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Abstract 
This paper addresses the problem of supporting communications in parallel 
computing applications over ATM networks. We propose a mechanism specif­
ically conceived for optimizing the cost-performance tradeoff in fairly long 
parallel executions. The proposed mechanism relies on a modified version of 
the loss recovery procedure of SSCOP, which is enhanced by means of a more 
intensive exploitation of ATM service categories in order to reduce the occur­
rence of cell loss. For this purpose, we make use of both the UBR and ABR 
service categories, with ABR being only introduced in the periods of high 
latency. These periods are determined by periodically monitoring the experi­
enced latency. This approach can achieve equivalent latency as the plain ABR 
service but with a use of this service of only 30%-70% of the parallel com­
puting traffic, depending on the load of the network and the characteristics 
of the application. 
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1 INTRODUCTION 

The availability of a high-speed network with the flexibility of ATM (Asyn­
chronous Transfer Mode), together with the current evolution of microproces­
sor technology, is enabling the convergence of communications and computing. 
In addition, as defined by the ITU (International Telecommunication Union), 
ATM is the technology that will integrate the whole diversity of network-based 
services [1]. The combination of these three factors -high-speed networks, 
microprocessor technology, and integration- is facilitating the development 
of new applications requiring intensive communications. One of these appli­
cations is the support to distributed parallel computing, where a number of 
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workstations connected to an ATM network can act as nodes of a parallel com­
puting platform. Such environments cannot reach the performance achieved 
by more expensive, dedicated platforms such as multiprocessors, although 
they can be a sufficient replacement for many applications [2]. The main bot­
tleneck in network-based parallel computing is experienced in the network 
itself, and is caused by the delays produced by the protocol processing, the 
interface with the network, and the processing within the network [3]. These 
issues occur despite the bandwidth enabled by ATM. 

In an integrated environment, communications in parallel computing ap­
plications are not limited to LAN environments -which can be adequately 
supported by Myrinet or Gigabit Ethernet- but are suitable to be extended 
beyond the local area. The adoption of ATM allows for parallel computing 
applications to take advantage of an existing network, thus avoiding the un­
derutilization of duplicated resources that would appear with the use of dedi­
cated networks such as Myrinet. Thus, organizations whose parallel computing 
needs are not very intensive will be able to achieve satisfactory performance 
with a more efficient exploitation of resources. In this context, parallel com­
puting environments have to subject to a number of conditions in order to 
achieve sufficient performance with cost-effectiveness. The first condition we 
assume is that parallel computing applications will share the ATM network 
with traditional networking applications. Thus, the network architecture will 
require the presence of mechanisms enabling the support of parallel comput­
ing applications that can coexist with equivalent mechanisms for traditional 
networking applications. In order to preclude the increase in complexity that 
would arise with the enhancement of ATM with application-specific mecha­
nisms, we consider that the adaption of parallel computing to ATM should be 
done with mechanisms implemented on top of ATM. Thus, ATM will solely 
support those services defined in the standards by ITU-T (Telecommunication 
Standardization Sector of ITU) and the ATM Forum [4]. 

Many of the applications to be integrated in ATM networks have strong 
bandwidth and/or delay requirements, as they manage continuous data streams. 
In these applications, network mechanisms should maximize the network ca­
pacity, measured by throughput. In parallel computing applications, however, 
communications involve the exchange of relatively short pieces of data along 
a relatively long execution period, so the minimization of communications 
time has not a tight relationship to network capacity. Thus, communications 
in parallel computing applications approach to the request-response model, 
since each task sends data to other tasks and expects other data from them. In 
this model, per-message overheads set a limit on the achievable performance 
and therefore, as discussed in [5], latency is a measure that gives a clearer 
idea about communication performance in parallel computing applications. 
We consider the latency measure as embedding all per-message communica­
tion costs which include, in addition to the costs of overheads and the delays 
from buffering and scheduling, the eventual need of recovering from cell loss 
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that results from the need of sharing the network with other networking ap­
plications. 

