
Frameworks by means of virtual types - exemplified
bySDL

Rolv Brrek
SINTEF Telecom and Informatics. N-7034 Trondheim. Norway
and Institute for Telematics. Norwegian University for Science and Technology

Birger M@ller-Pedersen
Ericsson AS. Applied Research Center,
Software Engineering Laboratory,
P.D. Box 34. N-J36J Billingstad. Norway
and Institute of Informatics. University of Oslo

Abstract: Frameworks have emerged as a very effective way to achieve reuse. A frame­
work provides the basic structure and behaviour of a family of applications,
and they simplify the task of application development. Traditionally the
framework idea has not been applied to FDTs. This paper contributes to the
use of SOL for building frameworks. SOL offers the opportunity to encapsu­
late object structures and default behaviour in frameworks defined by SOL
system types. Specific types of applications are obtained by defining sub­
types of framework system types and redefining virtual types. The mecha­
nism is not specific to SOL, but can be applied to any language that supports
virtual types.

Keywords: Reusable architectures, Frameworks, SOL

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

182

1 WHAT IS A FRAMEWORK?

A framework is a reusable, "semi-complete" application type that can
be specialized to produce custom applications. The main property that dis­
tinguishes a library from a framework is that a framework embodies a
design of a type of systems, while a library just is a collection of related
classes. An elaboration of this distinction is given in Table 1.

Table 1: Library and Framework

Library Framework

The application uses library The framework knows about the

classes, but the library knows noth- application and uses application

ing about the application classes

No predefined system structure. The Provides structure. The system is

system is entirely defined in the (partially) defined in the framework

application

No predefined interaction Defines object interaction

No default behaviour Provides default behaviour

Classical frameworks like window systems are defined as a set of related
classes. The structure of these frameworks results from dynamically created
objects that are kept together by object references. The event loop that dis­
patches mouse and keyboard events to window objects will use a list of cur­
rently active window objects. This list will typically contain different
window objects, with the common property that they react on these events.
The default behaviour of the framework is to call virtual procedures or call­
back procedures. The user of the framework redefines these procedures to
what is special for the application.

The paper does not address the definition of frameworks by means of
composition of components with so-called "hot-spots" where components
may be exchanged dynamically. Component-based frameworks rely on a
black-box approach: the user of a component only knows its interface and
cannot apply specialisation in order to cover specific needs.

183

2 WHY MAKE FRAMEWORKS USING SDi..?

Experience from SDL based development has shown that SDL systems
often contains an application specific part and an infrastructure specific part
(implementation specific) which are not clearly separated. The reason is that
an abstract (application specific) system has to be supplemented by a large
infrastructure part in order to be executable on a given platform. These two
parts need to be combined for the purposes of complete system simulation
and automatic code generation, but they serve different purposes and follow
separate evolution patterns. Therefore an approach is needed that will allow
these parts to be efficiently combined into complete systems, while keeping
the parts identifiable for evolution and maintenance purposes. A solution to
this divide and combine problem is to make a framework in SDL. Instead of
making the infrastructure part again and again for each new system with the
same infrastructure on the same platform, a framework that embodies both
the application part and the infrastructure part is useful. The idea is that if a
specific system can be made as an instance of a framework, with much of
the general properties of the framework isolated in the infrastructure, then
the framework will have a potential for being reused as a design. Further­
more application development may concentrate on the central application
issues and disregard the infrastructure, while infrastructure development
may concentrate on the central infrastructure issues and disregard the appli­
cation.

In an initial development, the infrastructure aspect may not be obvious.
Frameworks will often come as a result of a (successful) initial develop­
ment, which is to be used as a basis for a new system. If e.g. distribution has
been considered and isolated in an infrastructure part, the next system with
the same infrastructure, but with a different application part can reuse this
framework. The basic idea is that the infrastructure shall provide some gen­
eral support to the application, and that application development may con­
centrate on the application parts.

3 HOW TO MAKE FRAMEWORKS IN SDL

The distinction between a library and a framework is in SDL directly
reflected by the language concepts Package and System Type. An SDL spec­
ification can be either a package specification or a system specification. A
Package in SDL defines a set of types, while a System (Type) defines both
local types and a set of related instances. The interpretation of a system

184

specification yields a system instance that is the outmost container of all
instances in a system.

