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Abstract. Tillich and Zémor proposed a hashing scheme based on the
group of unimodular matrices SL2(Fq) over a finite field Fq of q = 2n

elements. Charnes and Pieprzyk studied the security of this scheme. They
showed that for n = 131 and for some irreducible polynomial P131(x)
this scheme is weak. We show that with sufficiently high probability the
polynomials Pn(x) can be chosen in such a way that this type of attack
can be avoided. Futhermore, we generalize the Tillich-Zémor hashing
scheme for any finite field Fq and show that the new generalized scheme
has similar properties.

1 Introduction

Tillich and Zémor [7] proposed a hashing scheme based on the group of unimod-
ular matrices SL2(Fq) over a finite field Fq of q = 2n elements. This scheme has
several attractive properties: the algorithm can be easily implemented in soft-
ware by using operations in Fq, which allows fast computations; parallelization
and precomputations are possible ; small modifications to the input text can
be detected; the security of the scheme is equivalent to a precise mathematical
problem, for which there exist several results in favor of its difficulty.

Tillich and Zémor recommended to use the range 130 ≤ n ≤ 170 and the
field Fq = F2[x]/〈Pn(x)〉, where Pn(x) is an irreducible polynomial of degree n.
Let α be a zero of the polynomial Pn(x) (for example, class of the element x in
F2[x]/〈Pn(x)〉) and

A(α) =
(

α 1
1 0

)
, B(α) =

(
α α + 1
1 1

)

be matrices from G = SL2(Fq). When the polynomial Pn(x) is fixed we denote
A = A(α), B = B(α). Define the mapping π = πα:

π : {0, 1} → {A, B},
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π(0) = A, π(1) = B.

The hashcode of a binary message x1x2 . . . xk is just the matrix product

π(x1)π(x2) . . . π(xk).

Charnes and Pieprzyk studied the security of this scheme. They showed that
for n = 131 and for some irreducible polynomial P131(x) this scheme is weak.
By using properties of a dihedral subgroup in G, it is proven in [1, Theorem 6]
that the following relation holds in G:

A−1B(A−1B2A−1)A−1B = BA−2B. (1)

This identity can be produced easier. It is sufficient to note that A−1B =
( 1

0
1
1

)
,

which follows identities (A−1B)2 = I and BA−1B = A, where I is the identity
matrix (the last identity is equivalent to (1)). Similarly, B−1A =

( 1
0

1
1

)
follows

AB−1A = B.
Suppose that orders of A and B are s and t respectively. Then matrix identity

BAs−1B = A (resp. ABt−1A = B) means that binary strings (1, 0s−1, 1) and
(0) (resp. (0, 1t−1, 0) and (1)) hash to the same value in the group G. On the
other hand, the trivial factorization As = I gives the similar result: the binary
string (0s) can be inserted into any message. But if the orders of elements A and
B is approximately q then these identities are useless as actual forgeries (there
is no such a case to be used as 2130 consecutive 0’s (or 1’s) in a hash input).

So, it turns out that to avoid this type of attack one has to choose an irre-
ducible polynomial Pn(x) in such a way that the orders of A and B would not
be small. We will show that with sufficiently high probability the polynomials
Pn(x) can be chosen in such a way that the orders of elements A and B are equal
to either q−1 or q+1 (maximal possible values), see Theorems 6, 13 and Table 1.
We also propose an efficient algorithm for the determination of the orders of the
elements A = A(α) and B = B(α) for any Pn(x). We show the probability that
the scheme is vulnerable against the Charnes and Pieprzyk attack is negligible
(approximately 10−27, see remark after theorem 7). Futhermore, we generalize
the Tillich-Zémor SL2(F2n) hashing scheme for any finite field Fq and show that
the new generalized scheme has similar properties.

2 Analysis of SL2 hashing

We define recursively a sequence fi(x) ∈ F2[x] of functions

f0(x) = 0, f1(x) = 1, fi+2(x) = xfi+1(x) + fi(x) for i ≥ 0. (2)

Let

A(x) =
(

x 1
1 0

)
, B(x) =

(
x x + 1
1 1

)
,

and α is a zero of the irreducible polynomial Pn(x) ∈ F2[x] (e.g., class of the
element x in F2[x]/〈Pn(x)〉).
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Lemma 1. A(x)m =
(

fm+1 fm

fm fm−1

)
for m > 0.

