
46

Event Modeling with the
MODEL Language *

D. Ohsiet
Columbia University
Department of Computer Science
New York City, NY 10027
ohsie@cs.columbia.edu

A. Mayel, S. Kliger, S. Yemini
System Management Arts (SMARTS),
14 Mamaroneck Ave,
White Plains, NY 10601
alain, kliger, yemini@smarts.com

Abstract
Event modeling is an essential component of event correlation systems; this paper
introduces the MODEL language, which comprises the event modeling component
of SMARTS' InCharge™ event correlation system. We demonstrate the features of
the MODEL language through examples from the multimedia Quality of Service
(QoS) domain. In addition, we provide a comparison of MODEL with the event
modeling capabilities of other event correlation systems; we demonstrate that
MODEL generalizes the capabilities of other systems and is more flexible.

Keywords
Event correlation, event modeling, multimedia.

1 INTRODUCTION

Network management consists mainly of monitoring, interpreting, and handling of
events or exceptional condition in the operation of the network. Event correlation
is the process of automatically grouping related events based on their underlying
common cause, thereby compressing the event stream and identifying potentially
hidden problems. NetFACT (Houck et al. 1995), SINERGIA (Brugnoni et al.
1993), IMPACT (Jakobson and Weissman 1995), ECXpert (Nygate 1995) and the
authors' own InCharge™ (formerly DECS) (Yemini et al. 1996) are all examples of
such systems. An event correlation system consists of two basic components: an

'The process for event correlation and problem reporting described in this paper is covered by U.S.
Patent No. 5,528,516.
This research was supported in part by Air Force Contract No. F30602-95-C-0262.
'This author's research was supported in part by NSF grant IRI-94-13847.
1This authors current affiliation is Bell Labs I Lucent Technologies, 600 Mountain Ave, Murray Hill,
NJ 07974, alain@research.bell-labs.com

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

626 Part Four Information Models

event definition and propagation model (or simply event model), and a reasoning

algorithm. The event model describes the underlying system, while the reasoning
algorithm processes incoming events and correlates based on the knowledge
contained in the event propagation model. The event model in turn consist of a
class-level model, and a run-time object topology. The class-level model describes
the general rules for propagating events from objects of one class to another, while
the object topology describes a particular instantiation of the run time model which
reflects the current state of the actual system.

As an example of event modeling, consider the scenario in Figure I from the
Multimedia Quality of Service (QoS) domain. Here, a video sender, an electronic
classroom located on the local area network LAN2, wishes to transmit some live
video to a receiver located on LANI using the video tool vic (McCanne and
Jacobson 1995a) which utilizes the UDP transport protocol. The UDP connection
transports IP packets through routers D, C, B, and A which connect the LAN
domains through a router backbone domain. The router backbone domain uses
physical-layer wide-area network (WAN) domains. Similarly, an audio sender,
Internet phone, on LAN4 wishes communicate with a receiver on LAN3, using the
audio-tool vat (McCanne and Jacobson 1995b). Its IP packets are routed via F, C,
B, and E. These transmissions, plus other, unrelated traffic cause the rate of packets

Video
Sender Video

Receiver

Figure 1 Multimedia over a multi-domain network.

arriving at C to be too high. Consequently the buffer at C overflows, causing the
multimedia transmissions to lose packets. Note that congestion of this nature is the
most common cause of packet loss on the Internet. The packet losses at router C
will propagate to all UDP connections which router C is a part of. Since UDP does
not retransmit lost packets, these losses will in turn propagate to the multimedia
transmissions and hence the quality at the receiver may become unacceptable.

The class-level event model for the scenario described above consists of the
following: a definition of the "poor video quality" event, a rule describing the
propagation of router congestion to packet loss and then to poor video quality, and

Event modeling with the MODEL language 627

optionally a "high packet loss" event at the router level. The object topology
consists of the individual routers and multimedia applications and their relationship
in the underlying network. A reasoning algorithm would infer the presence of the
congestion problem based on the poor video and audio quality and the event model
illustrated.

