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Abstract 
OLAP mining is a mechanism which integrates on-line analytical processing 
(OLAP) with data mining so that mining can be performed in different por­
tions of databases or data warehouses and at different levels of abstraction 
at user's finger tips. With rapid developments of data warehouse and OLAP 
technologies in database industry, it is promising to develop OLAP mining 
mechanisms. 

With our years of research into data mining, an OLAP-based data min­
ing system, DBMiner, has been developed, where OLAP mining is not only 
for data characterization but also for other data mining functions, including 
association, classification, prediction, clustering, and sequencing. Such an in­
tegration increases the flexibility of mining and helps users find desired knowl­
edge. In this paper, we introduce the concept of OLAP mining and discuss 
how OLAP mining should be implemented in a data mining system. 

1 INTRODUCTION 

With an enormous amount of data stored in databases and data warehouses, 
it is increasingly important to develop powerful data warehousing and data 
mining tools for analysis of this collected data and mining interesting knowl­
edge from it (Fayyad, Piatetsky-Shapiro, Smyth & Uthurusamy 1996). 

Among many different designs and architectures of data mining systems, 
OLAP mining, which integrates on-line analytical processing (OLAP) with 
data mining, is a promising direction based on the following reasoning. 

1. Data mining tools need to work on integrated, consistent, and cleaned 
data, which often require data cleaning and data integration as prepro­
cessing steps (Fayyad et al. 1996). A data warehouse constructed by such 
preprocessing serves as a valuable source of cleaned and integrated data for 
on-line analytical processing as well as for data mining. 
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2. OLAP mining facilitates interactive exploratory data analysis. Users of­
ten like to traverse flexibly through a database, select any portions of 
relevant data, analyze data at different levels of abstraction, and present 
knowledge/results in different forms. OLAP mining provides such a tool 
for drilling, pivoting, filtering, dicing and slicing on any sets of data in 
data cubes, for analyzing data at different levels of abstraction, and for 
interacting flexibly with the mining engine based on intermediate mining 
results. 

3. It is often difficult for users to predict what kinds of knowledge to be mined 
beforehand. By integration of OLAP with multiple data mining modules, 
OLAP mining provides flexibility for users to select desired data mining 
functions and swap data mining tasks dynamically. 

The above observations motivate us to study the desired ways to perform 
OLAP mining and their efficient implementation methods. 

With our years of research and development, an OLAP data mining system, 
DBMiner, has been developed by integration of database, OLAP and data min­
ing technologies (Han & Fu 1995, Han & Fu 1996, Han, Chiang, Chee, Chen, 
Chen, Cheng, Gong, Kamber, Liu, Koperski, Lu, Stefanovic, Winstone, Xia, 
Zaiane, Zhang & Zhu 1997). The system mines various kinds of knowledge at 
multiple levels of abstraction from large relational databases and data ware­
houses efficiently and effectively. In this paper, we examine the principles of 
OLAP mining and study its imptementation techniques with the DBMiner 
system as a running example. 

The remaining of the paper is organized as follows. Section 2 is a brief 
introduction to OLAP and data mining technologies. In Section 3, we examine 
OLAP mining and the desired OLAP mining functions. In Section 4, methods 
for efficient implementation of OLAP mining are studied. In Section 5, we 
summarize the study and propose some future research topics. 

2 OLAP AND DATA MINING 

To understand what is OLAP mining, we need to first understand what is 
OLAP and what is data mining. 

OlAP (On-Line Analytical Processing) refers to a set of data analysis 
techniques developed for analyzing data in data warehouses since 1990s. A 
data warehouse stores a large collection of subject-oriented, integrated, time­
variant, and nonvolatile data in support of management's decision-making 
process. It presents a multidimensional, logical view of the data, and is hence 
called a multidimensional database or data cube. A point in a data cube stores 
a consolidated measure of the corresponding dimension values in a multidi­
mensional space. OLAP operations, such as drill-down, roll-up, pivot, slice, 
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Figure 1 A 3-D data cube of a market data warehouse 

dice, etc., are the ways to interact with the data cube for multidimensional 
data analysis. 