In this paper, we propose a mechanism that enables low latency operation 
for communications in parallel computing environments over ATM networks 
integrating different networking applications. In particular, we concentrate on 
networks spanning outside the local area, where the impact of the applications 
sharing the network with parallel computing can be more significant. Thus, 
our mechanism will provide for a strategy to minimize latency degradation 
caused by the presence of background traffic, which is based on periodically 
monitoring the latency experienced by communications in real time, in order 
to achieve cost-effective performance. The rest of the paper is organized as fol­
lows: Section 2 presents the general characteristics of the target environments 
for our mechanism. In Section 3, the particular features of the mechanism 
proposed in this work are extensively discussed, and their performance is 
evaluated in Section 4 Finally, Section 5 concludes the paper. 

2 PARALLEL COMPUTING IN AN INTEGRATED 
ENVIRONMENT 

Most environments to support parallel computing are addressed to operate 
on multiprocessors or high-speed LANs. Both of these environments can be 
very expensive when a large number of nodes is required by applications, so 
they are basically adequate for intensive use of parallel computing facilities. 
When the need of parallel computing support is not so intensive, it is better to 
allow for parallel computing environments to extend beyond the local area to 
provide appropriate scalability to parallel computing applications. In this case, 
LAN technologies like Gigabit Ethernet are not applicable, so the role of ATM 
as an integrating technology is more clear. Another important issue outside 
the local area is the greater influence of network load as more applications 
are then presumed to share the ATM network. In this paper, we assume 
that the scenario for distributed parallel computing over ATM will be based 
on a virtual network comprised by the endpoint hosts supporting the tasks 
of parallel computing applications, as well as other nodes implementing the 
procedures providing addressing, connection management, and other signaling 
functions. In this model, the endpoint hosts support the actual data transfer 
operations, while the rest of the nodes in the virtual network are in charge of 
establishing the necessary connections between the endpoint hosts in order to 
build the topology required for each particular parallel computing application. 
The signaling procedures operate before and after the actual execution, and 
are out of the scope of this paper. 

Figure 1 displays the architecture of the endpoint part of the ATM-based 
platform. Data transfer mechanisms for parallel computing are supported in 
a specific architecture to be integrated with the specific architectures of tradi-
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tiona! networking applications. A proposal for the architecture of the parallel 
computing service is discussed in [6]. Three levels are considered: (1) Appli­
cation level, which manages the specific requirements of parallel computing 
applications; (2) Network level, containing the functions provided by a par­
ticular network technology, as ATM in the present work, and (3) Convergence 
level, which includes those functions that are required for an adequate sup­
port of parallel computing applications, and are not provided by the network 
level as defined in the respective standards. 

Parallol Comp.n!ng-ATM 

Convergence En!i1y 

ATM Nelw011< Entily 

Figure 1 Integration of services over ATM. 

Communications in parallel computing applications are considered to be 
based on sequences of elementary data types -integer, float, double, etc.-, 
called PC-PDUs after "Parallel Computing Protocol Data Units" which are 
the minimum data structures understood by parallel tasks in a logical sense. 
Larger structures -arrays, structs, etc.- can be broken into these elementary 
PC-PDUs. The needs of bandwidth are not very high on average, because 
communications among parallel tasks are not occurring continuously but an 
arbitrary period of time can separate the issue of two consecutive messages. 
Nevertheless, in the particular instants when a message is submitted, very 
low latency is required in the network in order to minimize the impact of 
communications on performance. As the mechanisms in the convergence level 
have to satisfy all these requirements with a full guarantee of data delivery, 
this paper adopts the specific ATM Adaptation Layer (AAL) proposed in [6], 
which is based on a modified version of SSCOP (Service Specific Connection 
Oriented Protocol). SSCOP is a protocol defined by ITU-T in the Q.2110 
recommendation [7] for supporting a number of services requiring reliability on 
top of ATM. This specific AAL replaces AAL5 and improves performance by 
avoiding the retransmission of more cells than those effectively lost. With this 
AAL, applications are less sensitive to the network load induced by the rest of 
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applications sharing the ATM network, and communications achieve better 
latency performance. This AAL, however, does not rely on any particular 
ATM service category from those specified by the ATM Forum [4]. In order 
to optimize performance, we can propose a modified version of the AAL that 
takes advantage of the features included with these service categories. 