3.1 System types

An SDL system consist of blocks. A block contains processes that are
extended finite state machines communicating by means of asynchronous
signal exchange and remote procedure calls. Blocks are connected by chan­
nels, while processes are connected by signal routes. The connection points
are called gates, and they are defined as part of the block- and process types.
In object oriented terms, process types correspond to classes of "active"
objects, while block types correspond to classes of "container" objects.
Gates define simple interfaces in terms of which signals and remote proce­
dures that are allowed. SDL have more entity kinds than system, blocks and
processes, but for the purpose of this presentation only these are used. The
notion of speCialisation by means subtyping applies to most of the entity
kinds of SDL, and also to system. A framework can therefore be defined by
a system type in SDL, and a specific application of the framework by a sub­
type of the system type.

The framework system type will have a structure where some compo­
nents may be classified as infrastructure- and some as application compo­
nents, see Figure 1. The framework will have virtual types for those
components that should be adapted to specific applications of the system
type. These virtual types will be redefined when the framework is used as a
supertype when defining the system type for a given application. In Figure 1
the system type is defined to consist of a number of blocks. The types of two
of these are defined as virtual block types, and can as such be redefined in a
subtype of the system type. The redefinitions imply that the instances (AI
and 11) specified as part of the framework system (super)type will have
redefined properties. The structure specified in the supertype is inherited,
while the "contents" of the instances are redefined.

The dashed boxes in Figure 1 are not part of the SDL specification, but
indicates the distinction between application- and infrastructure compo­
nents. The actual borderline between these may not be as sharp as indicated.

Virtual types do not distinguish between being infrastructure or applica­
tion component types, so infrastructure component types can also be defined
as virtual type in order to allow the infrastructure to be adapted to the spe­
cific application.

virtual
block
type

block (in­
stance)
accord-

ing to the
virtual
block
type
AT1

system type FrameWork

- --,

LJ I I
I

II
- -- _.J

system type Application
inherits FrameWork

II virtual ITll1
r - - -- --,

I I I1: ITlII II

: ! I
I

I I II II
L _.J

I redefined ATl I II redefined ITl II

II AT2
r - - -,

I I A2: AT2 I
I
L ____ .J

system MyAppl:Application

frame­
workdef­

inition

185

applica­
tion of
frame­
work by
subtyp-

ing

stance

Figure 1: A framework as a System Type

3.2 Applications

In many cases the application components are blocks with some infra­
structure specific parts. The block type ATl, see Figure 1, may consist of an
infrastructure and an application specific part, each represented by a virtual
process type. This is illustrated in Figure 2. This also illustrates that the bor­
derline between application and infrastructure parts is not so sharp as indi­
cated in Figure 1.

186

ATCp and IT1_p are
two virtual process types, virtual block type ATl

and Appl and Infra are
processes of these types. !tirtual ATl-P]

When redefining the vir- - .
tual block type AT1, the
virtual process types in
this may also be rede­
fined. If the application
specific part is to be
adapted, then the virtual
process type AT1_p is
redefined. If the infra-

... - - - Infra: IT1-p)

'-------'"

Appl(5,) :
AT1-p

Figure 2: A virtual block type as part of
framework, with application specific in­

stances and infrastructure instances

structure part shall be adapted, then ITl_p is redefined.

3.3 Instances as part of frameworks

As described above, the way a framework is adapted to specific needs is
by redefining virtual types. Redefining virtual types will, however, have no
effect if the virtual types are not used to specify instances. These instances
may either be specified as part of the framework or be specified as part of
the specific use of the framework.

3.3.1 Application specific instances specified as part of the frame­
work

In this case the framework defines the structure of instances with their
connections in terms of channels and signal routes. This is the approach
used in Figure 1 and Figure 2. SDL is special in the sense that a static struc­
ture of instances and instance sets can be specified - instances are not just
created dynamically. In a specific application, the properties of the instances
are provided by redefining the virtual types, while the structure and connec­
tion of instances are inherited from the framework.

The structure of instances and their connections in the framework are
obtained by connecting gates of the instances with channels and signal
routes. The properties of the instances may be redefined when a specific
application is made, but the interconnections between gates cannot be rede­
fined. Gates are defined as part of the virtual types, and as gates are used for
connecting instances, the redefinition of these must be constrained. It is
important that the framework specification can be analyzed (e.g. that the

187

connections are valid), and that this analysis is valid for any application of
the framework.

This requirement is fulfilled by the notion of virtual type constraint. A
virtual type in SDL has a constraint (in terms of a type of the same kind),
and a redefinition of the virtual type must be a subtype of the constraint. The
default is that the constraint of the virtual type is the type definition itself.
The gates necessary for the connections - specified as part of the framework
- are properties of the virtual type constraints, and are as such guaranteed to
be properties of any redefinitions.

system type FrameWork2

II virtual ATl II II virtual ITl

tirtual AT1-p J

Figure 3: A framework where an applica­
tion process type is common to many parts

of the framework

the system.