Example 1 A market data warehouse shown in Figure 1 consists of three 
dimensions: store, item, and time, and two measures, number-of-units-sold 
and profit. A concept hierarchy is associated with each dimension as follows, 

store( store_id, street, city, province, country) 
item( item_id, item_name, brand, category) 
time( minute, hour, day, month, qua.rter, year). 

Drill-down or roll-up operations can be performed along each dimension. 
For example, one may start with a low-level cube which consists of store_id, 
item_name, and hour, and roll-up to examine the number of items sold by 
category, by city, and by quarter and then drill-down to see the number of 
items sold by item name, by store, and by month. 

In addition to performing drill-down and roll-up operations, there are sev­
eral other popularly used OLAP operations: slicing, dicing and pivoting. Slic­
ing is the extraction, from a data cube, of summarized data for a given 
dimension-value, or slice. For example, one may slice on a particular store 
to examine the total number of items solded by item name and by day. Dicing 
is the extraction of a "subcube", or intersection of several slices of the data 
cube. For example, to examine various kinds of TVs sold in Sears in August 
1997, one need to dice using several constants or range values. Filtering is 
to perform selection on a data cube using some constants. Finally, pivoting 
rotates the axes of a data cube so that one may examine a cube from different 
angles. 

The data cube can be browsed conveniently using the DBMiner cube browser 
as shown in Figure 2, where the size of a cuboid represents the entry count 
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Figure 2 Browsing of a 3-dimensional data cube in DBMiner 

in the corresponding cell, and the brightness of a cuboid represents the accu­
mulated amount in the cell. Drilling and slicing/dicing operations can also be 
performed on the data cube with simple button clicking. 

Moreover, OLAP operations in some systems include comprehensive statis­
tical analysis packages, such as trend analysis, ratios and ranking, charting, 
browsing and surfing, iterative analysis, linear and non-linear modeling, re­
gression analysis, time-series analysis, and multidimensional or complex cor­
relation analysis. 0 

To facilitate our discussion of OLAP mining, the popularly used cube trans­
formation operations, including drilling, rolling, slicing, dicing, filtering, and 
pivoting, are called cubing operations because they lead to the generation 
of new data cubes. Efficient computation of data cubes and efficient imple­
mentation of OLAP operations have been investigated with a spectrum of 
techniques proposed , such as multiway aggregation of multidimensional arrays 
(Agarwal, Agrawal, Deshpande, Gupta, Naughton, Ramakrishnan & Sarawagi 
1996, Zhao, Deshpande & Naughton 1997), indexing data cubes (Sarawagi 
1997), efficient OLAP computations, etc. These techniques are also essential 
for efficient implementation of OLAP mining. 

Data mining is to discover some nontrivial and interesting knowledge or 
patterns from the data stored in large databases. It consists of several major 
functions as follows. 
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• Characterization which generalizes a set of task-relevant data into a gener­
alized data cube which can then be used for extraction of different kinds of 
rules or be viewed at multiple levels of abstraction from different angles. In 
particular, it derives a set of characteristic rules which summarizes the gen­
eral characteristics of a set of user-specified data (called the target class). 
For example, the symptoms of a specific disease can be summarized by a 
characteristic rule. 

• Comparison which mines a set of discriminant rules which summarize the 
features that distinguish the class being examined (the target class) from 
other classes (called contrasting classes). For example, to distinguish one 
disease from others, a discriminant rule summarizes the symptoms that 
discriminate this disease from others. 

• Classification which analyzes a set of training data (i.e., a set of objects 
whose class label is known) and constructs a model for each class based 
on the features in the data. A set of classification rules is generated by 
such a classification process, which can be used to classify future data and 
develop a better understanding of each class in the database. For example, 
one may classify diseases and provide the symptoms which describe each 
class or subclass. 