The fact that parallel computing applications exchange relatively short mes­
sages along a relatively long execution periods makes the use of guaranteed 
communications services -such as CBR (Constant Bit Rate)- not conve­
nient. Instead, best-effort services as UBR (Unspecified Bit Rate) and ABR 
(Available Bit Rate) are the most appropriate service categories to support 
communications in ATM-based parallel computing environments, since their 
cost will rely mostly on the effective consumption of bandwidth, as opposed to 
other service categories where the length of connection period will be a more 
important issue. UBR is the least expensive service category, but the latency 
can be excessively high due to the cell loss occurring as the network load in­
creases, while ABR is more expensive but faster, as the built-in flow control 
mechanism allows to achieve lower latency thanks to the fewer retransmissions 
needed. 

In addition, because of the long execution periods, a number of high activity 
and low activity periods may alternate in the network, as a result of the 
applications sharing the network. In the periods with low network traffic, the 
performance of UBR may be sufficient and, as a result, the higher cost of 
the ABR service category would not be amortized. Thus, for achieving cost­
effective performance the data transfer should be conveyed through UBR when 
the latency experienced in the network and, when latency through UBR is 
excessively high, data transfer should be moved to an ABR-based connection. 
A procedure to monitor latency is therefore needed in order to determine 
when to activate the ABR service category. 

3 ENHANCED PARALLEL COMPUTING AAL 

We focus on the data transfers occurring during execution time by assum­
ing that the necessary connections have been established prior to the execu­
tion. As mentioned above, our proposal is conceived to provide cost-effective 
performance by adapting to the latency experienced by parallel computing 
communications. In the following we detail the operation of our mechanism, 
starting with an overview and continuing with a detailed description. 

3.1 Architecture 

Figure 2 depicts the architecture of our mechanism when the extensions to 
the Parallel Computing AAL are applied. In each communicating peer, the 
functionality is contained in two concurrent processes: (1) The Latency Mon-
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itoring Engine (LME}, which monitors the latency in the network in order to 
determine the periods in which significantly high latency is experienced, and 
(2) the Effective Communication Engine (ECE}, which performs the actual 
data transfers according to the information supplied by the LME. The com­
munications between the engines are served by four connections between each 
pair of communicating endpoints: 

• A UBR-based connection with an unlimited peak rate, used by the ECE 
to transfer data when latency is low. We refer to this connection as the 
ordinary connection. 

• An ABR-based connection with a limited peak rate and a minimum bit rate 
set to zero, used by the ECE to transfer data when the LME indicates that 
latency is high. This connection is referred to as the backup connection. 

• A UBR-based connection like the ordinary connection, which used by the 
LME to monitor latency. In practice the same UBR connection is used for 
both purposes. 

• A VBR (Variable Bit Rate) connection with a guaranteed low peak in order 
to support a fast and reliable delivery of feedback information in the LME. 

The adoption of a VBR service category -whose cost is significantly higher 
than ABR- could compromise the objective for cost-effective performance of 
our mechanism. However, later in the paper we will observe that the adoption 
of a VBR-based connection does not significantly impact on performance of 
parallel computing applications. 

Sender 

Ordinary connection (UBR) 
• • • _. Baclcup connection (ABR) 

•••••••..... Monitoring connection (UBR) 

Feedback connecnon (VBR) 

Receiver 

Figure 2 Mechanisms for extending the Parallel Computing AAL. 
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3.2 The Effective Communication Engine (ECE) 

The Effective Communication Engine (ECE) consists of an extension of the 
Parallel Computing AAL as described in [6] that allows to exploit the infor­
mation supplied by the LME in order to achieve low latency communications. 
The mechanism discussed in [6] is based on a modification of the selective re­
transmission procedure of SSCOP. The modification to SSCOP is addressed 
to limit the length of the frames to one cell. Thus, unlike standard SSCOP, 
the amount of retransmitted cells corresponds exactly to the lost cells and, as 
a consequence, applications become less sensitive to network load. This mod­
ification is possible thanks to the short length of PC-PDUs -corresponding 
to elementary data types such as integer, float, etc., as noted above. In partic­
ular, each cell encapsulates as many complete PC-PDUs as possible, so that 
the data can be integrated with computation as soon as received. In order to 
avoid the unnecessary overheads involved with the payload length and the 32-
bit checksum of AAL5, the mechanism directly replaces AAL5, so it actually 
operates as a specific AAL. Figure 3 shows the structure of a cell generated 
by this specific AAL. 