II

If the structure is so that
the same virtual process
type is used to make
process sets in many
parts of the system
structure, then the vir­
tual process type should
be moved to the system
type, see Figure 3. In
this way it can be rede­
fined at one place as
part of the system sub­
type and have implica­
tion on many parts of

Application specific instances may be added either statically as part of
the subtype system definition, as illustrated in Figure 1 (block A2), or they
may be created dynamically. Dynamic creation of application instances are
anticipated in Figure 2: the Appl specifies a set of maximum 5 processes of
type ATl_p. The dashed arrow specifies that the Infra process creates pro­
cesses in the Appl process set. If new process sets are added in redefinitions
of the enclosing virtual type (here ATl), then the infrastructure process must
be redefined accordingly to take care of their creation.

3.3.2 Application specific instances not specified as part of the
framework

In this case the framework only consists of general types that may be
used for the construction of the application part. The infrastructure parts
may either contain instances or just be represented by types.

188

In this situation the creation must be anticipated by the infrastructure.
SDL is special in the sense that processes are part of process sets and that
creation of processes is done by referring to the name of the set and not to
the name of the process type. It is therefore not enough that the infrastruc­
ture specific process types are defined in the same scope (e.g. a package or a
system) as the application specific types and thereby know these types -
they must have means for referring to the process sets that will be part of the
specific system.

SDL provides two means for this: context parameters and virtual proce­
dures.

Context parameters
The general types of the framework that have to create process instances

according to application specific types do this through process context
parameters. The actual process context parameter is the process set being
part of the specific application.

system type FrameWork3

II virtual AT3 IIII virtual IT3 II

system type Application2
inherits FrameWork3

II redefined AT311

A3: AT3

system SpecAppl:Application2

Figure 4: A framework with no instances

The scheme is illustrated in Figure 4, Figure 5, Figure 6 and Figure 7.
Within the block types, there will be general process types (intPf and appli­
cationPT) that are used as supertypes in specific systems inheriting from
FrameWork3.

The intPf process type shall create instances of type applicationPT, and
to this purpose it will have a process context parameter that is constrained
by applicationPT, see Figure 7. The idea is that a particular system will pro-

virtual block type AT3

virtual
applicationPT

[infPT]

Figure 5: A virtual Application
block type without instances.

189

vide its redefinition of applicationPf and its process set. By means of the
context parameter, the infPf processes will be able to create instances of the
redefined applicationPf without knowing the final process set.

The final system type will introduce the redefined block types with
appropriate process sets, see Figure 6, and provide these as the actual con­
text parameters.

redefined block type AT3

process type specialapplicationPT
inherits applicationPT

process type specialinfPT
inherits infPT<actualPT>

actualPT(O,) : actualinf:
specialapplica- - -- specialinfPT
tionPT

Figure 6: Redefined block type with process set
and actual context parameter

The difference from the case with application specific instances as part
of the framework is not so big: the process set must be foreseen (the context
parameter must be defined - and correspond to a process set), but the name
of it and its position in the application part is not determined. Its position
will, however, be constrained by the fact that it shall be visible from the
place where the actual context parameter is provided, and that it shall be cre­
ated by a process in the same block.

190

process type infPT
<process cp atleast applicationPT>

.... create cp(...)

Figure 7: Creation of application specific processes

Another constraint with this approach is that it is not possible to specify
instance sets of the infPf in the framework itself. The reason is that this pro­
cess type has context parameters and therefore cannot be used for instance
specification.

This approach should only be used in cases where it is important that the
framework specific and application specific process types can be defined
within the same enclosing block type and where the framework specific
types must specify the creation of application specific processes.

Virtual creation procedures
This approach is more general in the sense that it does not have to be

decided if there is one or several process sets in the final system type. In the
general types where there is a need to create application specific processes,
this is represented by corresponding virtual procedures. In the final system
type these are redefined to create processes in the actual process sets.

This approach also has the property that instance sets of the application
specific types are first introduced in the final system subtype.

In order to provide an example on this way of making frameworks, we
use Figure 8. Suppose that it is a requirement that the system shall start by
creating processes for each of the actual applications and that changes to the
number of application processes shall be reflected while the system is run­
ning. Still we would like to define the system as a framework in the sense
that it will consist of a common infrastructure and some dynamically cre­
ated application instances. We assume that the division of responsibility
between the two are determined, the communication is fixed and that the
functionality of the infrastructure is specified - the only thing that is not
specified is the types and numbers of application processes. The configura­
tion of the system is initiated by a new signal (setUp, with appropriate
parameters) coming to the infrastructure part of the system.