• Association which discovers a set of association rules (in the form of "AI /\ 
... /\ Ai - B1 /\ ... /\ Bj") at multiple levels of abstraction from the rel­
evant set(s) of data in a database. For example, one may discover a set 
of symptoms often occurring together with certain kinds of diseases and 
further study the reasons behind them. 

• Prediction which predicts the possible values of some missing data or the 
value distribution of certain attributes in a set of objects. This involves 
finding the set of attributes relevant to the attribute of interest (by some 
statistical analysis) and predicting the value distribution based on the set of 
data similar to the selected object(s). For example, an employee's potential 
salary can be predicted based on the salary distribution of similar employees 
in the company. 

• Cluster analysis which groups a selected set of data in the database or data 
warehouse into a set of clusters to ensure the interclass similarity is low and 
intraclass similarity is high. For example, one may cluster the houses in 
Vancouver area according to house type, value, and geographical location. 

• Time-series analysis which performs data analyses for time-related data 
in databases or data warehouses, including similarity analysis, periodic­
ity analysis, sequential pattern analysis, and trend and deviation analysis. 
For example, one may find the general characteristics of the companies 
whose stock price has gone up over 20% last year or evaluate the trend or 
particular growth patterns of certain stocks. 

Efficient data mining methods for large databases have been studied ex­
tensively, with many interesting methods developed. For example, attribute-
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oriented induction method for mining characteristic and comparison rules 
(Han & Fu 1996), Apriori algorithm for mining association rules (Agrawal & 
Srikant 1994), Cart algorithm for classification and decision tree construction 
(Quinlan 1993), and CLARANS, DBScan, Birch, and k-means algorithms for 
clustering analysis (Ng & Han 1994, Ester, Kriegel, Sander & Xu 1996, Zhang, 
Ramakrishnan & Livny 1996, Jain & Dubes 1988). 

3 DESIRED OLAP MINING FUNCTIONS 

By integration of OLAP and data mining, OLAP mining facilitates flexible 
mining of interesting knowledge in data cubes because data mining can be 
performed at multi-dimensional and multi-level abstraction space in a data 
cube. Cubing and mining functions can be interleaved and integrated to make 
data mining a highly interactive and interesting process. 

Here we first examine what are the desired OLAP mining functions. 

1. Cubing then mining: With the availability of data cubes and cubing opera­
tions, mining can be performed on any layers and any portions of a data 
cube. This means that one can first perform cubing operations to select the 
portion of the data and set the abstraction layer (granularity level) before 
a data mining process starts. 
For example, one may first tailor a cube to a particular subset, such as 
"year = 1997', and to a desired level, such as at the city level for the 
dimension store, and then execute a prediction mining module. 

2. Mining then cubing: This means that data mining can be first performed on 
a data cube, and then particular mining results can be analyzed further by 
cubing operations. 
For example, one may first perform classification on a "market" data cube 
according to a particular dimension or measure, such as profiLmade. Then 
for each obtained class, such as the high_profit class, cubing operations can 
be performed, e.g., drill-down to detailed levels and examine its character­
istics. 

3. Cubing while mining: A flexible way to integrate mining and cubing oper­
ation is to perform similar mining operations at multiple granularities by 
initiating cubing operations during mining. By doing so, the same data 
mining operations can be performed on different portions of a cube or at 
different abstraction levels. 
For example, for mining association rules in a "market" data cube, one can 
drill down along a dimension, such as time, to find new association rules 
at a lower level of abstraction, such as from year to month. 

4. Backtracking: To facilitate interactive mining, one should allow a mining 
process to backtrack one or a few steps or backtrack to a preset marker 
and then explore alternative mining paths. 
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For example, one may classify market data according to profiLmade and 
then drill down along some dimension(s), such as store to see its character­
istics. Alternatively, one may like to classify the data according to another 
measure, cosLo/_product, and then do the same (characterization). This re­
quires the miner to jump back a few steps or backtrack to some previously 
marked point, and redo the classification. Such flexible traversal along the 
cube at mining is a highly desired feature for users. 