48b • 

2 2 2 
(byteo) (bytes) 

Figure 3 Encapsulation scheme of the specific AAL for parallel computing. 

The cell structure shown in Figure 3 includes a significant amount of over­
head. Although this overhead obviously leads to throughput degradations, 
we are more interested in optimizing message latency because of the small 
significance of throughput on the performance of communications in parallel 
computing. The overhead includes the following fields: 

• AAL-related fields, which only includes the CRC field. This 16-bit CRC 
allows to avoid the unnecessary 32-bit CRC provided in AAL5, which is 
not adequate for 1-cell AAL PDU. 

• SSCOP-related fields, which include the Sequence Number and PDU Type 
fields. These fields are directly inherited from standard SSCOP, but the Se­
quence Number allows for a larger number space because restricting PDUs 
to one cell will presumably lead to a higher amount of PDUs. 

• Message-passing library fields, represented by the Tag, Offset First, and 
Offset Last fields. They are set to enable compatibility with the PVM 
(Parallel Virtual Machine) message-passing library [8], which is used by the 
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parallel programs we have tested. Other message-passing libraries would 
possibly require different fields. 

• Connection management fields, which include a Connection Identifier than 
supports an additional addressing level together with the VCI/VPI fields, 
in order to facilitate the implementation of a virtual network supporting 
parallel computing communications. 

The ECE enhances the Parallel Computing AAL described in [6] by con­
sidering two operation modes: low-latency mode, and high-latency mode. The 
extension to the AAL applies essentially to the high-latency mode, which is ac­
tivated when the LME detects a significant growth in the latency experienced 
in the ordinary connection. In this case, the backup connection is enabled, 
so that the cells transmitted on the original connection are switched to the 
backup connection in order to minimize the impact of cell loss on performance. 
Figure 4 outlines the operation of the ECE. 

Low-latency mode High-latency mode 

Ordinary connection Ordinary connection 

Backup connection Backup connection 

Figure 4 Operation of ECE's latency modes. 

(a) Low-latency mode 
In this mode, the operation of the ECE reduces to the mechanism of the 

Parallel Computing AAL just outlined. The transfers of data take place over 
the ordinary connection, so a UBR service is used. Latency monitoring by the 
LME takes place also over this ordinary connection using a UBR service. 

When the receiver part of the LME detects that a monitoring cell has been 
lost, or when the ECE itself considers that the measured latency is high -i.e. 
it exceeds a threshold TM, the ECE activates the high-latency mode. For this 
purpose, it issues a new control frame, called LSTAT, which is equivalent to 
a STAT frame but contains also a time stamp corresponding to the instant 
when the offending monitoring cell was issued from the sender. LSTAT frames 
are sent through the same VBR service as USTAT and STAT frames. 
{b) High-latency mode 

When the sender (in low-latency mode) receives an LSTAT frame, it switches 
to the high-latency mode and triggers the retransmission of pending data, just 
as a STAT frame. Then, all cells are issued through the backup connection 
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only. As in low-latency mode, USTAT frames are generated when detecting 
cell loss. When the sender receives STAT and USTAT frames, the retrans­
mission will be conveyed by the backup connection only. Thus, the operation 
of the ECE in high-latency mode is similar to the operation in low-latency 
mode, except for the fact that the backup connection (over an ABR service) 
is used instead of the ordinary connection (over a UBR service). 

When the latency monitored by the LME falls below a threshold T m, the 
low-latency mode is again activated by issuing an LSTAT frame to the sender, 
including again the information about the status of received cells as contained 
in STAT frames. The sender then retransmits the cells through the ordinary 
connection only. The threshold T m should be lower than the threshold TM 
in order to avoid a continuous switching between both modes. In all cases, 
latency is monitored by the LME over the ordinary connection only (that is, 
over a UBR service) regardless of the operation mode. 

