
Integrating Parallel Computing
Applications in an ATM
Scenario

Joan Vila-Sallent, Josep Sole-Pareta
Universitat Politecnica de Catalunya
Jordi Girona 1-9, Modul D6 (Campus Nord}, 08094 Barcelona
Catalunya (Spain)
E-mail: joanv@ac. upc. es, pareta @ac. upc. es

Abstract
This paper addresses the problem of supporting communications in parallel
computing applications over ATM networks. We propose a mechanism specif­
ically conceived for optimizing the cost-performance tradeoff in fairly long
parallel executions. The proposed mechanism relies on a modified version of
the loss recovery procedure of SSCOP, which is enhanced by means of a more
intensive exploitation of ATM service categories in order to reduce the occur­
rence of cell loss. For this purpose, we make use of both the UBR and ABR
service categories, with ABR being only introduced in the periods of high
latency. These periods are determined by periodically monitoring the experi­
enced latency. This approach can achieve equivalent latency as the plain ABR
service but with a use of this service of only 30%-70% of the parallel com­
puting traffic, depending on the load of the network and the characteristics
of the application.

Keywords
ATM, Corporate Networks, Distributed Parallel Computing

1 INTRODUCTION

The availability of a high-speed network with the flexibility of ATM (Asyn­
chronous Transfer Mode), together with the current evolution of microproces­
sor technology, is enabling the convergence of communications and computing.
In addition, as defined by the ITU (International Telecommunication Union),
ATM is the technology that will integrate the whole diversity of network-based
services [1]. The combination of these three factors -high-speed networks,
microprocessor technology, and integration- is facilitating the development
of new applications requiring intensive communications. One of these appli­
cations is the support to distributed parallel computing, where a number of

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
H. R. van As (ed.), High Performance Networking

10.1007/978-0-387-35388-3_42

http://dx.doi.org/10.1007/978-0-387-35388-3_42

236

workstations connected to an ATM network can act as nodes of a parallel com­
puting platform. Such environments cannot reach the performance achieved
by more expensive, dedicated platforms such as multiprocessors, although
they can be a sufficient replacement for many applications [2]. The main bot­
tleneck in network-based parallel computing is experienced in the network
itself, and is caused by the delays produced by the protocol processing, the
interface with the network, and the processing within the network [3]. These
issues occur despite the bandwidth enabled by ATM.

In an integrated environment, communications in parallel computing ap­
plications are not limited to LAN environments -which can be adequately
supported by Myrinet or Gigabit Ethernet- but are suitable to be extended
beyond the local area. The adoption of ATM allows for parallel computing
applications to take advantage of an existing network, thus avoiding the un­
derutilization of duplicated resources that would appear with the use of dedi­
cated networks such as Myrinet. Thus, organizations whose parallel computing
needs are not very intensive will be able to achieve satisfactory performance
with a more efficient exploitation of resources. In this context, parallel com­
puting environments have to subject to a number of conditions in order to
achieve sufficient performance with cost-effectiveness. The first condition we
assume is that parallel computing applications will share the ATM network
with traditional networking applications. Thus, the network architecture will
require the presence of mechanisms enabling the support of parallel comput­
ing applications that can coexist with equivalent mechanisms for traditional
networking applications. In order to preclude the increase in complexity that
would arise with the enhancement of ATM with application-specific mecha­
nisms, we consider that the adaption of parallel computing to ATM should be
done with mechanisms implemented on top of ATM. Thus, ATM will solely
support those services defined in the standards by ITU-T (Telecommunication
Standardization Sector of ITU) and the ATM Forum [4].

Many of the applications to be integrated in ATM networks have strong
bandwidth and/or delay requirements, as they manage continuous data streams.
In these applications, network mechanisms should maximize the network ca­
pacity, measured by throughput. In parallel computing applications, however,
communications involve the exchange of relatively short pieces of data along
a relatively long execution period, so the minimization of communications
time has not a tight relationship to network capacity. Thus, communications
in parallel computing applications approach to the request-response model,
since each task sends data to other tasks and expects other data from them. In
this model, per-message overheads set a limit on the achievable performance
and therefore, as discussed in [5], latency is a measure that gives a clearer
idea about communication performance in parallel computing applications.
We consider the latency measure as embedding all per-message communica­
tion costs which include, in addition to the costs of overheads and the delays
from buffering and scheduling, the eventual need of recovering from cell loss

237

that results from the need of sharing the network with other networking ap­
plications.