5. Comparative mining: A flexible data miner should allow comparative data 
mining, that is, the comparison of alternative data mining processes. 
For example, a data miner may contain several cluster analysis algorithms. 
One may like to compare side by side the clustering quality of different 
algorithms, even examine them when performing cubing operations, such 
as when drilling down to detailed abstraction layers. 

It is possible to have other combinations in OLAP mining. For example, 
one can perform "mining then mining", such as first perform classification on 
a set of data and then find association patterns for each class. 

In a large warehouse containing a huge amount of data, it is crucial to pro­
vide flexibilities in data mining so that a user may traverse a data cube, select 
mining space and the desired levels of abstraction, and test different mining 
modules and alternative mining algorithms at his/her finger tips. By doing 
so, mining will be a highly interactive, enjoyable, and productive process. 

4 EFFICIENT IMPLEMENTATION OF OLAP MINING 

Assuming readers have general knowledge of data warehousing (Chaudhuri & 
Dayal 1997) and data mining (Fayyad et al. 1996), we examine the methods 
for efficient implementation of OLAP mining in this section. 

With recent developments of data warehousing technology, data cubes can 
be computed and accessed efficiently. For example, one may use either a MO­
LAP (based on multi-dimensional array structures) or a ROLAP (based on 
relational structures) approach for efficient cube storage and computation 
(Agarwal et al. 1996, Gray, Chaudhuri, Bosworth, Layman, Reichart, Venka­
trao, Pellow & Pirahesh 1997, Zhao et al. 1997), where a cube could be dense 
or sparse. Also, data cubes can be indexed or bit-mapped in several ways 
for efficient accessing (Chaudhuri & Dayal 1997, Sarawagi 1997). With these 
technologies available, our discussion will focus on how OLAP mining should 
be performed in cooperation with data mining functions. 
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4.1 OLAP-based characterization and comparison 

Data characterization summarizes and characterizes a set of task-relevant data 
based on data generalization. For mining multiple-level knowledge, progressive 
deepening (drill-down) and progressive generalization (roll-up) techniques can 
be applied. 

Progressive generalization starts with a conservative generalization process 
which first generalizes the data to a slightly higher level than the primitive 
data in the data cube. Further generalizations can be performed on it pro­
gressively by selecting appropriate attributes for step-by-step generalization. 

Progressive deepening starts with a relatively high-level generalized cuboid, 
selectively and progressively specializes some of the generalized tuples or at­
tributes to lower abstraction levels. 

Conceptually, a top-down, progressive deepening process is preferable since 
it is natural to first find general data characteristics at a high abstraction 
level and then follow certain interesting paths to drill down to specialized 
cases. However, from the implementation point of view, it is easier to perform 
generalization than specialization because generalization replaces low level 
data by high ones through ascension of a concept hierarchy. Since a generalized 
cell does not register the detailed original information, it is difficult to get such 
information back when specialization is required later. 

To facilitate specializations on !J.. high-level cuboid, a typical technique is 
to save a set of "lower-level cuboids", especially the "minimally generalized 
cuboid" either at the preprocessing stage (Le., cube computation stage) or 
in the early stage of generalization. For example, to compute the minimally 
generalized cuboid, each dimension in the relevant set of data can be gener­
alized to minimally generalized concepts (which can be done in one scan of 
the database or warehouse), with the measures aggregated correspondingly. 
After that, both progressive deepening and interactive up-and-down can be 
performed with reasonable efficiency: If the data at the current abstraction 
level is to be generalized further, generalization can be performed on it di­
rectly; on the other hand, if it is to be specialized, the desired result can be 
derived by searching for the closest lower-level cuboid and generalizing such 
a cuboid to appropriate level(s) if necessary. 

