
T. Caelli et al. (Eds.): SSPR&SPR 2002, LNCS 2396, pp. 301-309, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Efficient Computation of 3-D Moments in Terms of an
Object�s Partition

Juan Humberto Sossa Azuela1, Francisco Cuevas de la Rosa2,*

and Héctor Benitez1

1 Centro de Investigación en Computación del IPN
Av. Juan de Dios Bátiz esquina con M. Othón de Mendizábal

Colonia Nueva Industrial Vallejo, México, D. F. 07738, México
2 Centro de Investigaciones en Óptica+

Apdo. Postal 1-948, León, Gto. México
{hsossa,fjcuevas}@cic.ipn.mx

hbenitez75@hotmail.com

Abstract. The method here proposed is based on the idea that the object
of interest is first decomposed in a set of cubes under d∞. This
decomposition is known to form a partition. The required moments are
computed as a sum of the moments of the partition. The moments of
each cube can be computed in terms of a set of very simple expressions
using the center of the cube and its radio. The method provides integral
accuracy by applying the exact definition of moments over each cube of
the partition. One interesting feature of our proposal is that once the
partition is obtained, moment computation is faster than with earlier
methods.

1 Introduction

The two-dimensional moment (for short 2D moment) of a 2D object R is defined
as [1]:

()p q
pq

R

M x y f x, y dxdy= ∫∫ (1)

where ()f x, y is the characteristic function describing the intensity of R, and p+q is
the order of the moment. In the discrete case, the double integral is often replaced by
a double sum giving as a result:

()p q
pq

R

m x y f x, y=∑∑ (2)

with ()f x, y , p and q defined in equation 1, where (x,y) ∈ Z2.

* Francisco Cuevas is in a post-doctoral stay at the Centro de Investigación en

Computación of the Instituto Politécnico Nacional.

302 Juan Humberto Sossa Azuela et al.

The tri-dimensional geometric moment (for short 3D moment) of order p+q+r of a
3D object is defined as [2]:

()p q r
pqr

R

M x y z f x, y, z dxdydz= ∫∫∫ (3)

where R is a 3D region. In the discrete case, the triple integral is often replaced by the
triple sum giving as a result:

()p q r
pqr

R

m x y z f x, y,z=∑∑∑ (4)

with ()f x, y,z , p,q y r defined in equation (3), where (x,y,z) ∈ Z3.
In the binary case, the characteristic function takes only values 1 or 0, assuming

that for the volume of interest ()f x, y,z =1. When we replace this value in equation
(4) we get the equation to compute the moments of order (p+q+r) of a 3-D image R
as

p q r
pqr

R

m x y z=∑∑∑ (5)

with (x,y,z) ∈ Z3 y p, q, r= 0,1,2,3,...
The world around us is generally three-dimensional, and 3D shape information for

an object can be obtained by computer tomographic reconstruction, passive 3D
sensors, and active range finders. As 2D moments, 3D moments have been used in 3D
image analysis tasks including movement estimation [3], shape estimation [4], and
object recognition [2].

Several methods have been proposed to compute the 3D moments. In [6], Li uses a
polyhedral representation of the object for the computing of its 3D moments. The
number of required operations is a function of the number of edges of the surfaces of
the polyhedral. The methods of Cyganski et al. [5], Li and Shen [7] and Li and Ma [8]
use a voxel representation of the object. The difference among these methods is the
way to compute the moments. Cyganski et al. uses the filter proposed in [9]. Li and
Shen use a transformation based on Pascal triangle for the computation of the
monomials and only additions are used for the computation of the moments. In the
other hand, Li and Ma relate 3D moments with the so-called LT moments that are
easier to evaluate. Although these methods allow to reduce the number of operations
to compute the moments, they require a computation of ()3O N . Recently, Yang et
al. [10] propose to use the so called discrete divergence theorem to compute the 3D
moments of an object. It allows a reduction in the number of operations to ()2O N .