In this paper, we propose a mechanism that enables low latency operation
for communications in parallel computing environments over ATM networks
integrating different networking applications. In particular, we concentrate on
networks spanning outside the local area, where the impact of the applications
sharing the network with parallel computing can be more significant. Thus,
our mechanism will provide for a strategy to minimize latency degradation
caused by the presence of background traffic, which is based on periodically
monitoring the latency experienced by communications in real time, in order
to achieve cost-effective performance. The rest of the paper is organized as fol­
lows: Section 2 presents the general characteristics of the target environments
for our mechanism. In Section 3, the particular features of the mechanism
proposed in this work are extensively discussed, and their performance is
evaluated in Section 4 Finally, Section 5 concludes the paper.

2 PARALLEL COMPUTING IN AN INTEGRATED
ENVIRONMENT

Most environments to support parallel computing are addressed to operate
on multiprocessors or high-speed LANs. Both of these environments can be
very expensive when a large number of nodes is required by applications, so
they are basically adequate for intensive use of parallel computing facilities.
When the need of parallel computing support is not so intensive, it is better to
allow for parallel computing environments to extend beyond the local area to
provide appropriate scalability to parallel computing applications. In this case,
LAN technologies like Gigabit Ethernet are not applicable, so the role of ATM
as an integrating technology is more clear. Another important issue outside
the local area is the greater influence of network load as more applications
are then presumed to share the ATM network. In this paper, we assume
that the scenario for distributed parallel computing over ATM will be based
on a virtual network comprised by the endpoint hosts supporting the tasks
of parallel computing applications, as well as other nodes implementing the
procedures providing addressing, connection management, and other signaling
functions. In this model, the endpoint hosts support the actual data transfer
operations, while the rest of the nodes in the virtual network are in charge of
establishing the necessary connections between the endpoint hosts in order to
build the topology required for each particular parallel computing application.
The signaling procedures operate before and after the actual execution, and
are out of the scope of this paper.

Figure 1 displays the architecture of the endpoint part of the ATM-based
platform. Data transfer mechanisms for parallel computing are supported in
a specific architecture to be integrated with the specific architectures of tradi-

238

tiona! networking applications. A proposal for the architecture of the parallel
computing service is discussed in [6]. Three levels are considered: (1) Appli­
cation level, which manages the specific requirements of parallel computing
applications; (2) Network level, containing the functions provided by a par­
ticular network technology, as ATM in the present work, and (3) Convergence
level, which includes those functions that are required for an adequate sup­
port of parallel computing applications, and are not provided by the network
level as defined in the respective standards.

Parallol Comp.n!ng-ATM

Convergence En!i1y

ATM Nelw011< Entily

Figure 1 Integration of services over ATM.

Communications in parallel computing applications are considered to be
based on sequences of elementary data types -integer, float, double, etc.-,
called PC-PDUs after "Parallel Computing Protocol Data Units" which are
the minimum data structures understood by parallel tasks in a logical sense.
Larger structures -arrays, structs, etc.- can be broken into these elementary
PC-PDUs. The needs of bandwidth are not very high on average, because
communications among parallel tasks are not occurring continuously but an
arbitrary period of time can separate the issue of two consecutive messages.
Nevertheless, in the particular instants when a message is submitted, very
low latency is required in the network in order to minimize the impact of
communications on performance. As the mechanisms in the convergence level
have to satisfy all these requirements with a full guarantee of data delivery,
this paper adopts the specific ATM Adaptation Layer (AAL) proposed in [6],
which is based on a modified version of SSCOP (Service Specific Connection
Oriented Protocol). SSCOP is a protocol defined by ITU-T in the Q.2110
recommendation [7] for supporting a number of services requiring reliability on
top of ATM. This specific AAL replaces AAL5 and improves performance by
avoiding the retransmission of more cells than those effectively lost. With this
AAL, applications are less sensitive to the network load induced by the rest of

239

applications sharing the ATM network, and communications achieve better
latency performance. This AAL, however, does not rely on any particular
ATM service category from those specified by the ATM Forum [4]. In order
to optimize performance, we can propose a modified version of the AAL that
takes advantage of the features included with these service categories.

The fact that parallel computing applications exchange relatively short mes­
sages along a relatively long execution periods makes the use of guaranteed
communications services -such as CBR (Constant Bit Rate)- not conve­
nient. Instead, best-effort services as UBR (Unspecified Bit Rate) and ABR
(Available Bit Rate) are the most appropriate service categories to support
communications in ATM-based parallel computing environments, since their
cost will rely mostly on the effective consumption of bandwidth, as opposed to
other service categories where the length of connection period will be a more
important issue. UBR is the least expensive service category, but the latency
can be excessively high due to the cell loss occurring as the network load in­
creases, while ABR is more expensive but faster, as the built-in flow control
mechanism allows to achieve lower latency thanks to the fewer retransmissions
needed.