An output of the characterizer is shown in Figure 3. 

Comparison is to find a set of discriminant rules which distinguish the 
general features of a target class from that of the contrasting class( es) specified 
by a user. It is implemented as follows. 

First, the set of relevant data in the database has been collected by query 
processing and is partitioned respectively into a target class and one or a set 
of contrasting class(es). Second, attribute-oriented induction is performed on 
the target class to extract a prime target cube, where a prime target cube is a 
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Figure 3 Graphical output of the Characterizer of DBMiner 

generalized cuboid in which each attribute contains no more than but close to 
the threshold value of the corresponding attribute. Then the concepts in the 
contrasting class(es) are generalized to the same level as those in the prime 
target cube, forming the prime contrasting cube. Finally, the information in 
these two classes is used to generate qualitative or quantitative discriminant 
rules. 

Moreover, interactive drill-down and roll-up can be performed synchronously 
in both target class and contrasting class(es) in a similar way as in character­
ization. 

How can multi-level characterization and comparison be integrated into 
OLAP mining? Since at each step of drill-down or roll-up, characterization 
and comparison produce a new cuboid, with the same data structure, it is 
inherently suitable for integration with OLAP mining. That is, any mining 
module can treat the result of characterization and comparison as a data cube 
and mining can be performed directly on such a resulting cube. Furthermore, 
for any mining result on which cubing operations can be performed, charac­
terization and comparison can be done as well. 

4.2 OLAP-based association 

Based on many studies on efficient mining of association rules (Agrawal & 
Srikant 1994, Sri kant & Agrawal 1995, Han & Fu 1995), a multiple-level as­
sociation rule miner (called "associator") has been implemented in DBMiner. 
An output of the associator is shown in Figure 4. 

Different from mining association rules in transaction databases, a relational 
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Figure 4 Graphical output of the Associator of DBMiner 

associator may find two kinds of associations: inter-attribute association and 
intra-attribute association. The former is an association among different at­
tributes; whereas the latter is an association within one or a set of attributes 
formed by grouping of another set of attributes. This is illustrated in the 
following example. 

Example 2. Suppose the "course_taken" relation III a university database 
has the following schema: 

coursLtaken = (studenLid, course, semester, grade). 

Intra-attribute association is the association among one or a set of attributes 
formed by grouping another set of attributes in a relation. For example, the 
associations between each student and his/her course performance is an intra­
attribute association because a set of attributes, "course, semester, grade" , 
are grouped according to studenLid. for mining associations among the courses 
taken by each student. From a relational database point of view, a relation so 
formed is a nested relation obtained by nesting "(course, semester, grade)" 
with the same studenLid. Therefore, an intra-attribute association is an asso­
ciation among the nested items in a nested relation. 

Inter-attribute association is the association among a set of attributes in 
a fiat relation. For example, the association between course and grade, such 
as "the courses in computing science tend to give good grades", is an inter­
attribute association. 

Two associations require different mining algorithms. 

For mining intra-attribute associations, a data relation can be transformed 
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into a nested relation in which the tuples which share the same values in the 
nesting attributes are merged into one. For example, the course_taken relation 
can be folded into a nested relation with the schema, 

cour se_taken = (studenLid, cour seJtistory) 
cour seJtistory = (course, semester, grade). 

With such transformation, it is easy to derive association rules like "90% 
senior CS students tend to take at least three CS courses at 300-level or up in 
each semester'. Since the nested tuples (or values) can be viewed as data items 
in the same transaction, the methods for mining association rules in transac­
tion databases, such as Apriori (Agrawal & Srikant 1994), can be applied to 
such transformed relations in relational databases. 0 

Moreover, it is preferable to have some user-specified constraints to guide an 
association rule mining process. Such constraints can be specified in a meta­
rule (or meta-pattern) form (Kamber, Han & Chiang 1997), which confines the 
search to specific forms of rules. For example, a meta-rule "P(x, y) -+ Q(x, y, z)", 
where P and Q are predicate variables matching different properties in a 
dat.abase, can be used as a rule-form constraint in the search. 