3.3 The Latency Monitoring Engine (LME) 

The goal of the LME is to provide an estimation of the latency experienced 
in the ordinary connection. For its implementation we have considered three 
decisions: 

• Averaging vs. instantaneous monitoring. Latency can be monitored by com­
puting the average latency over a period of time. This is well suited for 
applications dealing with large chunks of data, like video and file transfers, 
but as this procedure has a slow response time, it is not convenient for 
applications generating more bursty traffic patterns. Therefore, we believe 
that instantaneous monitoring is a more adequate approach for parallel 
computing applications. 

• Asynchronous vs. periodic activation. Latency can be monitored either be­
fore a burst of messages or in a periodic fashion. The former case forces the 
ECE to defer the transmission until the latency is monitored, so it involves 
a significant amount of latency. In contrast, the latter approach enables the 
ECE to avoid this delay. For this reason, we believe that a periodic LME is 
more adequate, despite the extra bandwidth required to support periodic 
monitoring. 

• The monitoring mechanism. We can consider the following options: (1) us­
ing network-level information; (2) computing the Round Trip Time (RTT); 
and (3) synchronizing peers and using time-stamped information. The first 
approach requires the use of a ABR-like network level mechanism provid­
ing accessible feedback information, which is not currently standardized 
within ATM. In the second case, the computed time depends on the la­
tencies of both the monitored connection and the returning path, which 
are not necessarily equivalent. In the third approach, the experienced la-
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tency is monitored by the receiver LME peer, so there is no influence of the 
returning path on the computed value. As a result, we adopt the third ap­
proach as we find that it suits better the requirements of parallel computing 
communications. 

The operation of the adopted approach for the LME is as follows: the sender 
periodically submits a cell containing a time-stamp. When the receiver gets 
this cell, it compares its time-stamp to the time the receiver expected to get 
the cell. The measured latency corresponds to the difference between both 
times, and then the measurement is passed to the ECE so that it takes the 
appropriate action, which in the implementation of the ECE discussed above 
consists of replying to the sender if the monitored latency exceeds a threshold. 
As the time-stamped cells might be lost, when a certain amount of time TL has 
elapsed since the expected time, the receiver warns the ECE of that circum­
stance, meaning that a monitoring cell is possibly lost. Figure 5 illustrates the 
operation with an example. As an enhancement to this basic procedure, the 
cells issued by the ECE through the ordinary connection are also monitored 
their latency in order to reduce the response time of the whole mechanism. 

Figure 5 Operation example for the time-stamped LME. 

It is important to note that both sender and receiver must be synchro­
nized to each other in order for the measurements to be significant. For this 
purpose, one of the peers has to report the other one on its current time 
with a certain periodicity. Thus, we consider two tasks included in the time­
stamp LME: (1) Monitoring task, which deals with both the periodic and 
the ECE-originated time-stamped cells; and (2) Resynchronizing task, which 
guarantees that time values are consistent for both communicating peers. We 
can make use of the different service categories provided by ATM in order 
to implement these tasks. The Monitoring Task is carried out over the same 
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connection as the ordinary data transfers in the ECE, so it is supported by a 
UBR service. The Resynchronizing Task requires also high priority and, as it 
is periodic, a CBR service is more adequate. Note that the peak rates for the 
CBR service should keep low in order to avoid the allocation of an excessive 
amount of resources. The concrete value of the period depends mostly on the 
characteristics of the system clocks in both communicating peers, since the 
more diverging the clocks are, the more frequently the Resynchronizing Task 
should be activated. In the experiments presented below, we will assume both 
endpoints as perfectly synchronized and, therefore, no resynchronizing task is 
considered. 

4 PERFORMANCE MEASUREMENTS 

The goal of the mechanism presented so far is to allow for parallel computing 
applications to achieve satisfactory performance while keeping the cost not 
higher than strictly required. To characterize the performance, the average 
end-to-end latency has been measured in a simple configuration, in order 
to realize the impact of the mechanism. The cost of the mechanism is also 
determined and compared to that of the standard ABR service. 

4.1 Experiment configuration 

For moderate network sizes and buffer capacities, the most significant contri­
butions to latency come from the bottleneck links in the ATM network, due 
to the cell loss and subsequent retransmissions occurring when becoming con­
gested. Thus, the configuration shown in Figure 6 is sufficient for evaluating 
the performance of the proposed mechanism, and is simple enough to allow 
for simulations to keep within a reasonable duration. 