In this note we present an efficient method to compute the 3-D moments of a
binary object in Z3. The method is an extension of the method recently introduced in
[11] to compute the 2D moments of an object. It provides integral accuracy (see [12]
for the details) on the values obtained by applying the original definition of moments
(equation (3)) instead of that one using triple sums (equation (4) or (5)). This could
not happen if equation (5) was used.

Efficient Computation of 3-D Moments in Terms of an Object�s Partition 303

The object is first partitioned into convex cubes which moments evaluation can be
reduced to the computation of very simple formulae instead of using triple integrals.
The desired 3D moments are obtained as the sum of the moments of each cube of the
partition, given that the intersection among cubes is empty.

2 Moments of a Cube
In the last section we mentioned that to compute the desired moments of a 3D object,
it should be first decomposed into a set of cubes. Then we also said that a set of
simple expressions should be applied to get the desired values. In this section, this set
of expressions is provided.

Depending on the definition of moments used, the set of expressions obtained
might differ resulting in some differences. This situation was first studied in [12] and
recently re-discussed in [13], both in the 2-D case. As stated in [13], if pqM are the
2D moments obtained by means of equation (1) and pqm those obtained in terms of

equation (2) an error pq pqM m− is introduced due to the approximations and

numeric integration of p qx y over each pixel. As we will next see, this also happens
with 3D moments.

To derive the set of expressions needed to accurately compute the desired 3D
moments, let us consider a cube centered in ()c c cX , Y , Z , with radius t and

coordinates of its vertices in ()c c cX t, Y t, Z t− − − , ()c c cX t, Y t, Z t+ − − ,

()c c cX t, Y t, Z t− + − , ()c c cX t, Y t, Z t− − + , ()c c cX t, Y t, Z t+ + − ,

()c c cX t, Y t, Z t+ − + , ()c c cX t, Y t, Z t− + + and ()c c cX t, Y t, Z t+ + + . The
characteristic function of this block is

() () () () ()1 if x, y,z a,b c,d e,f
f x, y,z

0 otherwise
∈ × ×

= 


with
c

c

c

c

c

c

a X t 0.5
b X t 0.5
c Y t 0.5
d Y t 0.5
e Z t 0.5
f Z t 0.5

= − −
= + +
= − −
= + +
= − −
= + +

According to equation (3), the exact moments of a cube are given as

()

() () ()

p q r
pqr

p 1 p 1 q 1 q 1 r 1 r 1

M x y z f x, y,z dxdydz

1 b a d c f e
p 1 q 1 r 1

∞ ∞ ∞

−∞ −∞ −∞

+ + + + + +

=

     = − ⋅ − ⋅ −     + + +

∫ ∫ ∫
(6)

304 Juan Humberto Sossa Azuela et al.

The reader can easily verify that the first 20 expressions for the moments are:

()3
000M 2t 1= + 100 000 cM M X=

010 000 cM M Y= 001 000 cM M Z=

()()2000
200 c

MM 3X t t 1 0.25
3

= + + + ()()2000
020 c

MM 3Y t t 1 0.25
3

= + + +

()()2000
002 c

MM 3Z t t 1 0.25
3

= + + + 110 100 c 000 c cM M Y M X Y= =

101 100 c 000 c cM M Z M X Z= = 011 001 c 000 c cM M Y M Y Z= =

()()2
300 000 c cM M X X t t 1 0.25= + + + (7)

()()2
030 000 c cM M Y Y t t 1 0.25= + + +

()()2
003 000 c cM M Z Z t t 1 0.25= + + +

()()2000
120 c c

MM X 3Y t t 1 0.25
3

= + + +

()()2000
210 c c

MM Y 3X t t 1 0.25
3

= + + +

()()2000
102 c c

MM X 3Z t t 1 0.25
3

= + + +

()()2000
201 c c

MM Z 3X t t 1 0.25
3

= + + +

()()2000
012 c c

MM Y 3Z t t 1 0.25
3

= + + +

()()2000
021 c c

MM Z 3Y t t 1 0.25
3

= + + +

111 000 c c cM M X Y Z=

The reader can be easily verify that the same set of 20 expressions obtained through
equation (5) is the following:

()3
000m 2t 1= + 100 000 cm m X=

010 000 cm m Y= 001 000 cm m Z=

()()2000
200 c

mm 3X t t 1
3

= + + ()()2000
020 c

mm 3Y t t 1
3

= + +

()()2000
002 c

mm 3Z t t 1
3

= + + 110 100 c 000 c cm m Y m X Y= =

101 100 c 000 c cm m Z m X Z= = 011 001 c 000 c cm m Y m Y Z= =

()()2
300 000 c cm m X X t t 1= + + (8)

()()2
030 000 c cm m Y Y t t 1= + +

()()2
003 000 c cm m Z Z t t 1= + +

Efficient Computation of 3-D Moments in Terms of an Object�s Partition 305

()()2000
120 c c

mm X 3Y t t 1
3

= + +

()()2000
210 c c

mm Y 3X t t 1
3

= + +

()()2000
102 c c

mm X 3Z t t 1
3

= + +

()()2000
201 c c

mm Z 3X t t 1
3

= + +

()()2000
012 c c

mm Y 3Z t t 1
3

= + +

()()2000
021 c c

mm Z 3Y t t 1
3

= + +

111 000 c c cm m X Y Z=

One might would like know which accuracy provides the proposed approach. It is
know that for pixel or voxel represented objects, the computed moment values have
mainly two types of accuracy. One of them is obtained by exactly performing the
double or triple sum, given by equation (2) or (4). The another is obtained by
assuming that a pixel is a square and a voxel is a cube, and computing the moments as
an integral over the area covered by the small pixel squares, or the volume covered by
the small cubes. None of the above approaches gives the true values of the moments.
It is not possible to obtain the true moment values if digitalization is done. Our
proposal provides integral accuracy. This was very well studied in [12] for the 2-D
case.

One might think that because each cube has its own center located at ()c c cX , Y , Z ,
the summing of moments computed from different cubes of different centers is not
possible. The summing is possible even if each cube has its own center. This is due to
Mpqr are expressed in terms of t and one or more of the coordinates of the center.
These last terms introduce the needed values to compensate the fact that each cube
has its own center.

3 Discussion and Comparison

While equation (3) yields exact results, equation (5) provides some moments with
small errors due to the zero-order approximation for numerical integration when using
sums. We will always find pqr pqrM m≥ . The error pqr pqrM m− depends directly on p,
q and r. Your can easily verify that:

000
200 200

mM m
12

− = 000
020 020

mM m
12

− = 000
002 002

mM m
12

− =

100
300 300

mM m .
4

− = 100
030 030

mM m .
4

− = 100
003 003

mM m .
4

− =

On the other hand, for some moments both methods produce exact results:

306 Juan Humberto Sossa Azuela et al.

000 000M m 0− = 100 100M m 0− =

010 010M m 0− = 001 001M m 0− =

110 110M m 0− = 101 101M m 0− =

011 011M m 0− = 111 111M m 0− =

On the main features of our method is that once the partition is obtained, moment
computation is much faster than in the case of earlier methods. For this, let us take the
next simple example. Let us suppose that the an object is composed of N N N× ×
pixels, with t as its radius.

The number of operations required by one of the fastest methods (for example the
method of Yang, Albregtsen and Taxt, [10]) to compute all the moments of order
()p q r+ + up to some K, let say K=3 from a discrete image of N N N× × pixels is:

22KN multiplications and 2 21 7K K 3 N
2 2
 + + 
 

 additions (for the details, refer to

[10]).
The number of operations required by our proposal once the partition has been

obtained will depend basically on the radius t of the object: 26t multiplications and
10t additions.