The multi-dimensional data cube structure facilitates efficient mining of 
multi-level, inter-attribute association rules. A count cell of a cube stores the 
number of occurrences of the corresponding multi-dimensional data values; 
whereas a dimension count cell stores the sum of counts of the whole dimen­
sion. With this structure, it is straightforward to calculate the measures such 
as support and confidence of association rules based on the values in these 
summary cells. A set of such cuboids, ranging from the least generalized one 
to rather high level ones, facilitate mining of association rules at multiple 
levels of abstraction. 

Association mining module generates a set of association rules. Since the 
rule form is quite different from a data cube structure, it is not easy to in­
tegrate the mining results with other mining/cubing processes. One choice 
is to take any rule which contains a few connected nodes as a cuboid, from 
which characteristics can be displayed and drill-down or roll-up can be per­
formed. Another choice is to take a node as a one-dimensional cuboid and 
show data distribution and add additional attributes for cubing and mining. 
The third choice is to simply backtrack to a point where cubing and other 
mining operations can take place naturally. 
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Figure 5 Graphical output of the Classifier of DBMiner 

4.3 OLAP-based classification 

Data classification is to develop a description or model for each class in a 
database, based on the features present in a set of class-labeled training data. 

There have been many classification methods studied, including decision­
tree methods, such as ID-3 and C4.5 (Quinlan 1993), statistical methods, 
neural networks, rough sets, etc. Recently, some database-oriented classifica­
tion methods have also been investigated (Mehta, Agrawal & Rissanen 1996). 

Our classification method consists of four steps: (1) collection of the relevant 
set of data and partitioning of the data into training and test data, (2) analysis 
of the relevance of the attributes, (3) construction of classification (decision) 
tree, and (4) test of the effectiveness of the classification using the test data 
set. 

Attribute relevance analysis is performed based on the analysis of an un­
certainty measurement, a measurement which determines how much an at­
tribute is in relevance to the class attribute. Other measurements, such as 
entroy-based information gain (Quinlan 1993) and Gini index (Mehta et al. 
1996), can be used for relevance analysis as well. Several top-most relevant 
attributes are retained for classification analysis; whereas the weakly or irrel­
evant attributes are not considered in the subsequent classification process. 

In the classification process, our classifier adopts a generalization-based 
decision-tree induction method which integrates OLAP data cube technology 
with a decision-tree induction technique, by first performing minimal general­
ization on the set of training data, and then performing decision tree induction 
on the generalized data. 

Since a generalized cell comes from the generalization of a number of orig-
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inal cells, the count information is associated with each generalized cell and 
plays an important role in classification. To handle noise and exceptional 
data and facilitate statistical analysis, two thresholds, classification threshold 
and exception threshold, are introduced. The former is used for justification 
whether it is needed to continue classification on a node if a significant set 
of the examples of the node belongs to a single class; whereas the latter is 
used to terminate further classification on a node if the node contains only a 
negligible number of examples. 

There are several alternatives for doing generalization before classification: 
A data set can be generalized to either a minimally generalized abstraction 
level, an intermediate abstraction level, or a rather high abstraction level. Too 
Iowan abstraction level may result in scattered classes, bushy classification 
trees, and difficulty at concise semantic interpretation; whereas too high a 
level may result in the loss of classification accuracy. 

For OLAP mining, classification can be associated with other cubing and 
mining functions as follows. For any cubing result, one attribute can be se­
lected as class attribute and classification can be performed on the correspond­
ing cuboid in the same way as our cube-based classification process. For any 
classification result, each class node can be treated as a portion of the cube 
selected by the class constraint. Subsequent cubing and mining operations can 
be performed on the selected class. 

The multi-level classification process has been implemented in the DBMiner 
system. An output of the DBMiner classifier is shown in Figure 5. 