In addition, because of the long execution periods, a number of high activity
and low activity periods may alternate in the network, as a result of the
applications sharing the network. In the periods with low network traffic, the
performance of UBR may be sufficient and, as a result, the higher cost of
the ABR service category would not be amortized. Thus, for achieving cost­
effective performance the data transfer should be conveyed through UBR when
the latency experienced in the network and, when latency through UBR is
excessively high, data transfer should be moved to an ABR-based connection.
A procedure to monitor latency is therefore needed in order to determine
when to activate the ABR service category.

3 ENHANCED PARALLEL COMPUTING AAL

We focus on the data transfers occurring during execution time by assum­
ing that the necessary connections have been established prior to the execu­
tion. As mentioned above, our proposal is conceived to provide cost-effective
performance by adapting to the latency experienced by parallel computing
communications. In the following we detail the operation of our mechanism,
starting with an overview and continuing with a detailed description.

3.1 Architecture

Figure 2 depicts the architecture of our mechanism when the extensions to
the Parallel Computing AAL are applied. In each communicating peer, the
functionality is contained in two concurrent processes: (1) The Latency Mon-

240

itoring Engine (LME}, which monitors the latency in the network in order to
determine the periods in which significantly high latency is experienced, and
(2) the Effective Communication Engine (ECE}, which performs the actual
data transfers according to the information supplied by the LME. The com­
munications between the engines are served by four connections between each
pair of communicating endpoints:

• A UBR-based connection with an unlimited peak rate, used by the ECE
to transfer data when latency is low. We refer to this connection as the
ordinary connection.

• An ABR-based connection with a limited peak rate and a minimum bit rate
set to zero, used by the ECE to transfer data when the LME indicates that
latency is high. This connection is referred to as the backup connection.

• A UBR-based connection like the ordinary connection, which used by the
LME to monitor latency. In practice the same UBR connection is used for
both purposes.

• A VBR (Variable Bit Rate) connection with a guaranteed low peak in order
to support a fast and reliable delivery of feedback information in the LME.

The adoption of a VBR service category -whose cost is significantly higher
than ABR- could compromise the objective for cost-effective performance of
our mechanism. However, later in the paper we will observe that the adoption
of a VBR-based connection does not significantly impact on performance of
parallel computing applications.

Sender

Ordinary connection (UBR)
• • • _. Baclcup connection (ABR)

•••••••..... Monitoring connection (UBR)

Feedback connecnon (VBR)

Receiver

Figure 2 Mechanisms for extending the Parallel Computing AAL.

241

3.2 The Effective Communication Engine (ECE)

The Effective Communication Engine (ECE) consists of an extension of the
Parallel Computing AAL as described in [6] that allows to exploit the infor­
mation supplied by the LME in order to achieve low latency communications.
The mechanism discussed in [6] is based on a modification of the selective re­
transmission procedure of SSCOP. The modification to SSCOP is addressed
to limit the length of the frames to one cell. Thus, unlike standard SSCOP,
the amount of retransmitted cells corresponds exactly to the lost cells and, as
a consequence, applications become less sensitive to network load. This mod­
ification is possible thanks to the short length of PC-PDUs -corresponding
to elementary data types such as integer, float, etc., as noted above. In partic­
ular, each cell encapsulates as many complete PC-PDUs as possible, so that
the data can be integrated with computation as soon as received. In order to
avoid the unnecessary overheads involved with the payload length and the 32-
bit checksum of AAL5, the mechanism directly replaces AAL5, so it actually
operates as a specific AAL. Figure 3 shows the structure of a cell generated
by this specific AAL.

48b •

2 2 2
(byteo) (bytes)

Figure 3 Encapsulation scheme of the specific AAL for parallel computing.

The cell structure shown in Figure 3 includes a significant amount of over­
head. Although this overhead obviously leads to throughput degradations,
we are more interested in optimizing message latency because of the small
significance of throughput on the performance of communications in parallel
computing. The overhead includes the following fields:

• AAL-related fields, which only includes the CRC field. This 16-bit CRC
allows to avoid the unnecessary 32-bit CRC provided in AAL5, which is
not adequate for 1-cell AAL PDU.

• SSCOP-related fields, which include the Sequence Number and PDU Type
fields. These fields are directly inherited from standard SSCOP, but the Se­
quence Number allows for a larger number space because restricting PDUs
to one cell will presumably lead to a higher amount of PDUs.