X 

Figure 6 Simulated environment. 

All the links have a capacity of 155 Mbfs. Two types of sources are consid­
ered: one data source modeling traffic from a real parallel computing applica­
tion by means of a trace, and a number of background sources modeling traffic 
from traditional networking applications, by means of ON-OFF sources. The 
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traffic generated by the data source corresponds to the messages generated by 
one task of the parallel computing application. In contrast, the traffic from 
each background source represents the result of multiplexing many sources of 
traffic from traditional networking applications. 

Traces for the data source have been obtained from the execution of parallel 
codes from the GENESIS benchmark suite [9). In particular, the considered 
codes have been PDEJ and PDE2. PDEJ is a solver of the Poisson Equation on 
a three-dimensional grid by using red-black successive over-relaxation. PDE2 
solves a two-dimensional Poisson equation using a multigrid method. The 
traffic generated by PDEJ consists of relatively long bursts (around 8 KB). 
In contrast, bursts from PDE2 are much shorter (50-100 Bytes). As a result, 
different behavior is expected for each code. 

As far as background traffic sources are concerned, the values for the pa­
rameters of both the ON and OFF states are exponentially distributed. In 
the measurements, several sets of values have been used in order to obtain 
diverse aggregate input rates. In particular, the network utilization p ranges 
from 0.3 to 1.1, with respect to the output link capacity. p stands for the 
average network load along the execution period. A value for p greater that 
1 indicates that the aggregate incoming traffic in on average higher that the 
output link capacity. As each background source models the result of multi­
plexing several sources we do not want a very aggressive background traffic. 
Thus, the parameters of the ON-OFF models generate a traffic pattern with 
a burstiness not higher than required to capture the characteristics of multi­
plexed cell streams. As demonstrated in several papers, for example [10), their 
burstiness decreases as long as the number of multiplexed sources grows. 

The switch is modeled as output-queued. Two priority levels are considered: 
one for guaranteed service categories (in particular VBR), and the other for 
best-effort service categories (ABR and UBR). The buffer space is shared by 
the logical queues associated with each priority level. The buffering scheme is 
basically drop-tail, except for the case of a full switch buffer, where the arrival 
of a non-UBR cell forces the dropping of an UBR cell already queued in the 
switch. The aggregate incoming traffic is arranged in order for the switch to 
contemplate it as a mixture of UBR and ABR traffic. The ABR scheduling 
algorithm adopted in the measurements in based on ERICA (Explicit Rate 
Indication for Congestion Avoidance), fully described in [11). Table 1 shows 
the values for the most relevant parameters in the switch and the sources, 
which in turn are mostly based on the defaults suggested in [4, 11, 12). Table 2 
displays the values for the parameters used in the performance evaluation 
study presented in this section. 
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Table 1 Values for the relevant parameters of the ABR service. 

Element Parameter Value 

Switch Target Utilization 0.9 
Measurement Interval 30 cells 

Source Nrm 32 cells 
ADTF 0.5 sec 
Peak rate 50 Mb/s 

Table 2 Parameters for our low-latency mechanism. 

Parameter Value 

SSCOP POLL interval 0.1 sec 

LME monitoring interval 0.1 sec 

LME loss threshold TL 0.1 sec 

ECE latency threshold TM 0.0001 sec 

ECE latency threshold T m 0.00009 sec 

4.2 Task-to-task latency 

Task-to-task latency is the measure determining the effective impact of com­
munications on the performance of the parallel environment. As we assume 
that the ATM network is shared with other applications, we expect important 
variations on performance according to the load of the ATM network. Fig­
ure 7 shows task-to-task latency as a function of the different values for the 
background load. We have compared our proposal for enhancing the Parallel 
Computing AAL with the AAL without these enhancements, the latter by 
considering both UBR and ABR as the service categories conveying the data. 

(a) Parallel code: PDEl (b) Parallel code: PDE2 

Figure 7 Latency measurements. 