4.4 OLAP-based prediction 

A predictor predicts data values or value distributions on the attributes of 
interest based on similar groups of data in the database. For example, one 
may predict the amount of research grants that an applicant may receive 
based on the data about the similar groups of researchers. 

The power of data prediction should be confined to the ranges of numerical 
data or the nominal data generalizable to only a small number of categories. 
It is unlikely to give reasonable prediction on one's name or social insurance 
number based on other persons' data. 

For successful prediction, the factors (or attributes) which strongly influ­
ence the values of the attributes of interest should be identified first. This 
can be done by the analysis of data relevance or correlations by statistical 
methods, decision-tree classification techniques, or be simply based on expert 
judgement. To analyze attribute relevance, the uncertainty measurement sim­
ilar to the method used in our classifier is applied. This process ranks the 
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Figure 6 Graphical output of the Predictor of DB Miner: numeric predictive 
attribute (left) and categorical predictive attribute (right) 

relevance of all the attributes selected and only the highly ranked attributes 
will be used in the prediction process. 

After the selection of highly relevant attributes, a generalized linear model 
has been constructed which can be used to predict the value or value distri­
bution of the predicted attribute. If the predictive attribute is a numerical 
data, a set of curves are generated, each indicating the trend of likely changes 
of the value distribution of the predicted attribute. If the predictive attribute 
is a categorical data, a set of pie charts are generated, each indicating the 
distributions of the value ranges of the predicted attribute. 

When a query probe is submitted, the corresponding value distribution 
of the predicted attribute can be plotted based on the curves or pie charts 
generated above. Therefore, the values in the set of highly relevant predictive 
attributes can be used for trustable prediction. 

The prediction output has two forms of presentation: curve graph and pie 
chart depending whether the predictive attribute is a numeric attribute or 
a categorical attribute. When the predictive attribute is a numeric one, the 
output is a set of curves as shown in the left half of Figure 6; whereas when 
the predictive attribute is a categorical one, the output is a set of pie charts 
as shown in the right half of Figure 6. 

OLAP mining can be integrated with the prediction module as follows. For 
any predicted class, the class can be identified by a class selection criteria and 
its characteristics can be displayed. Then cubing operations can be performed 
on such a selected cuboid. Alternatively, one may backtrack to a point before 
prediction is performed and continue the exploration of other features of the 
previously selected data cube. 
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4.5 OLAP-based clustering analysis 

Data clustering, also viewed as "unsupervised learning", is a process of par­
titioning a set of data into a set of classes, called clusters, with the members 
of each cluster sharing some interesting common properties. A good cluster­
ing method will produce high quality clusters, in which the intra-class (i.e., 
intra-cluster) similarity is high and inter-class similarity is low. 

Clustering has many interesting applications. For example, it can be used 
to help marketers discover distinct groups in their customer bases and develop 
targeted marketing programs. 

Data clustering has been studied in statistics, machine learning and data 
mining with different methods and emphases. Many clustering methods have 
been developed and applied to various domains, such as data classification 
and image processing. 

Data mining applications deal with large high dimensional data, and fre­
quently involve categorical domains with concept hierarchies. However, most 
of the existing data clustering methods can only handle numeric data, or can­
not produce good quality results in the case where categorical domains are 
present. 

Our cluster analyzer is based on the well-known k-means paradigm. Com­
paring to the other clustering methods, the k-means based methods are promis­
ing for their efficiency in processing large data sets. However, their use is often 
limited to numeric data. To adequately reflect categorical domains, we have 
developed a method of encoding concept hierarchies. This enables us to de­
fine a dissimilarity measure that not only takes into account both numeric 
and categorical attributes, but also at multiple levels. Due to these modifi­
cations, our cluster analyzer can cluster large data sets with mixed numeric 
and categorical attributes in a way similar to k-means. It can also perform 
multi-level clustering and select a desired level by a comparison of the cluster­
ing quality at different levels. On the other hand, the user or the analyst can 
direct the clustering process by either selecting a set of relevant attributes for 
the requested clustering query, or assigning a weight factor to each attribute, 
or both, so that increasing the weight of an attribute increases the likelihood 
that the algorithm will cluster according to that attribute. 