• Message-passing library fields, represented by the Tag, Offset First, and
Offset Last fields. They are set to enable compatibility with the PVM
(Parallel Virtual Machine) message-passing library [8], which is used by the

242

parallel programs we have tested. Other message-passing libraries would
possibly require different fields.

• Connection management fields, which include a Connection Identifier than
supports an additional addressing level together with the VCI/VPI fields,
in order to facilitate the implementation of a virtual network supporting
parallel computing communications.

The ECE enhances the Parallel Computing AAL described in [6] by con­
sidering two operation modes: low-latency mode, and high-latency mode. The
extension to the AAL applies essentially to the high-latency mode, which is ac­
tivated when the LME detects a significant growth in the latency experienced
in the ordinary connection. In this case, the backup connection is enabled,
so that the cells transmitted on the original connection are switched to the
backup connection in order to minimize the impact of cell loss on performance.
Figure 4 outlines the operation of the ECE.

Low-latency mode High-latency mode

Ordinary connection Ordinary connection

Backup connection Backup connection

Figure 4 Operation of ECE's latency modes.

(a) Low-latency mode
In this mode, the operation of the ECE reduces to the mechanism of the

Parallel Computing AAL just outlined. The transfers of data take place over
the ordinary connection, so a UBR service is used. Latency monitoring by the
LME takes place also over this ordinary connection using a UBR service.

When the receiver part of the LME detects that a monitoring cell has been
lost, or when the ECE itself considers that the measured latency is high -i.e.
it exceeds a threshold TM, the ECE activates the high-latency mode. For this
purpose, it issues a new control frame, called LSTAT, which is equivalent to
a STAT frame but contains also a time stamp corresponding to the instant
when the offending monitoring cell was issued from the sender. LSTAT frames
are sent through the same VBR service as USTAT and STAT frames.
{b) High-latency mode

When the sender (in low-latency mode) receives an LSTAT frame, it switches
to the high-latency mode and triggers the retransmission of pending data, just
as a STAT frame. Then, all cells are issued through the backup connection

243

only. As in low-latency mode, USTAT frames are generated when detecting
cell loss. When the sender receives STAT and USTAT frames, the retrans­
mission will be conveyed by the backup connection only. Thus, the operation
of the ECE in high-latency mode is similar to the operation in low-latency
mode, except for the fact that the backup connection (over an ABR service)
is used instead of the ordinary connection (over a UBR service).

When the latency monitored by the LME falls below a threshold T m, the
low-latency mode is again activated by issuing an LSTAT frame to the sender,
including again the information about the status of received cells as contained
in STAT frames. The sender then retransmits the cells through the ordinary
connection only. The threshold T m should be lower than the threshold TM
in order to avoid a continuous switching between both modes. In all cases,
latency is monitored by the LME over the ordinary connection only (that is,
over a UBR service) regardless of the operation mode.

3.3 The Latency Monitoring Engine (LME)

The goal of the LME is to provide an estimation of the latency experienced
in the ordinary connection. For its implementation we have considered three
decisions:

• Averaging vs. instantaneous monitoring. Latency can be monitored by com­
puting the average latency over a period of time. This is well suited for
applications dealing with large chunks of data, like video and file transfers,
but as this procedure has a slow response time, it is not convenient for
applications generating more bursty traffic patterns. Therefore, we believe
that instantaneous monitoring is a more adequate approach for parallel
computing applications.

• Asynchronous vs. periodic activation. Latency can be monitored either be­
fore a burst of messages or in a periodic fashion. The former case forces the
ECE to defer the transmission until the latency is monitored, so it involves
a significant amount of latency. In contrast, the latter approach enables the
ECE to avoid this delay. For this reason, we believe that a periodic LME is
more adequate, despite the extra bandwidth required to support periodic
monitoring.

• The monitoring mechanism. We can consider the following options: (1) us­
ing network-level information; (2) computing the Round Trip Time (RTT);
and (3) synchronizing peers and using time-stamped information. The first
approach requires the use of a ABR-like network level mechanism provid­
ing accessible feedback information, which is not currently standardized
within ATM. In the second case, the computed time depends on the la­
tencies of both the monitored connection and the returning path, which
are not necessarily equivalent. In the third approach, the experienced la-

244

tency is monitored by the receiver LME peer, so there is no influence of the
returning path on the computed value. As a result, we adopt the third ap­
proach as we find that it suits better the requirements of parallel computing
communications.