In previous work (Kliger et al. 1995), we described the coding approach to
event correlation which is the reasoning algorithm of our InCharge™ event
correlation system (Yemini et al. 1996). There, we showed how the symptoms of
each problem in a modeled system could be treated as a code for that problem, and
that elementary techniques from coding theory could be profitably applied to event
correlation. That work presupposes that there is a causality graph which maps each
problem to its immediate (possibly unobservable) causal effects and in turn to
others, until an observable symptom event is caused. Thus, computing the code for
a problem involves computing a closure over the causal relationships emanating
from the problem.

In this work, we describe the MODEL language for the definition of object and
event models. MODEL supplies an object-oriented data model complete with
inheritance and overloading. It also provides instrumentation capabilities to
automatically tie attributes in the model to SNMP MIB variables. More
importantly, MODEL supplies two feature which are essential to event correlation.
First, it provides a declarative specification of events in the form of boolean
expressions over attributes in the object model. This allows the definition of events
to be integrated into the model of the objects in which the event occurs. Second,
MODEL allows the user to specify local event propagation rules in which we show
how to construct the causality graph from the combination of the class-level event
propagation model and the current object topology. Often, event propagation
patterns depend heavily on the way in which objects are currently interconnected;
changing the topology of the modeled objects will drastically alter the observed
symptoms of a problem. We will show that MODEL's approach to defining event
propagation is superior to the event modeling capabilities of existing systems,
because it can handle topology dependent event propagation through the use of
event overloading. In addition, MODEL is correlation algorithm independent, so it
can actually be substituted for the event modeling subsystems of existing
correlation systems to improve their generality and ease of use.

The rest of this paper is organized as follows. In Section 2, we will use
scenarios from the multimedia QoS domain among others to provide a "description
by example" of the MODEL language. In Section 3, we will outline the process of
developing reusable event libraries in MODEL. Section 4 will provide a critical
comparison of the MODEL language with the event modeling capabilities of other
event correlation system.

628 Part Four Information Models

2 mE MODEL LANGUAGE AND QOS
MANAGEMENT

In this section, we give an in-depth "introduction by example" to the MODEL
language. We begin with an example from the multimedia management domain.
Consider again the example configuration of Figure 1 and the following scenario:
Due to high traffic volume, router C experiences congestion. As a consequence, its
buffers overflow and incoming IP packets get lost. Since the video and the audio
receiver are endpoints of a UDP connection which is layered over router C, they
both experience the same type of QoS violation: an average transmission rate that is
drastically below tolerance. A correlator, using the knowledge provided by the
corresponding model, should report .a high probability that the problem causing
these violations is located in the domain of the router backbone.

We will begin by considering a simple example of a causal relationship, that of
congestion causing lost packets. First we must define what we mean by "high
packet discards". Let us assume that the router implements the IP protocol and is
instrumented via SNMP. We can then measure the total number of discarded
packets by querying the SNMP MID-II variables ipOutDiscards and ipinDiscards:

interface IPRouter: IP
{

instrumented attribute long ipinDiscards;
instrumented attribute long ipOutDiscards;
attribute long discardsThreshold;

event PacketDiscardsHigh "'The level of discarded packets is high"
(delta ipinDiscards + delta ipOutDiscards) I delta _time >
discardsThreshold;

instrument SNMP;

In this example, the attribute statements defines measurable properties of
the IP protocol entity. The event statement defines the circumstance under which
the event can be said to have occurred. In this case, the event
PacketDiscardsHigh will be deemed to have occurred whenever the sum of
the changes ipinDiscards and ipOutDiscards per time exceeds a
threshold. The delta keyword indicates that the difference between the new and
old values of the attribute are desired. The _time keyword refers to the time at
which samples are taken. Thus this event is triggered when the discard rate reaches
the threshold.

