
14

Binding-time analysis applied to
mathematical algorithms

Robert Gliick*, Ryo N akashige*, Robert ZochlingO
* DIKU, Dept. of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen 0, Denmark.

<> Inst. fur Computersprachen, Vienna University of Technology,
Argentinierstr. 8, A-1040 Vienna, Austria.
e-mail: {glueck.ryon}@diku.dk.e1802gab@vm.univie.ac.at

Abstract
Our goal is to incorporate state-of-the-art partial evaluation in a library of general-purpose
algorithms - in particular, mathematical algorithms - in order to allow the automatic
creation of efficient, special-purpose programs. The main goal is efficiency: a specialized
program often runs significantly faster than its generic version.

This paper shows how a binding-time analysis can be used to identify potential sources
for specialization in mathematical algorithms. The method is surprisingly simple and
effective. To demonstrate the effectiveness of this approach we used an automatic partial
evaluator for Fortran that we developed. Results for five well-known algorithms show that
some remarkable speedup factors can be obtained on a uniprocessor architecture.

Keywords
Scientific computing, numerical algorithms, partial evaluation, binding-time analysis.

1 INTRODUCTION

The application of partial evaluation to mathematical algorithms seems especially promis­
ing for several reasons. A large body of general-purpose algorithms is available (e.g. the
NAG library contains more than 1000 mathematical algorithms). Their motivation clearly
comes from the practical world of scientific computing, which has been dictating their de­
velopment over a long time. High performance of mathematical algorithms is a key issue
in most scientific and engineering applications.

Our goal is to incorporate state-of-the-art partial evaluation in a library of general­
purpose mathematical algorithms in order to allow the automatic generation of fast,
special-purpose programs from generic algorithms. This work is an attempt to capitalize
on partial evaluation's ability to identify and extract static computations automatically
from mathematical algorithms (Berlin &Weise, 1990; Baier et aI., 1994; Andersen, 1995).
Early examples of specializing numerical algorithms are provided by (Gustavson et aI.,
1970) and (Goad, 1982). Interprocedural constant propagation was applied to scientific
applications in (Metzger & Stroud, 1993). They do not associate themselves with the
partial evaluation paradigm, however.

J. Doležal et al. (eds.), System Modelling and Optimization
© Springer Science+Business Media Dordrecht 1996

138 Contributed Papers

We demonstrate how a binding-time analysis can be used to identify sources for spe­
cialization in general-purpose mathematical algorithms. To demonstrate the effectiveness
of this approach we used an automatic partial evaluator for a subset of Fortran 77 which
we developed (Kleinrubatscher et al., 1995). Our results show that this approach is strong
enough to improve the efficiency of a certain class of mathematical problems.

2 PARTIAL EVALUATION AND BINDING-TIME ANALYSIS

Program Specialization. Assume that P is a general program with two arguments and that
its first argument x is known (static) while its second argument y is unknown (dynamic).
A program specializer produces a specialized program Px that returns the same result
when applied to the remaining input y as the original program P when applied to the
input x and y, but potentially much faster.

Partial Evaluation is an automatic method for program specialization. In offline partial
evaluation the transformation process is guided by a binding-time analysis performed prior
to the specialization phase (Jones et al., 1993). The result of the binding-time analysis is
a program in which all expressions are annotated as either static or dynamic. Operations
annotated as static are performed at specialization time, while operations annotated as
dynamic are delayed until run time (i.e. residual code is generated). Partial evaluation
differs from ordinary optimizing compilers since it takes the static input of programs into
account. Optimizing compilers lack binding-time information, thus it is unreasonable to
expect a compiler to execute static statements and generate specialized programs.

Binding-TimeAnalysis. The analysis computes a division B of all variables X in a program
P given an initial classification of the input variables as either static or dynamic. Variables
classified as static depend only on static input variables. Variables classified as dynamic
may depend on dynamic input variables.

