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Abstract. This paper investigates whether vectors of graph-spectral
features can be used for the purposes of graph-clustering. We commence
from the eigenvalues and eigenvectors of the adjacency matrix. Each of
the leading eigenmodes represents a cluster of nodes and is mapped to a
component of a feature vector. The spectral features used as components
of the vectors are the eigenvalues, the cluster volume, the cluster perime-
ter, the cluster Cheeger constant, the inter-cluster edge distance, and the
shared perimeter length. We explore whether these vectors can be used
for the purposes of graph-clustering. Here we investigate the use of both
central and pairwise clustering methods. On a data-base of view-graphs,
the vectors of eigenvalues and shared perimeter lengths provide the best
clusters.

1 Introduction

Graph clustering is an important yet relatively under-researched topic in machine
learning [9,10,4]. The importance of the topic stems from the fact that it is a
key tool for learning the class-structure of data abstracted in terms of relational
graphs. Problems of this sort are posed by a multitude of unsupervised learning
tasks in knowledge engineering, pattern recognition and computer vision. The
process can be used to structure large data-bases of relational models [11] or
to learn equivalence classes. One of the reasons for limited progress in the area
has been the lack of algorithms suitable for clustering relational structures. In
particular, the problem has proved elusive to conventional central clustering
techniques. The reason for this is that it has proved difficult to define what is
meant by the mean or representative graph for each cluster. However, Munger,
Bunke and Jiang [1] have recently taken some important steps in this direction
by developing a genetic algorithm for searching for median graphs.

Generally speaking, there are two different approaches to graph clustering.
The first of these is pairwise clustering[7] . This requires only that a set of pair-
wise distances between graphs be supplied. The clusters are located by identify-
ing sets of graphs that have strong mutual pairwise affinities. There is therefore
no need to explicitly identify an representative (mean, mode or median) graph
for each cluster. Unfortunately, the literature on pairwise clustering is much less
developed than that on central clustering. The second approach is to embed
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graphs in a pattern space[8]. Although the pattern spaces generated in this way
are well organised, there are two obstacles to the practical implementation of
the method. Firstly, it is difficult to deal with graphs with different numbers of
nodes. Secondly, the node and edge correspondences must be known so that the
nodes and edges can be mapped in a consistent way to a vector of fixed length.

In this paper, we attempt to overcome these two problems by using graph
spectral methods to extract feature vectors from symbolic graphs [2]. Spectral
graph theory is a branch of mathematics that aims to characterise the structural
properties of graphs using the eigenvalues and eigenvectors of the adjacency
matrix, or of the closely related Laplacian matrix. There are a number of well-
known results. For instance, the degree of bijectivity of a graph is gauged by
the difference between the first and second eigenvalues (this property has been
widely exploited in the computer vision literature to develop grouping and seg-
mentation algorithms). In routing theory, on the other hand, considerable use
is made of the fact that the leading eigenvector of the adjacency matrix gives
the steady-state random walk on the graph. Here we adopt a different approach.
Our aim is to use the leading eigenvectors of the adjacency matrix to define
clusters of nodes. From the clusters, we extract structural features and using
the eigenvalue order to index the components we construct feature-vectors. The
length of the vectors are determined by the number of leading eigenvalues. The
graph spectral features explored include the eigenvalue spectrum, cluster vol-
ume, cluster perimeter, cluster Cheeger constant, shared perimeter and cluster
distances. The specific technical goals in this paper are two-fold. First, we aim
to investigate whether the independent or principal components of the spectral
feature vectors can be used to embed graphs in a pattern space suitable for clus-
tering. Second, we investigate which of the spectral features results in the best
clusters.