191

system type FrameWork4

[II virtual IT4

II

Infra-
structure:
IT4

1"-' OP

virtual block type IT4

[virtual ITS J
Inf: OP

A ITS OPI f---••

Figure 8: Framework with virtual creation procedures

The setUp signal is supposed to come to the inf process and imply the
creation of application processes in the right process sets. Depending on the
desired number and types of application processes, the signal will carry
enough parameters for the infrastructure to create the right instances.

The infrastructure types can now be defined as before, the only differ­
ence being that they will have a virtual procedure setUp and will communi­
cate with possible application processes via a gate that is constrained by
Application - that is only process sets of Application or sUbtypes of Appli­
cation can be connected to the gate, see Figure 9.

In addition to the normal behaviour and the creation of application pro­
cesses, the Infrastructure may have behaviour that contributes to the defini­
tion of the framework. As an example there may be a limit on the total
number of application processes, independent of type of application. The
behaviour that ensures this will either be part of the infrastructure, e.g. some
action executed each time setUp is executed, or it may be a constraint on
setUp which all redefinitions will inherit.

An actual system consisting of two types of application processes is
specified as a subtype of the system type Framework4, redefining the setUp
procedure to cater for this and introduce the two process sets, see Figure to.

The names of the process sets are used in the redefined setUp procedure
for the specification of the creation of process instances.

192

virtual process type ITS

virtual procedure setUp OP
..........

/* This is redefined to 1--
(atleast_r re-

flect the set up of the actu-
al system*/

tl.on

--/*The procedure setUp is called upon the
reception of the signal setUp from the op-
erator*/

Figure 9: Setup as a virtual procedure of ITS

system type actual inherits Framework4

redefined block type IT4

redefined process type ITS

I redefined procedure setUp

I
process type Appl inherits Application

process type App2 inherits Application

al(O,) :Appl (a2 (0,) :App2) ,
" " '" '" '(- -

A

ITS _ J

Figure 10: Dynamically created application part

193

4 RELATED WORK

4.1 Virtual classes/design patterns

The notion of virtual types with constraints where first introduced in
BETA (Madsen, Mjljller-Pedersen & Nygaard, 1993) in terms of virtual pat­
terns. Patterns in BETA is a generalisation of language concepts like class,
type, procedure, etc. Virtual procedure patterns provides what is common in
most object oriented languages: virtual member functions or methods that
can be redefined. The use of virtual patterns to obtain virtual classes is
described in (Madsen & Mjljller-Pedersen 1989).

In (Agerbo, 1998) virtual classes are used to express some design pat­
terns by means of language constructs. It is argued that a design pattern
should not be covered by a language construct, in order to be a design pat­
tern, and they show that the Factory Method design pattern can be expressed
by a virtual class for the class that varies with the different applications of
the design pattern.

Virtual block types and virtual process types as described above for SOL
corresponds to virtual classes. A requirement for using this approach to
framework definition is therefore that the language has virtual classes. Most
object oriented languages do not have classes within classes, with Java
(Arnold &Gosling, 1996) and BETA as exceptions.

Component based software development, with solutions based on e.g.
CORBA, COM or Java Beans, represents another approach to the definition
of frameworks. While the approach described above relies on access to the
source so that specialisation can be used to express adaptation to specific
needs, component based frameworks relies on applications with so-called
"hot-spots", that is components that can be exchanged with components
with the same interface.

4.2 Frameworks in The Integrated Method - TIMe

TIMe is a comprehensive development methodology that uses UML ,
MSC and SOL as its primary languages for analysis and design. It empha­
sises that SOL is used to make models that are both readable, formal and
sufficiently complete for extensive simulation and automatic code genera­
tion. TIME recommends that design is carried out in three main steps: appli­
cation design, architecture design and framework design. where application
design and framework design are abstract models expressed primarily in

194

SDL and MSC (possibly using UML for parts where SDL is not well
suited).

4.2.1 Application design: where the service functionality is designed

The first purpose of an application design model is to describe the sys­
tem behaviour at an abstraction level, where it can be understood and analy­
sed independently of a particular implementation.

The second purpose is to be a firm foundation for designing an optimum
implementation satisfying both the functional and non-functional require­
ments.

4.2.2 Architecture Design: where the implementation architecture is
decided

The purpose of architecture design is to design an implementation archi­
tecture that will behave as defined in the application design model and sat­
isfy the non-functional properties. The purpose of architecture design is to
answer how the system is going to be realised. This is expressed using
Architecture descriptions that show:

• the overall architecture of hardware and software;
• how frameworks and applications are mapped to the architecture.