Algorithm. (Monovariant Binding-Time Analysis) Call the program variables Xl, ... , X N
and assume that the input variables are Xl' ... ' X n , where 1 :::; n :::; N. Assume that the
binding-times hl , ... ,'bn for the input variables are given, where hi is either S (static)
or D (dynamic). The task is to compute a congruent division for all program variables:
B = (bi, ... , bN) which satisfies hi = D =} bi = D for the input variables. The analysis is
done by the following algorithm:

1. Construct the initial division B = (hl , ... , hn, S, ... , S) and set B = B.
2. If the program contains an assignment X k <--- exp where the variable Xj appears in exp

and bj = D then set bk = D in B.
3. Repeat step 2 until B does not change any longer. Then the algorithm terminates with

congruent division B.

3 PARTIAL EVALUATION OF MATHEMATICAL ALGORITHMS

The algorithms we studied can be classified roughly into one of the following categories
(for a given SID classifications of the input variables). A sequence of operations is data­
independent if the control flow can be determined at specialization time and does not
depend on numeric data. If the control flow is dynamic, then only few computations will

Binding-time analysis applied to mathematical algorithms 139

be static in a loop since many of the operations will depend on the iteration variable.
If the entire control flow and all computations are static, then specialization reduces to
ordinary computation.

• Dynamic control flow I dynamic computations; e.g. Newton iteration.
• Partially static control flow I dynamic computations; e.g. PEQ (Section 4.3).
• Static control flow I dynamic computations; e.g. CSI with n static (Section 4.2).
• Static control flow I partially static computations; e.g. FFT, CC (Section 4.4, 4.5).

Effects and Limitations. The specialization effects we observed are typically due to unfold­
ing (unrolling) of loops and elimination of conditionals, interprocedural constant propa­
gation (as opposed to intraprocedural), procedure specialization (cloning), precomputation
of indices and coefficients (e.g. involving trigonometric functions). Our experience shows
that specialized programs often enable further compiler optimizations (e.g. when array
indices become known); thus, the choice of the compiler optimization level affects the
speedup.

The gain in efficiency has its price (program size) and it is not always desirable to
fully unfold loops since the number of iteration may be extremely large; e.g. due to the
stability condition for solving parabolic equations the number of time steps M must be
very large and unfolding the M-bound loop is unacceptable (Section 4.3). Other numerical
methods, such as the Romberg integration (Section 4.1) or the Chebyshev approximation
(Section 4.5), converge much faster; hence unfolding may be practical.

Partial evaluation is not very effective when computations are extremely data-dependent.
For example, in techniques for linear programming the choice of the pivot is not known be­
fore run-time, but depending on this choice different computations have to be performed.
However, specialization may still remove boundary checks and precompute indices.

4 BINDING-TIME ANALYSIS OF MATHEMATICAL
ALGORITHMS

To demonstrate the effectiveness of the approach we chose five well-known algorithms
from different subject areas: numerical integration, partial differential equations, function
approximation and interpolation. l We refer to the literature for a description of the math­
ematical methods; the algorithms were taken from (Kincaid & Cheney, 1991), (Press et aI.,
1993). Details about the Fortran partial evaluator can be found in (Kleinrubatscher et
aI., 1995); a similar system exists for C (Andersen, 1994).

4.1 Romberg integration

The Romberg integration (RI) approximates the integral of a function f in an interval
[a, bJ using trapezoidal estimates. The input of the RI is the lower and upper limit a,b of
the interval, the number of iterations M and values for the function J.

IThe algorithms were written in Fortran 77. The run times (= user time + system time) are given in
seconds using the HP-UX Fortran 77 compiler (optimization option: +02 for CSI and FFT, +01 otherwise)
and a HP workstation (Apollo 9000,99 MHz PA-RISC 7100). The size of the programs is lines of 'pretty­
printed' text and KBytes of executable code.

140 Contributed Papers

Analysis. We consider the SID classification where M is static. The control-flow is en­
tirely data-independent where all index computations and the weight factor (4m - 1) are
static. The numerical computations are dominated by the computation of the quantities
R(n,O) from I. In the remainder of the algorithm additional quantities R(n,m) are to
be computed iteratively (1 :::; n :::; M,1 :::; m :::; n). The interval boundaries a,b are only
required for computing the initial quantities R(n,O).