4 A Method to Compute the Desired Object Moments

To compute the desired moments we could use the same idea already used in [11],
this is :

1. Decompose the object into the union of disjoint cubes.
2. Compute the geometric moments for each of these cubes, and
3. Obtain the final moments as a sum of the moments computed for each cube.

The key problem to apply this idea is how to obtain the desired partition, i.e. the
union of disjoint cubes. For this we can use the same morphological approach used in
[11] (extended to the 3D case). According to [11] there two main variants to compute
the desired moments:

4.1 Method Based on Iterated Erosions

The following method to compute the geometric moments of a 3D object R⊂Z3, using
morphological operations is an extension of the one described in [11]. It s composed
of the following steps:

1. Initialize 20 accumulators Ci=0, for i=1,2,...,20, one for each geometric
moment.

2. Make A=R and B={(±a, ±b, ±c)a,b,c ∈{-1,0,1}}, B is a 3x3x3 pixel
neighborhood in Z3.

3. Assign A←A θ B iteratively until the next erosion results in ∅ (the null set).
The number of iterations of the erosion operation before set ∅ appears, is the

Efficient Computation of 3-D Moments in Terms of an Object�s Partition 307

radius r of the maximal cube completely contained in the original region R.
The center of this cube is found in set A just before set ∅ appears.

4. Select one of the points of A and given that the radius r of the maximal cube is
known, we use the formulae derived in the last section to compute the
moments of this maximal cube, the resulting values are added to the
respective 20 accumulators, Ci, for 1,2,3,...,20.

5. Eliminate this ball from region R, and assign this new set to R.
6. Repeat steps 2 to 5 with the new R until it becomes ∅.

The method just described gives us as a result the true values of the geometric
moments of order ()p q r 3+ + ≤ , using only erosions and the formulae developed in
Section 2.

4.2 Method Based on Iterated Erosions and Parallel Processing

This method is a brute force method. A considerable enhancement can obtained if
steps 4 and 5 are replaced by:

1. Select those points in A at a distance among them greater than 2t and use the
formulae given by equation (7), to compute the geometric moments of these
maximal cubes, and add these values to the respective accumulators.

2. Eliminate the maximal cubes from region R, and assign this new set to R.
The enhancement consists in processing all maximal cubes of the same radius in just a
step, coming back to the iterated erosions until the value of the radio t is to be
changed. At this step it is very important to verify that the eliminated cubes do not
intersect with those just eliminated, for one of the important conditions is that the set
of maximal cubes forms a partition of the image. Thus one has to guarantee that these
maximal cubes be disjoint sets.

5 Results

Suppose we use the proposed two variants described in the last section to compute the
desired object�s moments. Because both variants are not designed to work in a
conventional computer, the processing times are only significant to compare the
method eliminating a cube at the time against the method eliminating, at the same
step, all the non-intersecting maximal cubes at the same time.

Both variants were tested on several hundreds of images. All of them are binary
and 101 101 101× × voxel sized. These images were obtained by generating at random
P touching and overlapping cubes of different sizes inside the 101 101 101× × cubical
image. At the beginning all the locations of the 101 101 101× × cube are zero.

The original method takes on average 150 seconds to compute all moments of
order ()p q r 3+ + ≤ ; while the enhanced method requires only about 25 seconds onto
233 Mhz PC based system to compute the same moments.

308 Juan Humberto Sossa Azuela et al.

6 Conclusions and Present Research

In this note an extended version of the recently proposed method in [11] to compute
accurately the 3D geometric moments for a object has been presented. Initially, the
object is partitioned in a set of convex cubes whose moment evaluation can be
reduced to the computation of very simple formulae.

These expressions were derived from the original definition of moments given by
equation (3). This gives more accurate values for the moments. This would not
happen if equation (5) would be used. An error is introduced due to zero-order
approximation and numeric integration of p q rx y z over each voxel. The resulting
shape moments are finally obtained by addition of the moments of each cube forming
the partition, giving that the intersections are empty.