While the application and the framework has focus on functional proper­
ties and behaviour, the architecture has focus on non-functional properties
and physical structures. The purpose is to give a unified overview over the
implementation and to document the major implementation design deci­
sions.

Architecture design determines critical architectural issues such as phys­
ical distribution, global addressing schemes and fault handling. Some of
these may subsequently be reflected in the framework model in order to
describe the complete system behaviour.

During normal application evolution, the architecture will be stable, and
system evolution can take place mainly at the Application level.

In an initial development, architecture design will come before frame­
work/infrastructure design.

195

4.2.3 Framework Design: from Infrastructure to Framework

The purpose of framework design is to describe the complete system
behaviour taking the underlying implementation as defined in the architec­
ture design into account. In this step the implementation dependent infra­
structure functionality is taken into account, e.g. distribution support, error
handling and configuration. The infrastructure part of a system contains
additional behaviour needed to fully understand what the system does (i.e.
the complete system behaviour). Here we find objects and parts of objects
that support distribution, system administration and other facilities not
directly related to user services (applications). Whenever practical, the
application and the infrastructure should be put together in a framework that
serves to simplify the definition of new systems and separate the evolution
of applications from the evolution of infrastructures. The framework model
defines a system type or a block type, with predefined structure so that a
specific application system only has to provide the specific "contents" of
part of this structure using the approaches explained earlier.

An application system designed before the infrastructure was known,

I
infrastructure specific

I I

Figure 11: A framework with application and infra­
structure specific parts of systems

may have to be redesigned somewhat in order to satisfy the infrastructure
interfaces. Restructuring does not mean that everything has to be redefined,
only those parts that depend on the infrastructure. When the infrastructure is
known, new application types may be defined right away to comply with the
infrastructure interfaces.

In general it will be an advantage if the application design has been done
by means of types that are as general as possible.

When the framework has been defined, making a specific system
instance is a matter of exchanging the application types of the framework
with either improved versions or new application types with e.g. new func­
tionality.

196

5 CONCLUSIONS

The notion of a framework has a potential to be very useful when mak­
ing abstract system models using FDTs, especially when the models are
complete and used as basis for system evolution and code generation. This
paper has only considered the possibility of making frameworks using SDL.
However, the underlying needs that are addressed and the potential benefits
of using frameworks are independent of the FDT actually used and by no
means restricted to SDL. The important thing is that the language of the
FDT is able to support frameworks in an efficient way. As has been demon­
strated in this paper, SDL provide some basic features that make frame­
works possible. Using these, a divide-and-combine approach to application
and infrastructure development is possible that enable a high degree of
reuse, and simplify system evolution.

6 REFERENCES

Steve Sparks, Kevin Benner, Chris Faris; Managing Object-Oriented Framework Reuse;
IEEE Computer, September 1996.

Mohammed E. Fayad, Douglas C. Schmidt; Object-Oriented Application Frameworks; Com­
munications of the ACM, October 1997.

Z.I00; CCITT Specification and Description Language (SDL), ITD-T, June 1994
lTV (1993d) Z.120 Message Sequence Charts (MSC), ITU-T, September 1994,36 P ("MSC-

92")
Rolv Bnek and 0ystein Haugen (1993); Engineering Real Time Systems. Hemel Hempstead:

Prentice Hall, 1993.
TIMe - The Integrated Method. SINTEF Telecom and informatics 1997, see http://www.sin­

tef.no/time.
Booch, G, Jacobsen, I. and Rumbaugh, 1. (1997b). The Unified Modeling Language, Version

1.1, Rational Software Corporation, http://www.rational.com (September 1997)
Ole Lehrmann Madsen, Birger and Kristen Nygaard; Object Oriented Pro­

gramming in the BETA Programming Language, Addidon-Wesley 1993
Ole Lehrmann Madsen and Birger Virtual Classes - A powerful Mechanism

in Object-Oriented Programming, OOPSLA 1989.
Ellen Agerbo and Aino Cornils: How to preserve benefits of Design Patterns, OOPSLA

1998.
K. Arnold and J. Gosling: The Java Programming Language, Addison-Wesley 1996

	Frameworks by means of virtual types - exemplified by
SDL
	1 WHAT IS A FRAMEWORK?
	2 WHY MAKE FRAMEWORKS USING SDi..?
	3 HOW TO MAKE FRAMEWORKS IN SDL
	3.1 System types
	3.2 Applications
	3.3 Instances as part of frameworks

	4 RELATED WORK
	4.1 Virtual classes/design patterns
	4.2 Frameworks in The Integrated Method - TIMe

	5 CONCLUSIONS
	6 REFERENCES