2 Graph Spectra

In this paper we are concerned with the set of graphs G1, G2, .., Gk, ..., GN .
The kth graph is denoted by Gk = (Vk, Ek), where Vk is the set of nodes
and Ek ⊆ Vk × Vk is the edge-set. Our approach in this paper is a graph-
spectral one. For each graph Gk we compute the adjacency matrix Ak. This is
a |Vk| × |Vk| matrix whose element with row index i and column index j is

Ak(i, j) =
{

1 if (i, j) ∈ Ek

0 otherwise
. (1)

From the adjacency matrices Ak, k = 1...N , we can calculate the eigenvalues
λk by solving the equation |Ak − λkI| = 0 and the associated eigenvectors φω

k

by solving the system of equations Akφ
ω
k = λω

kφ
ω
k . We order the eigenvectors

according to the decreasing magnitude of the eigenvalues, i.e. |λ1
k| > |λ2

k| >
. . . |λ|Vk|

k |. The eigenvectors are stacked in order to construct the modal matrix
Φk = (φ1

k|φ2
k| . . . |φ|Vk|

k ).
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We use only the first n eigenmodes of the modal matrix to define spectral
clusters for each graph. The components of the eigenvectors are used to compute
the probabilities that nodes belong to clusters. The probability that the node
indexed i ∈ Vk in graph k belongs to the cluster with eigenvalue order ω is

ski,ω =
|Φk(i, ω)|∑n

ω′=1 |Φk(i, ω′)| . (2)

3 Spectral Features

Our aim is to use spectral features for the modal clusters of the graphs under
study to construct feature-vectors. To overcome the correspondence problem,
we use the order of the eigenvalues to establish the order of the components of
the feature-vectors. We study a number of features suggested by spectral graph
theory.

3.1 Unary Features

We commence by considering unary features for the arrangement of modal clus-
ters. The features studied are listed below:

Leading Eigenvalues: Our first vector of spectral features is constructed from
the ordered eigenvalues of the adjacency matrix. For the graph indexed k, the
vector is Bk = (λ1

k, λ
2
k, ..., λ

n
k )T .

Cluster Volume: The volume V ol(S) of a subgraph S of a graphG is defined to
be the sum of the degrees of the nodes belonging to the subgraph, i.e V ol(S) =∑

i∈S deg(i), where deg(i) is the degree of node i. By analogy, for the modal
clusters, we define the volume of the cluster indexed ω in the graph-indexed k
to be

V olωk =

∑
i∈Vk

skiωdeg(i)∑n
ω=1

∑
i∈Vk

skiωdeg(i)
. (3)

The feature-vector for the graph-indexed k is Bk = (V ol1k, V ol
2
k, ......, V ol

n
k )T .

Cluster Perimeter: For a subgraph S the set of perimeter nodes is ∆(S) =
{(u, v)|(u, v) ∈ E ∧ u ∈ S ∧ v /∈ S}. The perimeter length of the subgraph is
defined to be the number of edges in the perimeter set, i.e. Γ (S) = |∆(S)|.
Again, by analogy, the perimeter length of the modal cluster indexed ω is

Γω
k =

∑
i∈Vk

∑
j∈Vk

skiω(1 − skjω)Ak(i, j)∑n
ω=1

∑
i∈Vk

∑
j∈Vk

skiω(1 − skjω)Ak(i, j)
. (4)

The perimeter values are ordered according to the modal index of the relevant
cluster to form the graph feature vector Bk = (Γ 1

k , Γ
2
k , ...., Γ

n
k )T .
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Cheeger Constant: The Cheeger constant for the subgraph S is defined as
follows. Suppose that Ŝ = V − S is the complement of the subgraph S. Further
let E(S, Ŝ) = {(u, v)|u ∈ S ∧ v ∈ Ŝ} be the set of edges that connect S to Ŝ.
The Cheeger constant for the subgraph S is

H(S) =
|E(S, Ŝ)|

min[vol(S), vol(Ŝ)]
. (5)

The cluster analogue of the Cheeger constant is

Hω
k =

Γω
k

min[V olωk , V ol
ω̂
k ]
, (6)

where

V olω̂k =
n∑

ω=1

∑
i∈Vk

ski,ωdeg(i) − V olωk . (7)

is the volume of the complement of the cluster indexed ω. Again, the clus-
ter Cheeger numbers are ordered to form a spectral feature-vector Bk =
(H1

k , H
2
k , ..., H

n
k )T .