Proof. We have

A(x) =
(

x 1
1 0

)
=

(
f2 f1
f1 f0

)
.

Suppose

A(x)m =
(

fm+1 fm

fm fm−1

)
.

Then

A(x)m+1 = A(x)m

(
x 1
1 0

)
=

(
xfm+1 + fm fm+1
xfm + fm−1 fm

)
=

(
fm+2 fm+1
fm+1 fm

)
.

Thus by induction we have the result.

Lemma 2. The order of the element A in the group G is equal to the minimum
positive number k, such that fk(α) = 0. Equivalently, the order of element A is
equal to the minimum positive number k, such that Pn(x) divides fk(x).

Proof. If Am = I then by lemma 1 we have fm(α) = 0. Conversely, if fm(α) = 0
then by (2) one has fm+1(α) = αfm(α) + fm−1(α) = fm−1(α). Futhermore,
det Am = 1, thus fm+1(α) · fm−1(α) − fm(α)2 = fm+1(α) · fm−1(α) = 1. Conse-
quently, fm+1(α) = fm−1(α) = 1 and Am = I.

Corollary 3. The order of the element B in the group G is equal to the min-
imum positive number k, such that fk(α + 1) = 0. Equivalently, the order of
element B is equal to the minimum positive number k, such that Pn(x + 1)
divides fk(x).

Proof. The order of B = B(α) is equal to the order of the element

A−1BA =
(

α + 1 1
1 0

)
.

Now we can apply lemma 2 to the element α + 1.

So, if one chooses an irreducible polynomial Pn(x), for the determination of
the order of the element A = A(α) one has to sequentially calculate

fn(x) ≡ xfn−1(x) + fn−2(x) (mod Pn(x))

until it gets fk(x) ≡ 0 (mod Pn(x)). This value of k gives the order of A.
Similarly, for the determination of the order of the element B = B(α) one has
to sequentially calculate

fn(x) ≡ xfn−1(x) + fn−2(x) (mod Pn(x + 1))

until it gets fk(x) ≡ 0 (mod Pn(x + 1)). Note that the polynomial Pn(x + 1)
is irreducible.
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Lemma 4. i) deg fn(x) = n − 1 for n > 0.
ii) If n > 0 is even then fn(x) = xgn(x)2 for some polynomial gn(x) ∈ F2[x].
iii) If n > 0 is odd then fn(x) = hn(x)2 for some polynomial hn(x) ∈ F2[x].

Proof. The case i) immediately follows from (2). Further, from (2) it is easy to
see that fn(x) is a sum of monomials of odd degree for even n and a sum of
monomials of even degree for odd n. Then

f2k+1(x) = x2m1 + x2m2 + · · · + x2ms = (xm1 + xm2 + · · · + xms)2,

f2k(x) = x2m1+1 + x2m2+1 + · · · + x2mt+1 = x(xm1 + xm2 + · · · + xmt)2.

Lemma 5. i) Suppose λ1 + λ2 = x, λ1λ2 = 1. Then fm(x) = 1
x (λm

1 + λm
2 ) for

m ≥ 0.
ii) f2m(x) = x2m−1.

Proof. i) For m = 0, 1 we have f0(x) = 1
x (λ0

1 + λ0
2) = 0, f1(x) = 1

x (λ1 + λ2) = 1.
Suppose our formulae is true for all m ≤ k. Then

fk+1(x) = x · fk(x) + fk−1(x)

= x · 1
x

(λk
1 + λk

2) +
1
x

(λk−1
1 + λk−1

2 )

=
1
x

(λ1 + λ2)(λk
1 + λk

2) +
1
x

(λk−1
1 + λk−1

2 )

=
1
x

(λk+1
1 + λk+1

2 + λ1λ2(λk−1
1 + λk−1

2 ) + λk−1
1 + λk−1

2 )

=
1
x

(λk+1
1 + λk+1

2 ).

ii) f2m(x) = 1
x (λ2m

1 + λ2m

2 ) = 1
x (λ1 + λ2)2

m

= 1
xx2m

= x2m−1.
Remark. In fact, the elements λ1 and λ2 are eigenvalues of the matrix

A(x). They belong to an extension of the field of rational functions F2(x). Thus
eigenvalues of A(x)m are λm

1 and λm
2 . If Tr C denotes the trace of matrix C then

fm(x) =
1
x

(fm+1(x) + fm−1(x)) =
1
x

Tr A(x)m =
1
x

(λm
1 + λm

2 ).

