a number of design steps are per­
formed that apply separate SDL patterns to the context specification. Note that for 
some design problems the pool of predefined protocol building blocks may not contain 
an adequate solution, so that an ad hoc solution must be found. The selection of an 
SDL pattern is supported by several items of the SDL pattern description template, 
namely intent, motivation, structure, message scenario, semantic properties and coop­
erative usage. As patterns represent generic design solutions, the corresponding SDL 
fragment has to be adapted in order to seamlessly fit the embedding context. This is 
instructed by the renaming parts of the syntactical embedding rules and the refinement 
rules. The resulting pattern instance finally has to be composed with the embedding 
context, which is prescribed by the composition part of the syntactical embedding rules 
and also by the refinement rules of embedding pattern instances. 

The result of this design activity is an intermediate SDL design specification, 
which is subsequently validated against the analysis use case model. Also, the correct­
ness of the SDL specification concerning general properties such as freedom from 
deadlocks is checked. If any faults are discovered, a return to one of the previous 
development or design steps is needed (not shown in Figure 1). Otherwise the vali­
dated specification serves as the context specification for the next development step. If 
all simplifications are eliminated and all requirement subsets are implemented the final 
design specification is given by the validated design specification of the last develop­
ment step. 
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Figure 1. Configuration process (excerpt) 

3. Configuring a communication subsystem for CAN 

Controller Area Network (CAN) is a field-bus standard originally developed for 
mobile systems. However, due to exceptional features such as high data rates and fault 
tolerance, CAN became also established in other areas of the field-bus domain [3]. We 
have configured a real-time communication subsystem for CAN using SDL patterns. 
Note that the presentation below follows the configuration process introduced in 
Section 2.2. 
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Figure 2. CAN subsystem architecture 

3.1. Communication requirements 

Communication between intelligent sensors, actuators, and controller components 
imposes stringent requirements on timeliness and predictability. Thus CAN employs 
bitwise bus arbitration based on message identifiers to support deterministic media 
access. Message identifiers are to be interpreted as priorities and therefore a global, 
priority-driven scheduling of message transfers is realized. As timeliness and predicta­
bility strongly depend on worst case traffic load, field-bus installation normally pre­
cedes a configuration step, where communicating peers as well as traffic loads are 
identified and priorities are assigned accordingly. This step is carried out prior to sys­
tem operation and works fine for static settings. Nevertheless, the operator or owner of 
a field-bus installation may change communicating devices or applications dynami­
cally (e.g., in building automation). Though dynamic insertion and removal of com­
municating devices is generally supported by CAN, timeliness guarantees have to be 
concerned from scratch. 

Therefore a communication subsystem shall be developed on top of CAN that per­
forms admission control, priority assignment, and traffic policing automatically during 
system operation. This can be seen as a kind of "plug and play" functionality for time­
liness guarantees, i.e., when, for instance, a new communicating device is inserted, the 
system automatically handles priority assignment with respect to timeliness require­
ments and under consideration of the already existing traffic load. If there are not 
enough network resources left, the system shall deny additional communicating peers. 

3.2. Decomposition 

The real-time CAN subsystem (Figure 2) is based on a generic QoS architectural 
framework [8]. This framework was also previously instantiated for a real-time com­
munication subsystem on top of a Token-Ring network [9]. Essentially, the subsystem 
for CAN contains protocol functionalities for initialization of CAN modules (network 
management), resource management, and object-based user communication (e.g., 
access to remote read-only-variables). With the additional simplification that commu­
nicating peers exchange protocol data units (PDU) directly, i.e., without using an 
underlying basic service, we get the decomposition of Figure 3. The chronological 
order of the performed development steps is also illustrated. 
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3.3. Development steps 

3.3.1. Development step I: Initializing CAN modules, directly connected peers. 
Before communication can start, some CAN modules must be initialized (e.g. , pro­
grams or parameters are downloaded). This process would consume many CAN iden­
tifiers that are permanently assigned to individual modules. In order to save resources, 
it is suggested to share CAN identifiers for initialization purposes. As a consequence, a 
special control protocol for medium access is needed, which was specified in the first 
development step. The protocol is implemented by a network slave on each CAN mod­
ule and a central network manager. 