According to Figure 7, our mechanism achieves equivalent performance as 



248 

that obtained by relying on an ABR service all the time. However, to assess 
the actual advantages achieved by our mechanism we have to consider other 
facts, such as the effective utilization of the ABR service and the bandwidth 
consumption. The relative performance of the measured approaches depends 
on the particular characteristics of the communications in each application 
-traffic from PDE1 is much more bursty than traffic from PDE2, as stated 
earlier. Nevertheless, in the next subsection it is observed that the ABR service 
is used only by the 30%-70% messages, depending on the application and 
the network load. Therefore, in addition to equivalent performance, great 
efficiency in resource exploitation may be achieved. 

03 

025 

02 02 

j 015 015 

01 01 

005 005 

0< 09 o• os oe 01 oa oe 
Offe"edload(rho) 

(a) Parallel code: PDEl (b) Parallel code: PDE2 

Figure 8 Cell loss ratio experienced by the application. 

In order to assess the relationship between the performances achieved by 
both the original UBR-only mechanism and the ECE and the need of re­
transmissions, we have measured the experienced cell loss ratio with these 
configurations. The results in Figure 8 confirm that retransmissions are a ma­
jor cause oflatency in ATM-based parallel computing environments, as shown 
by the close relationship between the 'UBR only' curves in Figures 7 and 8, 
and also that our proposal of ECE succeeds in reducing the amount of re­
quired retransmissions, which is characterized in Figure 8 by a cell loss ratio 
close to zero in the 'LMEJECE' case. 

Due to the random component of the background traffic, several repetitions 
of the latency measurements have been performed. When considering a confi­
dence level of 90%, the maximum radius for the confidence interval is 14% of 
the mean value in the worst case, which indicates a clear difference between 
UBR-only results and the rest. 

4.3 ABR service utilization 

We consider the fraction of the cells generated by a parallel task that used the 
ABR service as a measure of the utilization of this service. As the ABR service 
requires more resources from the network (a flow control mechanism, some 
kind of priority, etc.) than the UBR service (which just takes advantage of 
the bandwidth not consumed by the other service categories, so no particular 
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resources are allocated for it), the cost of information sent through ABR is 
also higher. 

100 100 

.. .. 

"' "' 
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(a) Parallel code: PDE1 (b) Parallel code: PDE2 

Figure 9 ABR service utilization measurements. 

Figure 9 displays the results of this measurement. PDE1 and PDE2 exhibit 
different behavior, as expected for the different characteristics of communica­
tions. The following observations can be extracted: 

• In PDE1, the proposed mechanism for the ECE achieves 40% utilization 
for p = 0.7 and 70% for p = 1. These results show a highly cost-effective 
service achievable by our mechanism. Thus, parallel applications whose 
communications follow a similar appearance as those of PDE1 can obtain 
a performance equivalent to that of the plain ABR service but with a higher 
efficiency in resource usage. 

• In PDE2, the ECE achieves a slightly higher utilization of the ABR service 
-40% for p = 0.65, and 70% for p = 1. In this case, the service remains 
cost-effective -although slightly less than PDE1. The utilization of the 
ABR service is much less dependent on the application, as opposed to 
PDE1. Thus, applications whose communication pattern is similar to that 
of PDE2 can equally achieve cost-effective communications. 

In order to realize the effective cost of our mechanism, we should take into 
account the cost of the VBR service conveying the feedback information. As 
illustrated below, its performance depends on the network load as well, so 
we can lose some of the advantage in cost-effectiveness, specially in a highly 
loaded network. 

4.4 Bandwidth consumption 

As explained above, our mechanism allows to obtain equivalent performance as 
that achieved by using exclusively an ABR service, with a fairly low utilization 
of the ABR service. However, these features are not for free. We have seen 
that feedback information uses a VBR service, whose cost is higher than the 
ABR service. 
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Table 3 Average bandwidth consumption experienced by PDEJ (Kb/s). 

p Service UBR only ABR only LME/ECE 

UBR 278.8 154.0 
0.7 ABR 275.0 122.0 

Total 278.8 275.0 276.0 
VBR 5.0 

UBR 308.9 88.9 
1.0 ABR 275.0 190.2 

Total 308.9 275.0 279.1 
VBR 5.1 

Table 4 Average bandwidth consumption experienced by PDE2 (Kb/s). 