Here we digress for a moment to reflect on the relationship between MODEL
and SNMP. The ipinDiscards and ipOutDiscards attributes are automatically
instrumented via SNMP; no additional programming is required to keep these
attributes updated with current values. In addition, a utility program called
mib2model can be used to parse SMI MID definitions and generate the
corresponding MODEL classes automatically. Thus all features of the MODEL
language essentially extend the functionality of the underlying SNMP MIBS. This

Event modeling with the MODEL language 629

approach meshes well with the SNMP philosophy; the underlying device must
implement only the simple SNMP protocol and can thus concentrate its resources
on its task (in our example, routing packets). The event management system
provides higher level services using dedicated management resources. MODEL
enables the event modeler to ignore this distinction and concentrate on simply
modeling the events without regard to who supplies the information. In our
example, we have effectively extended the power of the standard SNMP MIB to
include our newly defined event.

Now, let us return to modeling the congestion problem at the router. We want to
express the fact that there is a causal relationship between the congestion problem
and the high packet discard event (with probability 1.0):

problem Congestion "High congestion•• = PacketDiscardsHigh 1. 0;

This line would be added to the MODEL class definition above. Note that this
is a semantic declaration in the form of a rule; however, it does not have any
specific algorithmic or operational meaning. It simply expresses the fact that there
is a causal relationship between these two events. The inclusion of the problem and
symptom in the scope of a single class obviates the need to write the rule as
follows:

Congestion(IPRouter(X)) -> PacketDiscardsHigh(IPRouter(X));

We have modeled a local symptom which indicates the problem of Congestion.
However, we would also like to relate the problem to the other observed symptoms
at the multimedia application level. In this way, anomalies observed at the
multimedia level can be correlated with the problem detected at the lower level.

Problems in one object propagate to related objects via relationships. In our
example, the Congestion problem would propagate to higher level connections
which are layered over the congested IP node. Thus we would add the following
statement to indicate the relationship between IP nodes and connections:

relationshipset Underlying, TransportConn, LayeredOver;

The keyword relationshipset indicates that many connections may be
layered over a single IP node. Now, we would like to express the fact that the
congestion problem causes both the local symptom PacketDiscardsHigh, and
propagates those discards as losses in the higher level connection:

problem Congestion "High congestion" =
PacketDiscardsHigh 1.0, ConnectionPacketLossHigh 0.8;

propagate symptom ConnectionPacketLossHigh =
TransportConn, Underlying, PacketLossHigh;

Note that we have added the symptom ConnectionPacketLossHigh to
Congestion problem and that we have used a causal probability of 0.8, where a
value of 1.0 indicates complete certainty. This indicates that congestion at the IP
node may not cause packet losses on all connections above it, depending on the

630 Pan Four Information Models

circumstance surrounding the congestion; we would not want to rule out congestion
simply because a single connection which is layered over the node is not
experiencing problems.

The propagate symptom statement says that the symptom
ConnectionPacketLossHigh refers to an event in a related object, namely the event
PacketLossHigh in any TransportConn which layered over this IP node. Now, we
will continue the example by presenting the MODEL code which further
propagates the problem to its observable symptom in the multimedia layer:

interface TransportConn
{

propagate symptom PacketLossHigh =
Port, ConnectedTo, PacketLossHigh;

interface UDPPort: Port
{

propagate symptom PacketLossHigh =
Appl, Underlying, PacketLossHigh;

interface MM_InPort: Appl
{

instrumented attribute long MinRate;
instrumented attribute long MaxRate;
instrumented attribute long MsgCounter;
instrumented attribute long ActTime;

computed attribute ActualRate = (MsgCounter)/(_time- ActTime);

event BadRate = (MinRate > ActualRate) I I (ActualRate > MaxRate);

problem PacketLossHigh = BadRate 1.0;

Note that a TransportConn simply propagates the packet losses to the Ports to
which it is connected; a UDPPort (which, being a subclass of Port, inherits from
Ports) in turn propagates the packet losses to Applications which are LayeredOver
the port. For simplicity, the relationships which are utilized for this propagation,
ConnectedTo and Underlying, are not defined here. Typically they would be
inherited from generic link and node classes in the Netmate hierarchy, which is
described in Section 3.