OLAP mining can be integrated with cluster analyzer as follows. For any 
cluster so obtained, its characteristics can be displayed and cubing/mining 
operations can be performed on such a selected cluster. Alternatively, one 
may backtrack to a point before clustering is performed and continue the 
exploration of other features of the previously selected data cube. 
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4.6 Backtracking and comparative mining analysis 

Backtracking is convenient for OLAP mining since a user may like to tenta­
tively dig deep following some mining paths and later try alternatives if there 
have not been desired interesting patterns found. 

One suggested technique for implementation of backtracking in OLAP min­
ing is as follows. First, a status vector should be saved in a backtrack stack 
(if the backtrack pattern is simply tracing back step by step) or a backtrack 
list (if position marking or other traversal patterns is desired). The cuboid(s) 
associated with the vector should also be saved on the disk and linked with 
the vector. When backtracking, such a stack/list is used to trace back the ap­
propriate status pointers. When a session is complete, all the saved backtrack 
pointers, and their associated vectors and cuboids should be deleted to release 
the disk space occupied. 

Comparative mining analysis can be implemented similarly. For compar­
ative analysis of two mining tasks, one needs to fork a new path of min­
ing/cubing process stream and show both streams in separate windows. Com­
parative displays can also be synchronized when necessary by bundling to­
gether the two similar mining/cubing processes. 

5 DISCUSSION AND CONCLUSIONS 

OLAP mining integrates on-line analytical processing with data mining which 
substantially enhances the power and flexibility of data mining and makes 
mining an interesting exploratory process. 

In this paper, we discussed the principles and some implementation tech­
niques of OLAP mining by taking the OLAP mining functions of the DBMiner 
system as running examples. 

With multiple data mining functions available, one question which natu­
rally arises is how to determine which data mining function is the most ap­
propriate one for a specific application. To select an appropriate data mining 
function, one needs to be familiar with the application problem, data char­
acteristics, and the roles of different data mining functions. Sometimes one 
needs to perform interactive exploratory analysis to observe which function 
discloses the most interesting features in the database. Therefore, the building 
of exploratory analysis tools and the construction of an application-oriented 
semantic layer are two important solutions. OLAP mining provides an ex­
plDratory analysis tool, however, further study should be performed on the 
automatic selection of data mining functions for particular applications. 

Another popularly posed question is how these data mining techniques are 
different from the set of existing statistical data analysis tools. Data min­
ing is the confluence of multiple disciplines, including database systems, data 
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warehouses, statistics, visualization, machine learning, and information sci­
ence. Previous work on statistics has provided some foundational work for 
data mining. Most effective data mining systems are extending the power of 
database systems or data warehouse systems and re-examining the methods 
studied in statistics, visualization, and machine learning. Many methods de­
veloped in data mining systems are novel and scalable, and integrates well 
with existing database systems, which are quite different from existing statis­
tical analysis tools and machine learning packages. Thus, data mining forms 
a new direction in the research into the methods for the analysis of data and 
knowledge in large databases and data warehouses. 

We are currently working on the further enhancement of the power and 
efficiency of OLAP mining of DBMiner for exploratory data mining, including 
the improvement of system performance and rule discovery quality for the 
existing functional modules, and the development of techniques for mining 
new kinds of rules, especially on time-related data, and visual data mining. 

Another important task for future study is the extension of OLAP min­
ing techniques towards advanced and/or special purpose database systems, 
including extended-relational, object-oriented, text, spatial, temporal, multi­
media, and heterogeneous databases and Internet information systems. We 
will report the progress on OLAP mining of complex types of structured, 
semi-structured and nonstructured data in the future. 
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