The operation of the adopted approach for the LME is as follows: the sender
periodically submits a cell containing a time-stamp. When the receiver gets
this cell, it compares its time-stamp to the time the receiver expected to get
the cell. The measured latency corresponds to the difference between both
times, and then the measurement is passed to the ECE so that it takes the
appropriate action, which in the implementation of the ECE discussed above
consists of replying to the sender if the monitored latency exceeds a threshold.
As the time-stamped cells might be lost, when a certain amount of time TL has
elapsed since the expected time, the receiver warns the ECE of that circum­
stance, meaning that a monitoring cell is possibly lost. Figure 5 illustrates the
operation with an example. As an enhancement to this basic procedure, the
cells issued by the ECE through the ordinary connection are also monitored
their latency in order to reduce the response time of the whole mechanism.

Figure 5 Operation example for the time-stamped LME.

It is important to note that both sender and receiver must be synchro­
nized to each other in order for the measurements to be significant. For this
purpose, one of the peers has to report the other one on its current time
with a certain periodicity. Thus, we consider two tasks included in the time­
stamp LME: (1) Monitoring task, which deals with both the periodic and
the ECE-originated time-stamped cells; and (2) Resynchronizing task, which
guarantees that time values are consistent for both communicating peers. We
can make use of the different service categories provided by ATM in order
to implement these tasks. The Monitoring Task is carried out over the same

245

connection as the ordinary data transfers in the ECE, so it is supported by a
UBR service. The Resynchronizing Task requires also high priority and, as it
is periodic, a CBR service is more adequate. Note that the peak rates for the
CBR service should keep low in order to avoid the allocation of an excessive
amount of resources. The concrete value of the period depends mostly on the
characteristics of the system clocks in both communicating peers, since the
more diverging the clocks are, the more frequently the Resynchronizing Task
should be activated. In the experiments presented below, we will assume both
endpoints as perfectly synchronized and, therefore, no resynchronizing task is
considered.

4 PERFORMANCE MEASUREMENTS

The goal of the mechanism presented so far is to allow for parallel computing
applications to achieve satisfactory performance while keeping the cost not
higher than strictly required. To characterize the performance, the average
end-to-end latency has been measured in a simple configuration, in order
to realize the impact of the mechanism. The cost of the mechanism is also
determined and compared to that of the standard ABR service.

4.1 Experiment configuration

For moderate network sizes and buffer capacities, the most significant contri­
butions to latency come from the bottleneck links in the ATM network, due
to the cell loss and subsequent retransmissions occurring when becoming con­
gested. Thus, the configuration shown in Figure 6 is sufficient for evaluating
the performance of the proposed mechanism, and is simple enough to allow
for simulations to keep within a reasonable duration.

X

Figure 6 Simulated environment.

All the links have a capacity of 155 Mbfs. Two types of sources are consid­
ered: one data source modeling traffic from a real parallel computing applica­
tion by means of a trace, and a number of background sources modeling traffic
from traditional networking applications, by means of ON-OFF sources. The

246

traffic generated by the data source corresponds to the messages generated by
one task of the parallel computing application. In contrast, the traffic from
each background source represents the result of multiplexing many sources of
traffic from traditional networking applications.

Traces for the data source have been obtained from the execution of parallel
codes from the GENESIS benchmark suite [9). In particular, the considered
codes have been PDEJ and PDE2. PDEJ is a solver of the Poisson Equation on
a three-dimensional grid by using red-black successive over-relaxation. PDE2
solves a two-dimensional Poisson equation using a multigrid method. The
traffic generated by PDEJ consists of relatively long bursts (around 8 KB).
In contrast, bursts from PDE2 are much shorter (50-100 Bytes). As a result,
different behavior is expected for each code.

As far as background traffic sources are concerned, the values for the pa­
rameters of both the ON and OFF states are exponentially distributed. In
the measurements, several sets of values have been used in order to obtain
diverse aggregate input rates. In particular, the network utilization p ranges
from 0.3 to 1.1, with respect to the output link capacity. p stands for the
average network load along the execution period. A value for p greater that
1 indicates that the aggregate incoming traffic in on average higher that the
output link capacity. As each background source models the result of multi­
plexing several sources we do not want a very aggressive background traffic.
Thus, the parameters of the ON-OFF models generate a traffic pattern with
a burstiness not higher than required to capture the characteristics of multi­
plexed cell streams. As demonstrated in several papers, for example [10), their
burstiness decreases as long as the number of multiplexed sources grows.