p Service UBR only ABR only LME/ECE 

UBR 285.9 216.0 
0.65 ABR 289.0 107.6 

Total 285.9.8 289.0 323.6 
VBR 7.1 

UBR 338.9 103.6 
1.0 ABR 289.0 224.5 

Total 338.9 289.0 328.1 
VBR 6.0 

Tables 3 and 4 reflect the bandwidth consumed in both PDE1 and PDE2, 
considered as the total amount of bits transmitted along the execution period, 
by the services carrying the actual data for different two network loads in each 
case. The results show that, in both cases, the total consumed bandwidth is 
slightly higher with our mechanism than with the use of ABR only, and the 
difference is lower in PDEJ. Using UBR only, as expected, yields the highest 
consumption due to the amount of retransmitted cells, except for PDE2 when 
p = 0.65 where the cell loss ratio is not high enough for the rest of mechanisms 
to become advantageous. Another observation from Tables 3 and 4 is that the 
fraction of bandwidth spent by the ABR service is closely related to the ABR 
service utilization displayed in Figure 9. 

Regarding the bandwidth spent by the VBR service, we recall that the 
VBR service conveys the STAT frames, which are periodically generated upon 
receipt of a POLL frame, as well as USTAT and LSTAT frames which are 
generated asynchronously. Thus, as expected, the spent bandwidth strongly 
depends on the cell loss ratio, which in turn is related to p. In particular, 
the higher the background load, the lower the consumed bandwidth, due to 
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the increased length of high-latency periods. Note that the significance of the 
bandwidth consumed by the VBR service is lower than the impact of the ABR 
service-it is equivalent to 3%-7% of the bandwidth consumption from ABR. 
Thus, the total cost for the evaluated approach remains advantageous. 

5 CONCLUSIONS 

In this paper, we have described and evaluated a mechanism to integrate com­
munications generated by parallel computing applications in a private virtual 
network environment based on ATM. This mechanism has been designed to 
enhance the operation of a novel, specific AAL for parallel computing that 
was suggested in a previous work, which is based on a modified version of 
SSCOP. The mechanism presented in this work exploits the service categories 
provided by ATM. Typically, data applications use an ABR service to reduce 
the occurrence of cell loss, but the use of a UBR service when the network is 
unloaded can lead to similar performance. Thus, our mechanism for support­
ing parallel computing applications uses UBR as the basic transfer service 
but, when latency experiences a significant increase, an ABR service is intro­
duced. By means of this operation, we achieve low latency in communications 
and a cost-effective service. 

To evaluate the performance of our mechanism, we have undertaken a num­
ber of simulation-based experiments. In particular, we have measured the 
end-to-end latency and cell loss ratio experienced by communications, the 
utilization of the ABR service category, and the bandwidth consumption, par­
ticularly of the VBR service category. In view of the results yielded by these 
measurements, we observe that (1) the latency achieved by our mechanism 
is equivalent to the latency experienced when conveying all communication 
through ABR-based connections; (2) as in the worst case only 70% of cells use 
the ABR service category, the cost of communications with our mechanism 
is much lower than the cost inherent to the full use of ABR-based connec­
tions; (3) the LME succeeds in determining the high-latency periods, since 
our mechanism has been able to avoid most of cell loss; and ( 4) the bandwidth 
consumption is moderate and the requirements for the VBR service category 
are sufficiently low, so the cost of communications is not significantly affected. 
As a summary, our mechanism allows for parallel computing applications that 
execute for a significantly long period to achieve cost-effective performance. 

As introduced earlier, the mechanisms suggested in this work implement 
only the data transfer part of ATM-based parallel computing environments. 
Given that we want these platforms to extend beyond the local area, the 
mechanisms to build and manage parallel computing environments should be 
defined. In particular, these mechanisms should include a user interface in 
order to facilitate the platform setup, as well as intelligent load balancing al­
gorithms so that optimal performance can be achieved at each time according 
to the available resources. For longer term research, we believe that applica-
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tions other than parallel computing may also benefit from similar mechanisms 
and architectures, and therefore these can be adapted in order to advance in 
the integration of services. 
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