3.2 Binary Features

In addition to the unary cluster features, we have studied pairwise cluster at-
tributes.

Shared Perimeter: The first pairwise cluster attribute studied is the shared
perimeter of each pair of clusters. For the pair subgraphs S and T the perimeter
is the set of nodes belong to the set P (S, T ) = {(u, v)|u ∈ S ∧ v ∈ T }. Hence,
our cluster-based measure of shared perimeter for the clusters is

Uk(u, v) =

∑
(i,j)∈Ek

ski,us
k
j,vAk(i, j)∑

(i′,j′)∈Ek
ski′,us

k
j′,v

. (8)

Each graph is represented by a shared perimeter matrix Uk. We con-
vert these matrices into long vectors. This is obtained by stacking the
columns of the matrix Uk in eigenvalue order. The resulting vector is Bk =
(Uk(1, 1), Uk(1, 2), ...., Uk(1, n), Uk(2, 1)....., Uk(2, n, ), ...Uk(n, n))T Each entry in
the long-vector corresponds to a different pair of spectral clusters.

Cluster Distances: The between cluster distance is defined as the path length,
i.e. the minimum number of edges, between the most significant nodes in a
pair of clusters. The most significant node in a cluster is the one having the
largest co-efficient in the eigenvector associated with the cluster. For the cluster
indexed u in the graph indexed k, the most significant node is iku = arg maxi s

k
iu.

To compute the distance, we note that if we multiply the adjacency matrix Ak by
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itself l times, then the matrix (Ak)l represents the distribution of paths of length l
in the graph Gk. In particular, the element (Ak)l(i, j) is the number of paths of
length l edges between the nodes i and j. Hence the minimum distance between
the most significant nodes of the clusters u and v is du,v = arg minl(Ak)l(iku, i

k
v).

If we only use the first n leading eigenvectors to describe the graphs, the
between cluster distances for each graph can be written as a n by n matrix which
can be converted to a n× n long-vector Bk = (d1,1, d1,2, ....d1,n, d2,1.....dn,n)T .

4 Embedding the Spectral Vectors in a Pattern Space

In this section we describe two methods for embedding graphs in eigenspaces.
The first of these involves performing principal components analysis on the co-
variance matrices for the spectral pattern-vectors. The second method involves
performing multidimensional scaling on a set of pairwise distance between vec-
tors.

4.1 Eigendecomposition of the Graph Representation Matrices

Our first method makes use principal components analysis and follows the
parametric eigenspace idea of Murase and Nayar [8]. The relational data for
each graph is vectorised in the way outlined in Section 3. The N differ-
ent graph vectors are arranged in view order as the columns of the matrix
S = [B1|B2| . . . |Bk| . . . |BN ].

Next, we compute the covariance matrix for the elements in the different rows
of the matrix S. This is found by taking the matrix product C = SST . We extract
the principal components directions for the relational data by performing an
eigendecomposition on the covariance matrix C. The eigenvalues λi are found by
solving the eigenvalue equation |C−λI| = 0 and the corresponding eigenvectors
ei are found by solving the eigenvector equation Cei = λiei.

We use the first 3 leading eigenvectors to represent the graphs extracted from
the images. The co-ordinate system of the eigenspace is spanned by the three
orthogonal vectors by E = (e1, e2, e3). The individual graphs represented by
the long vectors Bk, k = 1, 2, . . . , N can be projected onto this eigenspace using
the formula xk = eTBk. Hence each graph Gk is represented by a 3-component
vector xk in the eigenspace.