The switch is modeled as output-queued. Two priority levels are considered:
one for guaranteed service categories (in particular VBR), and the other for
best-effort service categories (ABR and UBR). The buffer space is shared by
the logical queues associated with each priority level. The buffering scheme is
basically drop-tail, except for the case of a full switch buffer, where the arrival
of a non-UBR cell forces the dropping of an UBR cell already queued in the
switch. The aggregate incoming traffic is arranged in order for the switch to
contemplate it as a mixture of UBR and ABR traffic. The ABR scheduling
algorithm adopted in the measurements in based on ERICA (Explicit Rate
Indication for Congestion Avoidance), fully described in [11). Table 1 shows
the values for the most relevant parameters in the switch and the sources,
which in turn are mostly based on the defaults suggested in [4, 11, 12). Table 2
displays the values for the parameters used in the performance evaluation
study presented in this section.

247

Table 1 Values for the relevant parameters of the ABR service.

Element Parameter Value

Switch Target Utilization 0.9
Measurement Interval 30 cells

Source Nrm 32 cells
ADTF 0.5 sec
Peak rate 50 Mb/s

Table 2 Parameters for our low-latency mechanism.

Parameter Value

SSCOP POLL interval 0.1 sec

LME monitoring interval 0.1 sec

LME loss threshold TL 0.1 sec

ECE latency threshold TM 0.0001 sec

ECE latency threshold T m 0.00009 sec

4.2 Task-to-task latency

Task-to-task latency is the measure determining the effective impact of com­
munications on the performance of the parallel environment. As we assume
that the ATM network is shared with other applications, we expect important
variations on performance according to the load of the ATM network. Fig­
ure 7 shows task-to-task latency as a function of the different values for the
background load. We have compared our proposal for enhancing the Parallel
Computing AAL with the AAL without these enhancements, the latter by
considering both UBR and ABR as the service categories conveying the data.

(a) Parallel code: PDEl (b) Parallel code: PDE2

Figure 7 Latency measurements.

According to Figure 7, our mechanism achieves equivalent performance as

248

that obtained by relying on an ABR service all the time. However, to assess
the actual advantages achieved by our mechanism we have to consider other
facts, such as the effective utilization of the ABR service and the bandwidth
consumption. The relative performance of the measured approaches depends
on the particular characteristics of the communications in each application
-traffic from PDE1 is much more bursty than traffic from PDE2, as stated
earlier. Nevertheless, in the next subsection it is observed that the ABR service
is used only by the 30%-70% messages, depending on the application and
the network load. Therefore, in addition to equivalent performance, great
efficiency in resource exploitation may be achieved.

03

025

02 02

j 015 015

01 01

005 005

0< 09 o• os oe 01 oa oe
Offe"edload(rho)

(a) Parallel code: PDEl (b) Parallel code: PDE2

Figure 8 Cell loss ratio experienced by the application.

In order to assess the relationship between the performances achieved by
both the original UBR-only mechanism and the ECE and the need of re­
transmissions, we have measured the experienced cell loss ratio with these
configurations. The results in Figure 8 confirm that retransmissions are a ma­
jor cause oflatency in ATM-based parallel computing environments, as shown
by the close relationship between the 'UBR only' curves in Figures 7 and 8,
and also that our proposal of ECE succeeds in reducing the amount of re­
quired retransmissions, which is characterized in Figure 8 by a cell loss ratio
close to zero in the 'LMEJECE' case.

Due to the random component of the background traffic, several repetitions
of the latency measurements have been performed. When considering a confi­
dence level of 90%, the maximum radius for the confidence interval is 14% of
the mean value in the worst case, which indicates a clear difference between
UBR-only results and the rest.

4.3 ABR service utilization

We consider the fraction of the cells generated by a parallel task that used the
ABR service as a measure of the utilization of this service. As the ABR service
requires more resources from the network (a flow control mechanism, some
kind of priority, etc.) than the UBR service (which just takes advantage of
the bandwidth not consumed by the other service categories, so no particular

249

resources are allocated for it), the cost of information sent through ABR is
also higher.

100 100

.. ..

"' "'
0-4 0.5 06 07 08 09 0.5 06 0.7 08 09

O«ered lo•d(rhol Olferedlol.d(rho)

(a) Parallel code: PDE1 (b) Parallel code: PDE2

Figure 9 ABR service utilization measurements.

Figure 9 displays the results of this measurement. PDE1 and PDE2 exhibit
different behavior, as expected for the different characteristics of communica­
tions. The following observations can be extracted:

• In PDE1, the proposed mechanism for the ECE achieves 40% utilization
for p = 0.7 and 70% for p = 1. These results show a highly cost-effective
service achievable by our mechanism. Thus, parallel applications whose
communications follow a similar appearance as those of PDE1 can obtain
a performance equivalent to that of the plain ABR service but with a higher
efficiency in resource usage.