The order of any nonidentity element from SL2(Fq) either is equal to 2, or
divides q − 1, or divides q + 1 (see [3]). So maximal possible values of the orders
of A (and B) are q − 1 or q + 1. From lemmas 2 and 5 it is easy to see that for
n > 1 the orders of A and B are not equal to 2.

Now let Pn(x) be a random irreducible polynomial of degree n > 1 over F2.
We are going to estimate the probability that the order of A(α) is equal to q − 1
or q+1. Let (2n−1)(2n+1) = pk1

1 pk2
2 · · · pkr

r be the decomposition into a product
of prime numbers, where p1, . . . ,pr are different prime numbers. Set

d2(n) = 1 − 1
2
(1 + 2−n/2+2)

r∑
i=1

1
pi

,
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c2(n) = 1 − (1 + 2−n/2+2)
r∑

i=1

1
pi

= 2d2(n) − 1.

Theorem 6. Let Pn(x) be a random irreducible polynomial of degree n > 1 with
coefficients in F2. Then the probability, that the order of A is greater than or
equal to q − 1, is greater than d2(n). Futhermore, the probability, that both the
orders of A and B are greater than or equal to q − 1, is greater than c2(n).

Proof. Since 2n − 1 and 2n + 1 are relatively prime numbers, they have different
prime divisors. Suppose 2n − 1 = pk1

1 · · · pkj

j , 2n + 1 = p
kj+1
j+1 · · · pkr

r . Then

P = Pr (ord(A) ≥ q − 1)
= 1 − Pr (ord(A) < q − 1)

≥ 1 −
j∑

i=1

Pr
(
A(q−1)/pi = I

)
−

r∑
i=j+1

Pr
(
A(q+1)/pi = I

)

= 1 −
j∑

i=1

Pr
(
Pn(x) divides f(q−1)/pi

(x)
)

−
r∑

i=j+1

Pr
(
Pn(x) divides f(q+1)/pi

(x)
)

Since deg f(q−1)/pi
(x) = (q − 1)/pi − 1 and f(q−1)/pi

(x) is a square by lemma 4,
we have

Pr
(
Pn(x) divides f(q−1)/pi

(x)
) ≤

(q−1)/pi−1
2n

S2(n)
<

q
2npi

S2(n)
,

where S2(n) is the number of irreducible polynomials of degree n with coefficients
in F2. But S2(n) > q

n (1 − 1
2n/2−1 ) (see [6]), thus we have

Pr
(
Pn(x) divides f(q−1)/pi

(x)
)

<

q
2npi

q
n

(
1 − 1

2n/2−1

) ≤ 1
2pi

(
1 + 2−n/2+2

)
.

We have the same estimation for Pr
(
Pn(x) divides f(q+1)/pi

(x)
)
. So

P > 1 − 1
2

(
1 + 2−n/2+2

) r∑
i=1

1
pi

.

Finally,
Pr (ord(A) ≥ q − 1 and ord(B) ≥ q − 1)

≥ 1 − Pr (ord(A) < q − 1) − Pr (ord(B) < q − 1)

= (1 − Pr (ord(A) < q − 1)) + (1 − Pr (ord(B) < q − 1)) − 1

≥ 2d2(n) − 1 = c2(n).
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Let M be a positive integer number such that there does not exist practically
a binary message containing (0M ) (that is, M consecutive 0’s) or (1M ). In order
to avoid low order attack it would be sufficient to have A and B with orders
that are greater than M .

Table 1 shows that it is not hard to find a polynomial which results in a large
order. The user can check it by lemma 2.

Theorem 7. Let Pn(x) be a random irreducible polynomial of degree n > 3
with coefficients in F2. Then the probability, that both the orders of A and B are
greater than M , is greater than 1 − M2

2n−1 .

Proof.

Pr (ord(A) ≤ M) ≤
M∑
i=1

Pr (Pn(x) divides fi(x))

≤
M∑
i=1

i−1
n

S2(n)
<

M2

2nS2(n)
,

Pr (ord(A) > M and ord(B) > M)

> 1 − Pr (ord(A) ≤ M) − Pr (ord(B) ≤ M) > 1 − M2

nS2(n)
> 1 − M2

2n−1 .