Static Computations saved

M test of 3 iterations
index computations
divisor (4m - 1)

Size estimation

unfolding 3 iterations
O(2M)

Results. The results show speedup factors between 1.16 and 1.46 for static M (Table 1),
where M ranges from 2 to 10 (run-times for 10000 repetitions). The code size grows
exponentially O(2M), but the Romberg integration converges fast to the integral of I;
hence only a moderate value of M isneeded.

4.2 Cubic splines interpolation

The cubic splines interpolation (CSI) approximates a function using a cubic polynomial.
The input of the CSI is the number of points n, their x-coordinates x[] and their y­
coordinates y[]. The output is the second derivative for each point (the computation of
the y-coordinate for an arbitrary point is then straightforward). The algorithm uses a
natural cubic spline.

Analysis. We consider two SID classifications of the input variables. Motivation: the
number of points is often known beforehand and the x-coordinates may be fixed when
regular measurements are taken. The control-flow is entirely data-independent and all
iterations can be unfolded. If the x-coordinates x[] are static, a series of coefficients can
be precomputed.

Static Computations saved

n tests of 3 iterations
index computations

n, x[] tests of 3 iteration
index computations
coefficient computations

Size estimation

unfolding 3 iterations
O(n):::::: n(lforhl + Ifori, I + Ifori3!)

unfolding 3 iterations
O(n):::::: n(lfori,1 + I fori, I + Ifori31)

Results. The results for the CSI show speedup factor between 1.16 and 1.63 for n static
(Table 3), and 1.63 and 2.19 for nand x[] static (Table 4), where n ranges from 10 to
1000 (run-times for 100000 repetitions). Note how an additional static x[] reduces the
size of the residual programs while increasing the speedup. The code size grows linearly
O(n).

Binding-time analysis applied to mathematical algorithms 141

4.3 Partial differential equations of parabolic type

Partial differential equations are usually solved using the finite difference method. The
~pproximative values of the solution function are computed at so-called mesh points (Xi, tj)
and the numerical solution is advanced step by step in the time-direction. The input for
solving parabolic equations (PEQ) with the explicit method is the number of mesh points
n (x-direction), the step size k and the number of steps M (i-direction), as well as the
values Vi,O of the initial profile and the boundary values VO,j, vn +1,j (1 :::; i :::; n, a :::; j :::; M).
The output are the values Vi,M of the last iteration.

For the algorithm to be stable, it is necessary to assume k :::; ~(n!l)2. For example, if
n = 99 then the largest permissible value for step size k = ~ 10-4 • A solution for a :::; t :::; 10
then requires M ~ ~106. Unfolding the M-bound iteration is therefore unacceptable.

Analysis. We consider the SID classification where the number n is static. The control­
flow is entirely data-independent, all numerical operations are dynamic. Making more
parameters static will not contribute to the speedup: the initial profile is used only in
the first iteration and the boundary values only for computing two new values in each
iteration (moreover, we do not want to unfold the M-bound iteration).

Static Computations saved

n tests of 3 iterations
index computations

Size estimation

unfolding 3 iterations
O(n) ~ n(lforll + Iforill + Ifori2 1)

Results. The results show speedup factors between 1.63 and 1.85 for static n (Table 2),
where n ranges from 10 to 1000 (run-times for 10000 repetitions). The computation of
new mesh points is straightforward involving only arithmetic operations; this is reflected
in the speedup. The code size grows linearly O(n).

4.4 Fast Fourier transformation

The fast Fourier transformation (FFT) approximates the Fourier transformation using
N points. The FFT is the fastest known algorithm for calculating a discrete Fourier
Transformation. The input is a sequence of points (given as a function J) and a variable
N indicating the number of points. The output is the Fourier coefficient at each point.

Analysis. We consider the SID classification where N(= 2m) is static. The FFT is entirely
data-independent with a significant number of numerical operations depending only on
the number of points.