• In PDE2, the ECE achieves a slightly higher utilization of the ABR service
-40% for p = 0.65, and 70% for p = 1. In this case, the service remains
cost-effective -although slightly less than PDE1. The utilization of the
ABR service is much less dependent on the application, as opposed to
PDE1. Thus, applications whose communication pattern is similar to that
of PDE2 can equally achieve cost-effective communications.

In order to realize the effective cost of our mechanism, we should take into
account the cost of the VBR service conveying the feedback information. As
illustrated below, its performance depends on the network load as well, so
we can lose some of the advantage in cost-effectiveness, specially in a highly
loaded network.

4.4 Bandwidth consumption

As explained above, our mechanism allows to obtain equivalent performance as
that achieved by using exclusively an ABR service, with a fairly low utilization
of the ABR service. However, these features are not for free. We have seen
that feedback information uses a VBR service, whose cost is higher than the
ABR service.

250

Table 3 Average bandwidth consumption experienced by PDEJ (Kb/s).

p Service UBR only ABR only LME/ECE

UBR 278.8 154.0
0.7 ABR 275.0 122.0

Total 278.8 275.0 276.0
VBR 5.0

UBR 308.9 88.9
1.0 ABR 275.0 190.2

Total 308.9 275.0 279.1
VBR 5.1

Table 4 Average bandwidth consumption experienced by PDE2 (Kb/s).

p Service UBR only ABR only LME/ECE

UBR 285.9 216.0
0.65 ABR 289.0 107.6

Total 285.9.8 289.0 323.6
VBR 7.1

UBR 338.9 103.6
1.0 ABR 289.0 224.5

Total 338.9 289.0 328.1
VBR 6.0

Tables 3 and 4 reflect the bandwidth consumed in both PDE1 and PDE2,
considered as the total amount of bits transmitted along the execution period,
by the services carrying the actual data for different two network loads in each
case. The results show that, in both cases, the total consumed bandwidth is
slightly higher with our mechanism than with the use of ABR only, and the
difference is lower in PDEJ. Using UBR only, as expected, yields the highest
consumption due to the amount of retransmitted cells, except for PDE2 when
p = 0.65 where the cell loss ratio is not high enough for the rest of mechanisms
to become advantageous. Another observation from Tables 3 and 4 is that the
fraction of bandwidth spent by the ABR service is closely related to the ABR
service utilization displayed in Figure 9.

Regarding the bandwidth spent by the VBR service, we recall that the
VBR service conveys the STAT frames, which are periodically generated upon
receipt of a POLL frame, as well as USTAT and LSTAT frames which are
generated asynchronously. Thus, as expected, the spent bandwidth strongly
depends on the cell loss ratio, which in turn is related to p. In particular,
the higher the background load, the lower the consumed bandwidth, due to

251

the increased length of high-latency periods. Note that the significance of the
bandwidth consumed by the VBR service is lower than the impact of the ABR
service-it is equivalent to 3%-7% of the bandwidth consumption from ABR.
Thus, the total cost for the evaluated approach remains advantageous.

5 CONCLUSIONS

In this paper, we have described and evaluated a mechanism to integrate com­
munications generated by parallel computing applications in a private virtual
network environment based on ATM. This mechanism has been designed to
enhance the operation of a novel, specific AAL for parallel computing that
was suggested in a previous work, which is based on a modified version of
SSCOP. The mechanism presented in this work exploits the service categories
provided by ATM. Typically, data applications use an ABR service to reduce
the occurrence of cell loss, but the use of a UBR service when the network is
unloaded can lead to similar performance. Thus, our mechanism for support­
ing parallel computing applications uses UBR as the basic transfer service
but, when latency experiences a significant increase, an ABR service is intro­
duced. By means of this operation, we achieve low latency in communications
and a cost-effective service.

To evaluate the performance of our mechanism, we have undertaken a num­
ber of simulation-based experiments. In particular, we have measured the
end-to-end latency and cell loss ratio experienced by communications, the
utilization of the ABR service category, and the bandwidth consumption, par­
ticularly of the VBR service category. In view of the results yielded by these
measurements, we observe that (1) the latency achieved by our mechanism
is equivalent to the latency experienced when conveying all communication
through ABR-based connections; (2) as in the worst case only 70% of cells use
the ABR service category, the cost of communications with our mechanism
is much lower than the cost inherent to the full use of ABR-based connec­
tions; (3) the LME succeeds in determining the high-latency periods, since
our mechanism has been able to avoid most of cell loss; and (4) the bandwidth
consumption is moderate and the requirements for the VBR service category
are sufficiently low, so the cost of communications is not significantly affected.
As a summary, our mechanism allows for parallel computing applications that
execute for a significantly long period to achieve cost-effective performance.