The multimedia receive port, MM_InPort, is a subclass of Appl. Therefore, it
receives, via inheritance, the PacketLossHigh symptom from the UDP _Port which
it is LayeredOver. The PacketLossHigh event in the MM_InPort has a single
locally defined symptom, thus we again utilize the problem statement to define its
symptom. In this case, PacketLossHigh causes the observable symptom BadRate,
which indicates the reception rate is out of tolerance. Since this symptom is
observable, it is defined using the event statement and an expression to detect the
symptom. This example also demonstrates the use of expressions to define
attributes as shown in the definition of the attribute ActualRate.

Event modeling with the MODEL language 631

The combination of the propagate symptom statement and one-to-many
relationships allow the MODEL language to express complex problem-symptom
relationships in a compact form. For example, suppose that there were many
multimedia connections layered over the same congested router (possible causing
the congestion). In this case, there will be many UDP connections (subclass of
TransportConn) layered over the single IP object. The congestion problem may
cause symptoms in any or all of the connections which are layered over the IP
object.

Now consider trying to write a single rule to express the relationship between
the Congestion problem and its symptoms. First, we would have to include
complex conditions to identify which multimedia receivers were related to which
IP nodes. The MODEL approach of expressing propagation over existing
relationships of the object model provides the proper level of abstraction by
separating the causal knowledge from the knowledge of the network topology. In
addition, by chaining objects together, MODEL can express propagation paths of
arbitrary length with ease, while a single rule would require increasing complexity
as the propagation paths lengthened.

In addition, the rule language would have to provide some type of for all
construct, or else there would have to be multiple versions of the rule, one for each
possible configuration of multimedia connections over the IP nodes. By breaking
the propagation knowledge into discrete units of propagation from a single object to
a related object, different topologies at run-time can be handled with a single
model. Note however that the main advantage of the rule based paradigm is
retained; causal knowledge is expressed in a declarative fashion, independent of the
inference engine which uses it.

Up to now, we have focused on multimedia modeling; however, we have been
careful to use classes which are not multimedia-specific wherever possible (e.g.,
IPRouter, TransportConn). This enables us to reuse the invested modeling effort
for other applications. To illustrate how MODEL provides for such modularity of
modeling, we show how to extend our model to a database client domain. This
domain will exhibit an entirely different set of symptoms as a result of the
congestion at the router (which is a problem common to both domains). MODEL
allows us to utilize the existing model, and to extend it by adding subclasses and
overloading the event propagation in these subclasses to match the behavior of the
newly modeled objects.

Database applications typically utilize TCP connections to access database
servers. Since TCP connections are reliable, they must retransmit packets which
are discarded by underlying IP nodes. Thus the symptom propagation pattern for
TCP clients differs somewhat from that of UDP clients. We will use the event
overloading capabilities of MODEL to express this difference:

632 Part Four Information Models

interface TCPPort: Port
(

problem PacketLossHigh =
ApplicationDelay 1.0, TCPRetransmissionsHigh 1.0;

propagate symptom ApplicationDelay = Appl, LayeredOver, Delay;
propagate symptom TCPRetransmissionsHigh =

TCPConn, PartOf, RetransmissionsHigh;

interface TCPConn: TransportConn
(

readonly intrumented attribute long tcpRetransSegs
"The total number of segments retransmitted - that \n"
"is, the number of TCP segments transmitted \n"
"containing one or more previously transmitted \n"
"octets.";

event RetransmissionsHigh = tcpRetransSegs > Threshold;

interface DBClient: Appl
(

problem Delay = TransactionTimeout 1.0, ServerLongLockHolding 1.0;
propagate symptom ServerLongLockHolding =

DBServer, ServedBy, LongLockHolding;

event TransactionTimeout imported;

Note that TCPPort is derived from Port, but has a different definition for
PacketLossHigh than UDPPort, reflecting the different effect packet loss has on a
TCP connection. Specifically, the lost packet symptom eventually propagates to
the TCP protocol entity which experiences a high rate of retransmission, while the
application layered over the node experiences delays; in contrast, the UDP port
propagates the lost packet symptom to the application, since it doesn't perform
retransmission.