Static Computations saved

N(= 2m
) tests of 5 iterations

computations of w, Z
index computations using j, k, n
index computations for C[], D[1

Size estimation

unfolding 5 iterations
O(Nlog2N) ~ O(N2)

142 Contributed Papers

Results. The results for the FFT show speedup factors between 1.83 and 5.05 for static
N (Table 5), where N ranges from 16 to 512 (run-times for 10000 repetitions). The
computational costs of the FFT are mirrored in the growth of code size O(Nlog2 N).
Note the good speedup for larger N despite the growth in code size.

4.5 Chebyshev approximation

Chebyshev polynomials approximate continuous functions in a given interval. Once the
Chebyshev coefficients (CC) are determined the approximation of f(x) for arbitrary x
is straightforward. They yield the 'most accurate' approximation of degree n. The input
of the algorithm computing the CC is the lower and upper limit a,b of the interval, the
maximum degree n of the Chebyshev polynomials, and f. The output are the Chebyshev
coefficients.

Analysis. We consider the SID classification where n is static. The CC is entirely data­
independent with a significant number of numerical computations depending only on the
degree n (cf. Section 4.4).

Static Computations saved

n tests of 3 iteration
index computations
coefficients (cos)

Size estimation

unfolding 3 iterations
O(n2

) ~ n2(lforj I I fork I)

Results. The resuits show remarkable speedup factors between 8.50 and 14.8 for static n
(Table 6), where n ranges from 10 to 100 (run-time for 10000 repetitions). The speedup
is mostly due to the precomputation of the trigonometric coefficients. To determine their
influence, we removed their computation: the speedup was still 4.2. This shows that the
specialization effect depends strongly on the efficiency of the standard functions in the
mathematical library, but also gives a surprisingly good lower bound for the speedup.
The code size grows O(n2), but the approximation error decreases rapidly; hence only a
moderate degree n of the polynomial is needed (e.g. 30 or 50).

5 FURTHER WORK

Further work is desirable in several directions. Partial evaluators for numerical programs
could take advantage of additional knowledge about mathematical and scientific functions,
and exploit algebraic simplifications. Additional precision could be gained by online par­
tial evaluation techniques and exploiting information about partially static data structures
(e.g. sparse matrices). A combination of partial evaluation and traditional compiler op­
timizations seems promising; more should be known about their interaction. We expect
that these techniques will improve the results presented in this paper. Another interesting
direction is to exploit the parallelism exposed by partial evaluation on parallel computers.

Binding-time analysis applied to mathematical algorithms 143

REFERENCES
Andersen, 1.0. (1994) Program Analysis and Specialization for the C Programming Language.

DIKU, Department of Computer Science, University of Copenhagen. DIKU Report 94/19.
Andersen, P.H. (1995) Partial Evaluation Applied to Ray Tracing. DIKU, Department of Com­

puter Science, University of Copenhagen. DIKU Report 95/2.
Baier, R., Gluck, R., Zochling, R. (1994) Partial evaluation of numerical programs in Fortran,

in ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipu­
lation. University of Melbourne, Technical Report 94/9.

Berlin, A., Weise, D. (1990) Compiling scientific code using partial evaluation. IEEE Computer,
23(12),25-37.

Goad, C. (1982) Automatic construction of special purpose programs, in 6th Conference on
Automated Deduction (ed. D.W. Loveland), LNCS, vol. 138, Springer-Verlag.

Gustavson, F.G., Linige,r W., Willoughby, A.R. (1970) Symbolic generation of an optimal Crout
algorithm for sparse systems of linear equations. J. of the ACM, 17(1), 87-109.

Jones, N.D., Gomard, C.K., Sestoft, P. (1993) Partial Evaluation and Automatic Program Gen­
eration. International Series in Computer Science. Prentice Hall.

Kincaid, D., Cheney, W. (1991) Numerical Analysis: Mathematics of Scientific Computing.
Brooks/Cole.

Kleinrubatscher, P., Kriegshaber, A., Zochling, R., Gluck, R. (1995) Fortran program special­
ization. SIGPLAN Notices, 30(4), 61-70.

Metzger, R., Stroud, S. (1993) Interprocedural constant propagation: an empirical study. ACM
Letters on Programming Languages and Systems, 2(1-4), 213-32.