The interaction between the network manager and a network slave is structured 
into different phases. When the slave requests access to the CAN bus, the correspond­
ing request message contains no data in order to avoid collisions. Thus, the network 
manager must identify the slave before it can be addressed. This is done by a binary 
search that broadcasts identification messages, which contain an interval of valid mod­
ule identifiers. Only those slaves with a valid module identifier are allowed to reply. 

A slave enters the next phase, when an initialization message with its own module 
identifier is received. As already mentioned, the initialization protocol employs CAN 
identifiers that are shared among all slaves. In order to avoid collisions on the CAN 
bus their use is coordinated by sequencing the initialization phases of individual 
slaves. 

The interaction scenario is implemented by cooperative application of several SDL 
patterns such as SendReceive, BlockingRequestReply or SingleRequestMultipleReplies. 
For instance, the exchange of the request and initialization message follows the Block­
ingRequestReply pattern, while the binary search for identification of network slaves 
applies SingleRequestMultipleReplies. Because of space limitations we skip further 
details here. 

3.3.2. Development step n: Resource reservation, directly connected peers. 
Before communication can take place a certain amount of network resources must be 
reserved in order to guarantee quality of service (QoS). Figure 4 illustrates the interac­
tion between a resource slave and the central resource manager. The application asks 
its local resource slave to establish a connection with certain QoS (SP _id.req) and is 
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Figure 4. Analysis model of development step II (excerpt) 

infonned about the result by a corresponding reply (SP _id.conj). Embedded into this 
interaction is a two-way handshake between the slave and the resource manager. The 
slave sends a PDU_idJeserve message with a flow specification containing all rele­
vant QoS parameters. The resource manager then decides, if the connection will be 
established and assigns unique CAN identifiers to the communication object that will 
be used for data transfer. The identifiers are returned within the PDU_idJeserved 
message. The interaction is realized by a cascaded application of the BlockingRequest­
Reply pattern. The shaded parts of Figure 5 determine the renamed SDL fragments of 
the embedded pattern instances. 

3.3.3. Development step ill: Object-based communication, directly connected. 
The CAN subsystem supports object-based user communication. That is, a connection 
is established by common access to the same communication object, which, e.g., rep­
resents a physical quantity or event of a technical process. Access to remote objects is 
realized according to the Client/Server paradigm. Thereby the server side is responsi­
ble for updating the logical communication object with its physical counterpart, while 
the client side offers remote access. We defined six types of communication objects 
with different access characteristics, such as read-only or write-only objects (Figure 6). 
An object consists of a certain number of clients and servers, which are usually located 
on different nodes. In case of a read-write object (RWobject) the object consists of one 
server and a maximum of one clients (Figure 6). The MSC diagrams describe interac­
tions between server and client for opening, reading, writing, and closing such an 
object. In the following, we will only consider RWobjects. It should be noted that 
communication based on other objects can be specified independently from each other. 

Design of object-based communication divides into two major steps. At first, it is 
assumed that no more than one server and one client of each type of communication 
object exists per node. Figure 7 shows a possible architecture. Two processes are 
added to the context specification that resulted from development step II (Figure 5), 
one for the client and one for the server of a RWobject. The client is assumed to be 
located on node Com} and the corresponding server on node Com3. For definition of 
the behavior SDL patterns are applied. In the following, we will concentrate on the 
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interactions for reading the object. Write access is specified accordingly. It follows 
from the corresponding MSC of Figure 6 that the interactions actually describe three 
cascaded two-way handshakes between the application and RWclient, RWclient and 
RWserver, and finally between RWserver and the application, An SDL pattern generat­
ing a two-way handshake is BlockingRequestReply. We applied the pattern three times, 
resulting in the chained BlockingRequestReply instances of Figure 7, For the first pat­
tern instance, which is shaded BIll only the replier is specified, because the request-
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ing application is part of the environment. The requester of the second pattern instance 
(shaded c::::J) is embedded in the first one and defined by the procedure readObject. 
The corresponding replier is located in RWserver and also shaded c::::J. The 
requester of the third BlockingRequestReply instance is given by the procedure get­

Value (shaded _). The corresponding replier is part of the application on the 
server side and therefore not explicitly specified. 