In the case of database clients, the application delay event is further specialized
to cause transaction time-outs and long lock holding periods on the server. Note
that the event TransactionTimeout is defined as imported. This indicates that the
event cannot be detected by querying attributes of the data model. Instead an
outside entity is responsible for notifying the event correlator of the occurrence of
this event. This give maximum flexibility to the modeler to include events which
might otherwise be difficult or impossible to monitor.

The event overloading capability of MODEL allows for the creation of very
abstract and powerful models, because at each stage of the propagation, the
modeler must only concern himself with the immediate effects of a problem on the
higher layer. The details of how this effect manifests itself can then be altered by
simply deriving a new subclass and refining the definition of events in the subclass.
Thus we can express the general notion that congestion at a node causes losses on
connections which are layered over the node without having to specify the exact
effects of these losses. Subtyping and refinement allow the modeler to specify
these effects differently for TCP and UDP connections.

Event modeling with the MODEL language 633

The MODEL language contains many other features which are beyond the
scope of this paper. The interested reader is referred to (System Management Arts
1996b).

3 CLASS LIBRARIES IN MODEL

As we have shown, MODEL provides an object oriented modeling framework with
inheritance. This makes it ideal for developing extensible class libraries for event
modeling. In the examples above, we simply added relationships, attributes and
events to the model when needed. In actual MODEL development, we have found
that a three stage modeling process works best.

Figure 2 Netmate class hierarchy

~---- ... many-to-OM r.aauon
_ ____. "'*'Y-10•rNfl)' ttlll.on

In the first stage, a generic library of networking classes is used to define the
basic relationships between objects in any modeled system. This set of classes is
called the Netmate hierarchy is detailed in (Dupuy et al. 1991) and depicted in
Figure 2.

The next stage consists of data modeling. Data modeling involves deriving
domain specific classes from the Netmate classes and adding the appropriate
attribute and instrumentation statements to produce an accurate data model of the
domain. In this stage, the mib2model translator described above is used to generate
class definitions to represent those objects which are instrumented via SNMP
MIB's.

The third stage involves adding the actual event propagation information to the
model, either directly into the second stage data model, or into subclasses of this

634 Part Four Information Models

model. At this stage, it may be necessary to add additional relationships and
attributes to the data model, if it is seen that event propagation occurs over
relationships that were not contemplated in the Netmate model, or that important
events cannot be monitored in the original data model.

Figure 3 Multimedia Class Hierarchy

Using this methodology, we have developed a Multimedia QoS management
library. Figure 3 illustrates the class hierarchy of the Multimedia library. Note that
the "root" node is actually the resource class of the Netmate class library. The

attributes of classes in the library are instrumented via the QoSMIB (Florissi 1996).
QoSMIB provides quality of service metrics which are important to diagnosing
problems in the multimedia domain. Since QosMIB has an SMI specification and
can be accessed via SNMP, we utilized the mib2model translator to build a number
of the classes in our multimedia library. Consider, for example, the MM_InPort

class (introduced in section 2) which represents a multimedia receiver. The
MinRate attribute of this class represents the minimal transfer rate necessary to

support the receiving application; this attribute is retrieved automatically from the

QoSMIB.
Examples of other domains for which libraries have been developed include

problems in the Tl and T3 connections of telecommunications service providers,
TCP/IP data networks and low earth orbiting (LEO) satellite networks. These
examples illustrate that MODEL provides a basis for developing event libraries for
a wide variety of problem domains.