As implemented until now the proposed approach is very slow, for and image of
100×100×100 voxels, 150 seconds in the case of the first variant and 25 in the case of
the second variant.

To make our proposal really competitive with classical sequential algorithms we
need a better way the obtain the desired partition. Apparently, the fast distance
transform (see [14]) could be an excellent option. In this case, the idea here would be
to first decompose the image into a set of disjoint cubes by means of the fast tri-
dimensional distance transform, which would provide the necessary information of all
the maximal cubes covering the image. We would then apply the simple formulae
given by equation (7) to obtain the exact moments for each cube. We would finally
get the final desired moments of the image by summing the partial results from all the
cubes.

One of the huge advantages of the fast distance transform is that it can be
efficiently programmed in a sequential machine. At this moment, we are working on
the development of a suitable algorithm.

Acknowledgments

The authors would like to thank the CIC-IPN and the CONACYT under project
34880-A for their economical support to develop this work.

References

1. M. K. Hu, Visual pattern recognition by moment invariants, IRE Transactions
on Information Theory, 179-187, 1962.

2. C. H. Lo and H. S. Don, 3-D moment forms: Their construction and application
to object identification and positioning, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11:1053-1064, 1989.

3. S. C. Pei and L. G. Liou, Using moments to acquire the motion parameters of a
deformable object without correspondences, Image Vision and Computing,
12:475-485, 1994.

Efficient Computation of 3-D Moments in Terms of an Object�s Partition 309

4. J. Shen and B. C. Li, Fast determination of center and radius of spherical
surface by use of moments, in Proceedings of the 8th Scandinavian Conference
on Image Analysis, Tromso, Norway, pp. 565-572, 1993.

5. D. Cyganski, S. J. Kreda and J. A. Orr, Solving for the general linear
transformation relating 3-D objects from the minimum moments, in SPIE
Intelligent Robots and Computer Vision VII, Proceedings of the SPIE, Vol.
1002, pp. 204-211, Bellingham, WA, 1988.

6. B. C. Li, The moment calculation of polyhedra, Pattern Recognition, 26:1229-
1233, 1993.

7. B. C. Li and J. Shen, Pascal triangle transform approach to the calculation of
3D moments, CVGIP: Graphical Models and Image Processing, 54:301-307,
1992.

8. B. C. Li and S. D. Ma, Efficient computation of 3D moments, in Proceedings of
12 the International Conference on Pattern Recognition, Vol 1, pp. 22-26, 1994.

9. Z. L. Budrikis and M. Hatamian, Moment calculations by digital filters, AT&T
Bell Lab. Tech. J. 63:217-229, 1984.

10. L. Yang and F. Albregtsen and T. Taxt, Fast computation of three-dimensional
geometric moments using a discrete divergence theorem and a generalization to
higuer dimensions, CGVIP: Graphical models and image processing, 59(2):97-
108, 1997.

11. H. Sossa, C. Yañez and J. L Díaz, Computing geometric moments using
morphological erosions, Pattern Recogntition, 34(2), 2001.

12. M. Dai, P. Baylou and M. Najim, An efficient algorithm for computation of
shape moments from run-length codes or chain codes, Pattern Recognition,
25(10):1119-1128, 1992.

13. J. Flusser, Refined moment calculation using image block representation, IEEE
Transactions on Image Processing, 9(11):1977-1978, 2000.

14. J. D. Díaz de León and J. H. Sossa, Mathematical Morphology based on linear
combined metric spaces on Z2 (Part I): Fast distance transforms, Journal of
Mathematical Imaging and Vision, 12:137-154, 2000.

	Introduction
	Moments of a Cube
	Discussion and Comparison
	A Method to Compute the Desired Object Moments
	Method Based on Iterated Erosions
	Method Based on Iterated Erosions and Parallel Processing

	Results
	Conclusions and Present Research
	Acknowledgments
	References