For example, let M = 106, n = 131. Then the probability, that both the
orders of A and B are greater then M , is greater then 1 − 10−27. So the proba-
bility, that for a random irreducible polynomial Pn(x) the scheme is vulnerable
against the Charnes and Pieprzyk attack, is less then 10−27.

We do not discuss important properties of this scheme (concatenation prop-
erty, connections with associated Cayley graph, protections against local mod-
ifications, expanding properties), stability under subgroup and density attacks,
easy computability, because it was done in [7,8] in detail.

Remark. One of referees drew our attention to the article [4].

3 Generalization of the hashing scheme for p > 2

In this section we introduce the analog of the Tillich-Zémor hashing scheme for
p > 2. The new hash algorithm can be described as follows.

Defining Parameter. An irreducible polynomial Pn(x) of degree n over a
field Fp of p elements (p > 2 is prime, q = pn, n is sufficiently large).

Algorithm. Let α be a zero of the polynomial Pn(x) (e.g., the class of the
element x in the field Fq = Fp[x]/〈Pn(x)〉) and

A = A(α) =
(

α −1
1 0

)
, B = B(α) =

(
α α − 1
1 1

)
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be matrices from G = SL2(Fq). Define the mapping

π : {0, 1} → {A, B},

π(0) = A, π(1) = B.

The hashcode of a binary message x1x2 . . . xk is the matrix

π(x1)π(x2) . . . π(xk)

from G.
This hashing scheme has all the cryptographic properties, analogous to the

Tillich-Zémor hashing scheme [7].
The following theorem shows that the set of hashcodes is the whole group

SL2(Fq).

Theorem 8. For n > 2 the elements A, B generate the group SL2(Fq).

Proof. It can be easily checked that

A−1B−1A2 =
(

1 0
1 1

)
, BA−2BA =

(
1 α − 1
0 1

)
.

According to Dickson’s theorem (see [5,2]) the matrices
( 1

1
0
1

)
and

( 1
0

α−1
1

)
gen-

erate the group SL2(Fq).
Note that SL2(Fq) has nontrivial center Z = {±I}, where I is the identity

matrix. That is, for any g ∈ SL2(Fq) and z ∈ Z we have gz = zg. If As ∈
Z then binary strings (0s, w, v), (w, 0s, v), (w, v, 0s) hash to the same value.
Consequently, we have to choose irreducible polynomial Pn(x) in such a way
that the condition As ∈ Z follows s would not be small.

Define a sequence fi(x) ∈ Fp[x] of functions

f0(x) = 0, f1(x) = 1, fi+2(x) = xfi+1(x) − fi(x) for i ≥ 0, (3)

and define matrices

A(x) =
(

x −1
1 0

)
, B(x) =

(
x x − 1
1 1

)
.

Lemma 9. A(x)m =
(

fm+1 −fm

fm −fm−1

)
for m > 0.

Proof. By induction.

Lemma 10. Am ∈ Z if and only if fm(α) = 0. Equivalently, Am ∈ Z if and
only if Pn(x) divides fm(x).

Proof. If Am ∈ Z then by lemma 9 we have fm(α) = 0. Conversely, if fm(α) = 0
then by (3) one has fm+1(α) = αfm(α) − fm−1(α) = −fm−1(α). Futher-
more, det Am = 1, thus fm+1(α) · fm−1(α) = −1. Consequently, we have either
fm+1(α) = −fm−1(α) = 1 or fm+1(α) = −fm−1(α) = −1, thus either Am = I
or Am = −I.
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Corollary 11. Bm ∈ Z if and only if fm(α + 1) = 0. Equivalently, Bm ∈ Z if
and only if Pn(x − 1) divides fm(x).

Proof. It follows from equality

A−1BA =
(

α + 1 −1
1 0

)

and lemma 9.

Lemma 12. i) Suppose λ1 + λ2 = x, λ1λ2 = 1. Then fm(x) = λm
1 −λm

2
λ1−λ2

for
m ≥ 0.

ii) f2p(x) = xp(x2 − 4)(p−1)/2.