Event modeling with the MODEL language 635

4 COMPARISON TO EXISTING SYSTEMS

In this section, we perform a comparison of MODEL with the event modeling
methods of other event correlation systems in the literature. The NetFACT (Houck
et. al. 1995) event model has three classes of object: paths, nodes, and shared
resources. There are three relationships via which events propagate: Nodes and
shared resources have "dependencies" on shared resources; nodes and paths are
"connected" to one another; and paths are "composed of' underlying nodes and
paths. The NetFACT event model is thus ideally suited for expression in the
MODEL language. We have captured the NetFACT event model in about forty
lines of MODEL code; space limitations preclude its inclusion in this section.

The NetFACT correlation algorithm involves a voting scheme whereby each
symptom event counts as a vote for any problem which may have caused it. This
algorithm can be applied to the output of any MODEL language model by simply
tracing the propagation backward from symptom to problem. In addition, a
MODEL back-end could generate code to automatically tally up votes for each
problem via a method generated for each symptom event. Thus, MODEL
completely generalizes the NetFACT event model, while giving the users flexibility
to add their own new classes, relationships and event propagation rules.

SINERGIA (Brugnoni et. al. 1993) expresses its event model via forward
chaining rules which match a particular network topology and use the status of each
object in the topology to generate a fault hypothesis for that portion of the network.
The generated hypotheses are then fed to a search algorithm which searches for the
most likely combination of fault hypotheses. The MODEL event model differs
from that of SINERGIA in that instead of specifying particular network topologies
and writing rules for each one, the propagate statement is used to express the way
in which events propagate generally. The expected events for a particular topology
can then be generated automatically based on the actual instantiated objects.

SINERGIA's rules closely match the "data sheets" which specify the domain
knowledge which is input to the system. Thus, generating MODEL code for
SINERGIA would require an additional level of abstraction to be performed.
However, if this conversion can be achieved properly, then the resulting MODEL
code is more general than the original SINERGIA rules and could be used to
generate fault hypotheses for arbitrary topologies. In fact, the SPRINTER event
simulator (Manione and Montanari 1995) uses a MODEL-like event propagation
model to discover missing and improper rules in the SINERGIA rule base. In
addition, writing rules for problems where the events are propagated a very long
distance from the problem would seem to be difficult in the SINERGIA
methodology, as the size of a SINERGIA rule increases exponentially as the
number of components involved. IMPACT (Jakobson and Weissman 1995) also
uses a rule-based approach to define when a correlation rule matches the network
topology; thus it stands in the same relation to MODEL as SINERGIA.

ECXpert (Nygate 1995) uses rules to define when an incoming event can be
correlated with an event or set of events which were previously received. Thus, an

636 Part Four Information Models

ECXpert rule is similar to a MODEL propagate statement, in that it specifies the
relationships between events, rather an entire topology of events in a single rule.
However ECXpert rules are not as well integrated into the object model as
MODEL; thus, ECXpert rules involve string matching to determine event type and
database lookup to verify that events have been received from related objects. In
addition, ECXpert rules are not completely declarative; the user must specify the
rules in terms of an incoming "new event" and the existing "old event" in the
context of a particular correlation group to support the correlation algorithm, rather
simply providing a relationship between events. In addition, all relationships are
defined between alarms; there is no way to specify a problem which itself cannot be
observed. Finally, ECXpert requires numbering the events with a precedence
indicating which level in the correlation tree the event is expected to occur. This
requires one to view the correlation tree as a whole instead of simply providing
local propagation rules which expand into a correlation tree based on the current
network topology.

5 CONCLUSION

In this paper, we have introduced the MODEL language and showed its application
to event modeling. We have shown that MODEL provides a flexible framework
for declaratively expressing event propagation which compares favorably to the
modeling capabilities of existing systems. Finally, we have also shown how
MODEL can be applied develop reusable event libraries and have outlined such a
library for multimedia QoS management.