In the second major design step we relax the assumption that no more than one 
server or client of each object type be allowed per node. In order to realize this we 
applied the DynamicEntitySet pattern. According to the syntactical embedding rules 
the server and client processes are replaced by process sets with corresponding process 
types. For instance, the process RWserver is replaced by a process type of the same 
name and a corresponding process set RWs (Figure 8). Additionally, an administrator 
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process object Admin is introduced, which is responsible for dynamically creating the 
processes, whenever a new object is opened. Subsequently, objectAdmin forwards 
incoming signals to the right instance of the process set. As a consequence, certain sig­
nal routes must be re-routed, i.e., disconnected from the client and server processes 
and connected to the administrator, which itself must be connected to the process sets. 
For reasons of readability, channels and signal routes are not shown in Figure 8. 

3.3.4. Development step IV: Introducing the CAN basic service. Finally, we re­
place the direct connections between the communicating peers by the CAN basic serv­
ice. We therefore have to map POUs to service primitives offered by CAN. A pattern 
dealing with that problem is Codex (Section 2.1). Its application results in a new SOL 
process for each communication node. We skip further details here. 

4. Generating the implementation 

The design specification must finally be transformed into executable code. Note that 
this is actually not part of the configuration process discussed in Section 2.2, but is 
added to cover the whole development cycle. Implementation can be done manually or 
using a code generator such as the SOT Cadvanced Compiler. For our case study, we 
followed the implementation activity of the SOMT method [10] belonging to the SOT 
development tool set. That is, we first partitioned the SOL design to define the differ­
ent run-time modules according to the light integration for the real-time operating sys­
tem QNX. Environment functions are to be implemented, which are responsible for 
interfacing the generated code with its physical environment. Next the implementation 
must be generated using the SOT Cadvanced compiler with its run-time library for 
QNX. As the development tool set does not run under QNX but is implemented on our 
SUN cluster running Solaris, the generated C files must be downloaded and compiled 
on the QNX-PCs. 

4. 1. Partitioning and light integration 

Cadvanced allows two types of integration into other operating systems, which mainly 
differ in the way SOL processes are mapped to operating system (OS) processes. The 
tight integration creates an OS process for every SOL process, while the light integra­
tion creates a single OS process that handles all SOL processes of the SOL partition. 
We decided to use light integration, because at the time of implementation only the 
light integration supported SOL services, which our specification heavily relied on. 

We prepared two different partitions. One that covers the protocol functionalities 
of a slave node (where only network and resource slaves reside, Figure 2) and one for 
the manager node (where additionally the network and resource managers reside, 
Figure 2). The hardware-specific low-level CAN driver was hand-implemented. For 
performance reasons, we also decided to integrate the communication objects 
(Figure 2) into the low-level driver. 
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4.2. Interfacing with the environment 

The generated modules communicate with the environment by the environment func­
tions xInEnv and xOutEnv. xInEnv provides the functionality to somehow receive 
messages from the environment and transmit the messages as signals to the generated 
module. xOutEnv is the counterpart of xInEnv. It forwards SDL signals from the spec­
ification to the environment. 

4.2.1. Interface to the low-level driver. The low-level driver provides the functional­
ity to transmit messages of up to 8 bytes (the maximum length of a CAN frame). A 
second part of the interface relates to the object-based user communication. We focus 
on the basic routines for sending and receiving simple messages, because the gener­
ated modules only communicate this way. The send routine has three parameters: the 
CAN identifier of the message type, a pointer to a buffer, where the message is stored, 
and the size of the message. The send procedure blocks the calling process until the 
message is delivered. The receive function has the same parameters, while it is non­
blocking. 

4.2.2. Interface to the applications. The SDL design defines signals to indicate the 
initialization phase and to start communication. To realize this we provide two func­
tions that block the application until the corresponding signal is received. Addition­
ally, we define a function that calls the local reservation slave via QNX specific IPC 
mechanisms in order to establish a communication object. 

4.3. Environment functions 

For every signal that enters or leaves the specification, we define a C data type named 
by the signal. For example, for the signal PDU_iden_rem, specified as 

PDU_iden_ram( integer, integer ) 

we define the data type 

typedef struct 
char sigtype; 
short intl, int2; 

sigtype is a unique number to identify the signals. Instances of these types are then 
transferred via the CAN bus. 