4.2 Multidimensional Scaling

Multidimensional scaling(MDS)[3] is a procedure which allows data specified in
terms of a matrix of pairwise distances to be embedded in a Euclidean space. The
classical multidimensional scaling method was proposed by Torgenson[12] and
Gower[6]. Shepard and Kruskal developed a different scaling technique called or-
dinal scaling[5]. Here we intend to use the method to embed the graphs extracted
from different viewpoints in a low-dimensional space.
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To commence we require pairwise distances between graphs. We do this by
computing the L2 norms between the spectral pattern vectors for the graphs.
For the graphs indexed i1 and i2, the distance is

di1,i2 =
K∑

α=1

[
Bi1(α) −Bi2(α)

]2

. (9)

The pairwise similarities di1,i2 are used as the elements of an N ×N dissim-
ilarity matrix D, whose elements are defined as follows

Di1,i2 =
{
di1,i2 if i1 
= i2
0 if i1 = i2

. (10)

In this paper, we use the classical multidimensional scaling method to embed
our the view-graphs in a Euclidean space using the matrix of pairwise dissimilari-
ties D. The first step of MDS is to calculate a matrix T whose element with row r
and column c is given by Trc = − 1

2 [d2rc − d̂2r. − d̂2.c + d̂2..], where d̂r. = 1
N

∑N
c=1 drc

is the average dissimilarity value over the rth row, d̂.c is the similarly defined
average value over the cth column and d̂.. = 1

N2

∑N
r=1

∑N
c=1 dr,c is the average

similarity value over all rows and columns of the similarity matrix T .
We subject the matrix T to an eigenvector analysis to obtain a matrix of

embedding co-ordinates X . If the rank of T is k, k ≤ N , then we will have k
non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending
order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λk > 0. The corresponding ordered eigenvectors
are denoted by ei where λi is the ith eigenvalue. The embedding co-ordinate
system for the graphs obtained from different views is X = [f1,f2, . . . ,fk],
where f i =

√
λiei are the scaled eigenvectors. For the graph indexed i, the

embedded vector of co-ordinates is xi = (Xi,1, Xi,2, Xi,3)T .

5 Experiments

Our experiments have been conducted with 2D image sequences for 3D objects
which undergo slowly varying changes in viewer angle. The image sequences
for three different model houses are shown in Figure 1. For each object in the
view sequence, we extract corner features. From the extracted corner points
we construct Delaunay graphs. The sequences of extracted graphs are shown
in Figure 2. Hence for each object we have 10 different graphs. In table 1 we
list the number of feature points in each of the views. From inspection of the
graphs in Figure 2 and the number of feature points in Table 1 it is clear that
the different graphs for the same object undergo significant changes in structure
as the viewing direction changes. Hence, this data presents a challenging graph
clustering problem.

Our aim is to investigate which combination of spectral feature-vector and
embedding strategy gives the best set of graph-clusters. In other words, we aim
to see which method gives the best definition of clusters for the different objects.
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Table 1. Number of feature points extracted from the three image sequences

Image Number 1 2 3 4 5 6 7 8 9 10

CMU 30 32 32 30 30 32 30 30 30 31

MOVI 140 134 130 136 137 131 139 141 133 136

Chalet 40 57 92 78 90 64 113 100 67 59

In Figure 3 we compare the results obtained with the different spectral feature
vectors. In the centre column of the figure, we show the matrix of pairwise
Euclidean distances between the feature-vectors for the different graphs (this is
best viewed in colour). The matrix has 30 rows and columns (i.e. one for each of
the images in the three sequences with the three sequences concatenated), and
the images are ordered according to the position in the sequence. From top-to-
bottom, the different rows show the results obtained when the feature-vectors are
constructed using the eigenvalues of the adjacency matrix, the cluster volumes,
the cluster perimeters, the cluster Cheeger constants, the shared perimeter length
and the inter-cluster edge distance. From the pattern of pairwise distances, it is
clear that the eigenvalues and the shared perimeter length give the best block
structure in the matrix. Hence these two attributes may be expected to result
in the best clusters.

To test this assertion, in the left-most and right-most columns of Figure
3 we show the leading eigenvectors of the embedding spaces for the spectral
feature-vectors. The left-hand column shows the results obtained with principal
components analysis. The right-hand column shows the results obtained with
multidimensional scaling. From the plots, it is clear that the best clusters are
obtained when MDS is applied to the vectors of eigenvalues and shared perimeter
length. Principal components analysis, on the other hand, does not give a space
in which there is a clear cluster-structure.