6 REFERENCES

Bolot, J.C., Turletti T., and Wakeman I. (1994) Scalable Feedback Control for Multicast

Video Distribution in the Internet. ACM SIGCOMM 1994.

Brugnoni S., Bruno G., Manione R., Montariolo E., Paschettra E., and Sisto, L. (1993). An
Expert System for Real Time Fault Diagnosis of the Italian Telecommunications

Network. In: Hegering, H.-G. and Yemini, Y. (editors). Third International Symposium

on Integrated Network Management, San Francisco 18-23 Aprill993. The Netherlands,

North Holland, 617-628.
Busse I., Deffner B., and Schulzrinne, H. (1995) Dynamic QoS Control of Multimedia

Applications Based on RTP. International workshop on high-speed networks and open

distributed platforms 1995.
Dupuy, A., Sengupta, S., Wolfson, 0., and Yemini Y. (1991) NetMate: A Network

Management Environment. IEEE Network Magazine.
Florissi P. (1996). QoSME: QoS Management Environment. Ph.D. Thesis, Columbia

University, 1996.

Event modeling with the MODEL language 637

Fry M., Ray, P., Seneviratne, A., and Witana, V. (1996). Multimedia Service Delivery with
Guaranteed Quality of Service. IEEE Network Operations and Management Symposium
1996.

Houk K., Calo, S., Finkel, A. (1995). Towards a Practical Alarm Correlation System. In:
Sethi, A., Raynaud, Y., Faure-Vincent, F. (editors). Fourth International Symposium on
Integrated Network Management, San Francisco, 1995. London, Chapman & Hall, 226-
238.

Jakobson, G. and Weissman, M. (1995). Real-time Telecommunication Network
Management: Extending Event Correlation with Temporal Constraints. In: Sethi, A.,
Raynaud, Y., Faure-Vincent, F. (editors). Fourth International Symposium on
Integrated Network Management, San Francisco, 1995. London, Chapman & Hall, 290-
302.

Kliger, S., Yemini, S., Yemini, Y., Ohsie, D., S. Stolfo (1995) A Coding Approach to Event
Correlation. In: Sethi, A., Raynaud, Y., Faure-Vincent, F. (editors). Fourth
International Symposium on Integrated Network Management, San Francisco, 1995.
London, Chapman & Hall, 266-277.

Kumar V. (1996). MBone, Interactive Multimedia on the Internet. New Riders.
McCanne, S. and Jacobson V. (1995a). vic: A Flexible Frameworkfor Packet Video. ACM

Multimedia.
McCanne, S. and Jacobson V. (1995b). vat: A Visual Audio Tool. LBL.
Manione, R. and Montanari, F. (1995). Validation and Extension of Fault Management

Applications through Environment Simulation. In: Sethi, A., Raynaud, Y., Fame­
Vincent, F. (editors). Fourth international Symposium on Integrated Network
Management, San Francisco, 1995. London, Chapman & Hall, 238-249.

Nygate, Y. (1995). Event correlation using rule and object based techniques. In: Sethi, A.,
Raynaud, Y., Faure-Vincent, F. (editors). Fourth International Symposium on
Integrated Network Management, San Francisco, 1995. London, Chapman & Hall, 278-
289.

Paxson, V. (1996). End-to-End Routing Behavior in the Internet. In:ACM S/GCOMM '96.
Seneviratne, A., Fry, M., Withana, V., Horlait, E. (1994). Quality of Service Management

for Distributed Multimedia Applications. In: IEEE Conference on Computation and
Communication 1994.

System Management Arts. (1996a). MODEL Language Reference Manual, White Plains,
New York, 1996.

System Management Arts. (1996b). MODEL Developer's Guide, White Plains, New York,
1996.

Turletti, T. and Bolot, J.-C. (1994). Issues with multicast distribution in heterogenous packet
networks. In: 6th International Workshop on Packet Video.

Yemini, S., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D. (1996). High Speed and Robust
Event Correlation. IEEE Communications Magazine, May 1996.