The environment function xOutEnv. There are two types of signals: the signals that 
have to be transferred via the CAN bus and the signals that realize the communication 
to the application. 

The signals to the low-level driver are implemented by simply allocating an 
instance of the corresponding data type, filling it with the supplied arguments of the 
SDL signal, and sending it by calling the low-level send function. For example, the 
code for the PDU_iden_rem signal looks as follows: 



else if( (*S)->NameNode == PDU_iden_rem ) { 
PDU_iden_rem_T data; 
data.sigtype = SIG_PDU_iden_rem; 
data.intl = «YPDef_PDU_iden_rem *)(*S»->param2; 
data.int2 = «yPDef_PDU_iden_rem *)(*S»->ParamJ; 
send ( «YPDef_PDU_iden_rem *)(*S»->pareml.ident, 

1* ID *1 &data, sizeof( data) ); 
else if ••• 
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SIG_PDU_iden_rem is a unique number for this signal. Expressions such as 
«YPDef_PDU_iden_rem *) (*S» ->Pareml are the Cadvanced standard method to pro­
vide signal parameters to the environment. 

Communication with the application is realized differently: an application requests 
a service via IPC. When the request is handled, the protocol entity first stores the 
application's process identifier. If the answer is available, the stored process identifier 
will then be used to reply the answer to the right requester. 

The environment function xlnEnv. Again there are two types of signals: requests 
from applications and messages from the low-level driver. 

To receive signals from the low-level driver, one has to poll the driver by calling its 
receive function. For every message type there normally exists a different CAN identi­
fier. So, the xInEnv function calls the receive function sequentially for every possible 
CAN identifier of incoming messages. A typical piece of code looks as follows: 

if( receive ( ID_PDU_iden_rem, data, sizeof(PDU_iden_rem_T» > 0 ) 
S = xGetSignal ( PDU_iden_rem, xNotDefPld, xBnv ); 
«YPDef_PDU_iden_rem *)(S»->Pareml.ident = ID_PDU_iden_rem; 
«YPDef_PDU_iden_rem *)(S»->Param2 = 

} 

«PDU_iden_r8mLT *)(data»->intl; 
«YPDef_PDU_iden_rem *)(S»->ParamJ = 

«PDU_iden_rem_T *)(data»->int2; 
SDL_Output( S, xSigprioPar(xdefaultPrioSignal) (xldNode *)0 ); 

The code inside the if block is the Cadvanced standard method for creating a signal 
instance, defining the parameters, and sending it to the generated module. The code for 
receiving a request from the application is basically the same, only that the message is 
received via the QNX specific "Creceive" call and the signals are differentiated by the 
first byte (the signal identifier sigtype). 

5. Conclusion 

We have presented a case study on the SOL-pattern based configuring of communica­
tion protocols. SOL patterns characterize as formalized design patterns. However, we 
do not deal with formalizing design patterns in general. That is, instead of formalizing 
reuse concepts we aim to increase reusability within the formal methods area. Thereby 
we naturally benefit from the formal basis provided by SOL. SOL-pattern based proto­
col configuring leads to formal specifications, which can be further used for validation 
and code generation. This is supported by existing SOL development tools. 
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As compared to SDL specifications that have been developed the usual way, SDL­
pattern based configuring leads to a more systematic design. This is due to the fact that 
design decisions are well founded and documented. As a consequence, readability of 
the specification and communication among team members is improved. Also confi­
dence in the correctness of the resulting product increases. It is worth mentioning, that 
a very large portion of the final specification resulted from SDL patterns, where each 
pattern has been applied several times. This provides some evidence that the prede­
signed patterns have been well chosen. From these observations we infer that our 
approach has the potential of substantially reducing the effort for customizing and 
maintaining communication protocols, which seems to be a prerequisite for develop­
ing protocols that support applications in the best possible way. Though these state­
ments result from experience of several test projects, we intend to validate them in a 
stronger sense. In [4] we present an approach for the experimental evaluation of empir­
ical properties of SDL patterns. 
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