Press, W.H., Teukolsky, S.A., Vetteriing, W.T., Flannery, B.P. (1993) Numerical Recipes in
Fortran: the Art of Scientific Computing. 2nd ed., Cambridge University Press.

APPENDIX 1 RESULTS

Table 1 Romberg (M static) Table 2 Parabolic equation (n static)

RI Time Ratio Lines KB PEQ Time Ratio Lines KB

Src 0.16 99 20.5 Src 6.69 86 20.5
Res, M=2 0.12 1.33 52 20.5 Res, n=lO 4.11 1.63 115 20.5

Src 0.44 99 20.5 Src 29.14 86 20.5
Res, M=4 0.33 1.33 112 20.5 Res, n=50 16.76 1.74 315 28.7

Src 1.24 99 20.5 Src 57.45 86 20.5
Res, M=6 0.85 1.46 252 24.6 Res, n=100 32.44 1.77 565 36.9

Src 3.98 99 20.5 Src 113.26 86 20.5
Res, M=8 3.09 1.29 688 36.9 Res, n=200 63.98 1.77 1065 57.3

Src 14.37 99 20.5 Src 169.98 86 20.5
Res, M=10 12.24 1.17 2284 86.0 Res, n=300 96.70 1.76 1565 77.8

Src 54.79 99 20.5 Src 298.62 86 20.5
Res, M=12 47.42 1.16 8496 282.6 Res, n=500 161.82 1.85 2565 114.7

Src 587.82 86 20.5
Res, n=1000 319.02 1.84 5065 217.1

144 Contributed Papers

Table 3 Cubic splines (n static) Table 4 Cubic splines (n, x[] static)

CSI Time Ratio Lines KB CSI Time Ratio Lines KB

Src 0.57 74 20.5 Src 0.57 74 20.5
Res, n = 10 0.35 1.63 94 20.5 Res, n = 10,x 0.30 1.90 74 20.5

Src 3.16 74 20.5 Src 3.16 74 20.5
Res, n = 50 2.15 1.47 457 28.7 Res, n = 50,x 1.44 2.19 354 24.6

Src 5.12 74 20.5 Src 5.12 74 20.5
Res, n = 100 4.35 1.18 907 36.9 Res, n = 100, x 3.02 1.70 704 28.7

Src 10.25 74 20.5 Src 10.25 74 20.5
Res, n = 200 8.66 1.18 1807 57.3 Res, n = 200, x 6.28 1.63 1404 41.0

Src 15.46 74 20.5 Src 15.46 74 20.5
Res, n = 300 13.28 1.16 2707 77.8 Res, n = 300,x 9.29 1.66 2104 49.2

Src 25.60 74 20.5 Src 25.60 74 20.5
Res, n = 500 22.03 1.16 4507 118.8 Res, n = 500, x 15.73 1.63 3504 73.7

Src 52.28 74 20.5 Src 52.28 74 20.5
Res, n = 1000 45.02 1.16 9007 262.1 Res, n = 1000, x 30.59 1.71 7004 122.9

Table 5 FFT (N static) Table 6 Chebyshev (n static)

FFT Time Ratio Lines KB CC Time Ratio Lines KB

Src 2.17 151 20.5 Src 1.70 72 20.5
Res, N=16 0.43 5.05 701 24.6 Res, n=10 0.20 8.50 170 20.5

Src 5.71 151 20.5 Src 6.21 72 20.5
Res, N=32 1.37 4.17 1469 36.9 Res, n=20 0.55 11.3 520 28.7

Src 15.27 151 20.5 Src 13.70 72 20.5
Res, N=64 4.29 3.56 3069 57.3 Res, n=30 1.22 11.2 1070 41.0

Src 40.68 151 20.5 Src 23.96 72 20.5
Res, N=128 14.22 2.86 6397 102.4 Res, n=40 2.38 10.1 1820 57.3

Src 115.45 151 20.5 Src 38.75 72 20.5
Res, N=256 50.31 2.29 13309 192.5 Res, n=50 2.62 14.8 2770 81.9

Src 1183.78 151 20.5 Src 145.14 72 20.5
Res, N=512 647.72 1.83 27645 720.9 Res, n=100 14.74 9.85 10520 335.8

Binding-time analysis applied to mathematical algorithms 145

APPENDIX 2 ANNOTATED
ALGORITHMS

The algorithms are presented in a pseudo
code containing additional details beyond
the pure mathematical formula; see Kincaid
& Cheney (1991), Press et al. (1993). The
program annotations were determined auto­
matically by the monovariant binding-time
analysis (Section 2).