We now embark on a more quantitative analysis of the different spectral
representations. To do this we plot the normalised squared eigenvalues λ̂2

i =

Fig. 1. Image sequences
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Fig. 2. Graph representation of the sequences

λ2
i∑n

i=1
λ2

i

against the eigenvalue magnitude order i. In the case of the parametric

eigenspace, these represent the fraction of the total data variance residing in
the direction of the relevant eigenvector. In the case of multidimensional scaling,
the normalised squared eigenvalues represent the variance of the inter-graph
distances in the directions of the eigenvectors of the similarity matrix. The first
two plots are for the case of the parametric eigenspaces. The left-hand side plot
of Figure 4 is for the unary attribute of eigenvalues, while the middle plot is for
the pairwise attribute of shared perimeters. The main feature to note is that of
the binary features the vector of adjacency matrix eigenvalues has the fastest
rate of decay, i.e. the eigenspace has a lower latent dimensionality, while the
vector of Cheeger constants has the slowest rate of decay, i.e. the eigenspace has
greater dimensionality. In the case of the binary attributes, the shared perimeter
results in the eigenspace of lower dimensionality.

In the last plot of Figure 4 we show the eigenvalues of the graph similarity
matrix. We repeat the sequence of plots for the three house data-sets, but merge
the curves for the unary and binary attributes into a single plot. Again the vector
of adjacency matrix eigenvalues gives the space of lower dimensionality, while
the vector of inter-cluster distances gives the space of greatest dimensionality.

Finaly, we compare the performances of the graph embedding methods using
measures of their classification accuracy. Each of the six graph spectral features
mentioned above are used. We have assigned the graphs to classes using the the
K-means classifier. The classifier has been applied to the raw Euclidean distances,
and to the distances in the reduced dimension feature-spaces obtained using PCA
and MDS. In Table 2 we list the number of correctly classified graphs. From the
table, it is clear that the eigevalues and the shared perimeters are the best
features since they return higher correct classification rates. Cluster distance
is the worst feature for clustering graphs. We note also that classification in
the feature-space produced by PCA is better than in the original feature vector
spaces. However, the best results come from the MDS embedded class spaces.

6 Conclusions

In this paper we have investigated how vectors of graph-spectral attributes can
be used for the purposes of clustering graphs. The attributes studied are the
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Fig. 3. Eigenspace and MDS space embedding using the spectral features of
binary adjacency graph spectra, cluster volumes, cluster perimeters, cluster
Cheeger constants, shared perimeters and cluster distances

leading eigenvalues, and, the volumes, perimeters, shared perimeters and Cheeger
numbers for modal clusters. The best clusters emerge when we apply MDS to
the vectors of leading eigenvalues. The best clusters result when we use cluster
volume or shared perimeter.
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Fig. 4. Comparison of graph spectral features for eigenspaces. The left plot is
for the unary features in eigenspace, the middle plot is for the binary features
in eiegenspace and the right plot is for all the spectral features in MDS space

Table 2. Correct classifications

Features Eigenvalues Volumes Perimeters Cheeger Shared Distances
constants Perimeters Distances

Raw vector 29 26 26 13 25 12

PCA 29 27 26 17 25 12

MDS 29 28 27 16 29 17

Hence, we have shown how to cluster purely symbolic graphs using simple
spectral attributes. The graphs studied in our analysis are of different size, and
we do not need to locate correspondences. Our future plans involve studying
in more detail the structure of the pattern-spaces resulting from our spectral
features. Here we intend to investigate the use of ICA as an alternative to PCA
as a means of embedding the graphs in a pattern-space. We also intend to study
how support vector machines and the EM algorithm can be used to learn the
structure of the pattern spaces. Finally, we intend to investigate whether the
spectral attributes studied here can be used for the purposes of organising large
image data-bases.
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