As introduced earlier, the mechanisms suggested in this work implement
only the data transfer part of ATM-based parallel computing environments.
Given that we want these platforms to extend beyond the local area, the
mechanisms to build and manage parallel computing environments should be
defined. In particular, these mechanisms should include a user interface in
order to facilitate the platform setup, as well as intelligent load balancing al­
gorithms so that optimal performance can be achieved at each time according
to the available resources. For longer term research, we believe that applica-

252

tions other than parallel computing may also benefit from similar mechanisms
and architectures, and therefore these can be adapted in order to advance in
the integration of services.

6 ACKNOWLEDGEMENTS

This work has been supported by CICYT (Spanish Education Ministry) under contract
TIC97-1054-C03-03.

REFERENCES

[1] ITU-T, Recommendation 1.121. Broadband Aspects of ISDN. Geneva, April1991.
[2] T. E. Anderson, D. E. Culler, D. A. Patterson, et al. A Case for NOW (Networks of

Workstations). IEEE Micro, 15(1):54-64, February 1995.
[3] K. Castagnera et al. NAS Experiences with a Prototype Cluster of Workstations. In

Proceedings of Supercomputing'94, pages 410-419, 1994.
[4] ATM Forum Technical Committee. Traffic Management Specification, Version 4.0.

Document ATM_Forum/95-0013R10, February 1996.
[5] J. L. Hennessy and D. A. Patterson. Computer Architecture. A Quantitative Approach.

Morgan Kaufmann, 2nd edition, 1996.
[6] J. Sole-Pareta and J. Vila-Sallent. Network-Based Parallel Computing over ATM

Using Improved SSCOP Protocol. Computer Communications, 19(11):915-926,
September 1996.

[7] ITU-T, Draft Recommendation Q.2110. B-ISDN ATM Adaptation Layer - Service
Specific Connection Oriented Protocol (SSCOP). Geneva, March 1994.

[8] A. Geist et al. PVM 3 Users' Guide and Reference Manual. Oak Ridge National
Laboratory, 1994.

[9] C. A. Addison, V. S. Getov, A. J. G. Hey, R. W. Hackney, and I. C. Wotton. The
GENESIS Distributed-Memory Benchmarks. Advances in Parallel Computing, 8
(Computer Benchmarks):257-271, 1991.

[10] J. Solt\-Pareta and J. Domingo-Pascual. Burstiness Characterization of ATM Cell
Streams. Computer Networks and ISDN Systems, 26(11):1351-1363, August 1994.

[11] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan. The ER­
ICA Switch Algorithm: A Complete Description. ATM Forum, Contribution
ATM_Forum/96-1172, August 1996.

[12] R. Jain, S. Kalyanaraman, R. Viswanathan, and R. Goyal. A Sample Switch Algo­
rithm. ATM Forum, Contribution ATM_Forum/95-0178R1, February 1995.

7 BIOBGRAPHIES

Joan Vila-Sallent received his Master's degree and his Ph.D. in Computer Science in 1994
and 1997 respectively, both from the Universitat de Catalunya (UPC). After re­
civing the Ph.D. he joined the Advanced Broadband Communications laboratory (CCABA)
of the UPC. Currently he is doing research tasks for this laboratory in R&D projects. Joan
Vila-Sallent is member of the IEEE.
Josep Sole-Pareta received his Master's degree in Telecommunication Engineering in 1984,
and his Ph.D. in Computer Science in 1991, both from the Universitat de
Catalunya (UPC). In 1984 he joined the Computer Architecture Department of the UPC.
Since 1992 he is an Associate Professor with this department. His currently research in­
terests are in ATM Networks, IP over ATM and Optical Packet Networks, with emphasis
on traffic engineering, traffic characterization and traffic management. Josep Sole-Pareta is
member of the IEEE and the ACM (Sigcomm).

	Integrating Parallel ComputingApplications in an ATMScenario
	1 INTRODUCTION
	2 PARALLEL COMPUTING IN AN INTEGRATEDENVIRONMENT
	3 ENHANCED PARALLEL COMPUTING AAL
	3.1 Architecture
	3.2 The Effective Communication Engine (ECE)
	3.3 The Latency Monitoring Engine (LME)

	4 PERFORMANCE MEASUREMENTS
	4.1 Experiment configuration
	4.2 Task-to-task latency
	4.3 ABR service utilization
	4.4 Bandwidth consumption

	5 CONCLUSIONS
	6 ACKNOWLEDGEMENTS
	REFERENCES
	7 BIOBGRAPHIES