Notation. The for i = ej, e2, e3 do ... end de­
notes an iteration from ej to e2 with a step
of e3 (if e3 is omitted then 1 is assumed).
Dynamic variables and operations are an­
notated as op; all other operations op are
static (i. e. they can be precomputed at spe­
cialization time).

Romberg integral (M static)

input a, b, M, f
integer M, n, m, i
real h,s
real function f
real array r[,]

h <- b-a
r[O,O] <- (f(a)+f(b))*h/2

for n = 1, M do
h <- h/2
s <- 0

for i = 1, 2**(n - 1) do
s <- s+ f(a+(2 d - I)*h)

end

r[n, 0] <- r[n - 1, 0]/2+h*s

for m = I,n do
r[n,m];- r[n,m-1]+(4**~_j)*

(r[n,m-1]-r[n-l,m-1])
end

end

output r[M, M]

Cubic splines interpolation (n, x[] stat­
ic)

input n, x[], y[]
integer i, n
real array b,h,x,u,v,y,z

for i = 0, n - 1 do
h[i] <- xli + 1]- xli]
b[i] <- (6/h[i])*(y[i + I]-y[i])

end
u[I]<- 2 * (h[O] + h[I])
v[I]<- b[I]-b[O]
for i = 2, n - 1 do

uri] <- 2 * (h[i] + h[i - I])-h[i - I]**2/u[i - 1]
v[i] <- b[i]-b[i - I]-h[i - I]*v[i - Il/u[i - 1]

end
z[n]<- 0
for i = n -1, 1,-1 do

z[i] <- (v[i]-h[i]*Z[i + I])/u[i]
end
z[O]<- 0
output z[]

Parabolic equation (n static)

input n,k,M
integer n,M,I,j
real k, h, s, ss, t
real function g, a, b
real array v, w

h <- l/(n+ 1)
s <- k/(h**2)
ss <- I-2*s
for I = 0, n + 1 do

w[l] <- g(l)
end
t <- 0
for j=l, M do

t <- t+k
v[O]<- a(t)
v[n + 1] <- b(t)
for i = 1, n do

v[i] <- s*w[i - I]+ss*w[i]+s*w[i + 1]
end
for i = 0, n + 1 do

w[i] <- v[i]
end

end
output v[]

146 Contributed Papers

FFT (N = 2m static)

input m, I
integer j, k, m, n, N
real const 11" = 3.14 ...
complex u, v, w
complex array C,D,Z
complex function I
N <-2**m
w <- exp(-2* 11" * H/N)
for k = 0, N - 1 do

Z[kJ <- w**k
C[kJ <- 1(2 * 11" * kiN)

end

for n = 0, m - 1 do
for k = 0,2**(m-n -1)-1 do

for j = 0, 2**n - 1 do
u <- C[2**n * k + jJ
v <- Z[j * 2**(m - n - l)J*

C[2**n * k + 2**(m - 1) + j]
D[2**(n+1)*k+jJ <- (u+v)/2
D[2**(n + 1) * k + j + 2**nJ

<- (u-v)/2
end

end
for j = 0, N - 1 do

C[jJ <- D[jJ
end

end

output C[J

Chebyshev approximation (n static)

input n, xa, xb, lunc
integer n, k, j
real xa, xb, xm, xp, 8m
real function lunc
real array c, I
real const 11" = 3.14 ...

xp <- (xb+xa)/2
xm<- (xb-xa)/2

for k = 1, n do
l[kJ <- lunc(xp+xmHos(1I" * (k - 0.5)/n))

end

for j = 0, n - 1 do

8m<- °
for k = 1,n do

8m<- 8m+ l[kJ* cos(1I" * j * (k - 0.5)/n)
end
c[jJ <- (2/n)*8m

end

output c[J