Proof. i) If fk(x) = λk
1−λk

2
λ1−λ2

and fk−1(x) = λk−1
1 −λk−1

2
λ1−λ2

then

fk+1(x) = xfk(x) − fk−1(x)

=
1

λ1 − λ2
((λ1 + λ2)(λk

1 − λk
2) − (λk−1

1 − λk−1
2 ))

=
1

λ1 − λ2
(λk+1

1 − λk+1
2 + λ1λ2(λk−1

1 − λk−1
2 ) − (λk−1

1 − λk−1
2 ))

=
λk+1

1 − λk+1
2

λ1 − λ2
.

ii) We have

f2p(x) =
λ2p

1 − λ2p
2

λ1 − λ2
=

(
λ2

1 − λ2
2

λ1 − λ2

)p

(λ1 − λ2)p−1

= (f2)p(λ1 − λ2)p−1 = xp(λ2
1 − 2λ1λ2 + λ2

2)
(p−1)/2

= xp((λ1 + λ2)2 − 4λ1λ2)(p−1)/2 = xp(x2 − 4)(p−1)/2.

The group G has the unique element −I of order 2 (see [3]). The order of
any noncentral element from G is equal to p, 2p or is a divisor of q − 1 or q + 1.
Lemmas 9 and 12 follow that for n > 1 the order of element A (resp. B) is
equal to neither p nor 2p. Consequently, the orders of the elements A and B are
divisors of q − 1 or q + 1.

Let Pn(x) be a random irreducible polynomial of degree n > 1 with coeffi-
cients in Fp. We estimate the probability that the order of A is equal to q − 1 or
q + 1. Let (pn − 1)/2 = pk1

1 pk2
2 · · · pkj

j , (pn + 1)/2 = p
kj+1
j+1 · · · pkr

r be the decom-
position into a product of primes, where p1, . . . ,pr are different prime numbers.
Set

dp(n) = 1 − 1
2

(
1 + p−n/2+2

) r∑
i=1

1
pi

,

cp(n) = 1 −
(
1 + p−n/2+2

) r∑
i=1

1
pi

= 2d2(n) − 1.
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Theorem 13. Let Pn(x) be a random irreducible monic polynomial of degree
n > 2 with coefficients in Fp. Then the probability, that the order of A is greater
than or equal to q − 1, is greater than dp(n). Futhermore, the probability, that
both the orders of A and B are greater than or equal to q − 1, is greater than
cp(n).

Proof. Since (q − 1)/2 and (q + 1)/2 are relatively prime numbers, they have
different prime divisors. We have

P = Pr (ord(A) ≥ q − 1)
= 1 − Pr (ord(A) < q − 1)

≥ 1 −
j∑

i=1

Pr
(
A(q−1)/2pi ∈ Z

)
−

r∑
i=j+1

Pr
(
A(q+1)/2pi ∈ Z

)

= 1 −
j∑

i=1

Pr
(
Pn(x) divides f(q−1)/2pi

(x)
)

−
r∑

i=j+1

Pr
(
Pn(x) divides f(q+1)/2pi

(x)
)
.

On the other hand,

Pr
(
Pn(x) divides f(q−1)/2pi

(x)
) ≤

(q−1)/2pi−1
n

Sp(n)
<

q
2npi

Sp(n)
,

where Sp(n) is the number of monic irreducible polynomials of degree n with

coefficients in Fp. But Sp(n) > q
n

(
1 − 1

pn/2−1

)
(see [6]), thus we have

Pr
(
Pn(x) divides f(q−1)/2pi

(x)
)

<

q
2npi

q
n

(
1 − 1

pn/2−1

) <
1

2pi

(
1 + p−n/2+2

)
.

So

P > 1 − 1
2

(
1 + p−n/2+2

) r∑
i=1

1
pi

.

Finally,
Pr (ord(A) ≥ q − 1 and ord(B) ≥ q − 1)

≥ 1 − Pr (ord(A) < q − 1) − Pr (ord(B) < q − 1)

= (1 − Pr (ord(A) < q − 1)) + (1 − Pr (ord(B) < q − 1)) − 1

≥ 2dp(n) − 1 = cp(n).

Similarly to theorem 7 one can easily prove

Theorem 14. Let Pn(x) be a random irreducible monic polynomial of degree
n > 3 with coefficients in Fp. Then the probability, that both the orders of A and
B are greater than M , is greater than 1 − M2

(p−1)pn−1 .
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p = 2 p = 3
n dp(n) cp(n) n dp(n) cp(n)

130 0.64... 0.28... 80 0.55... 0.10...
131 0.83... 0.66... 81 0.59... 0.18...
132 0.55... 0.10... 82 0.64... 0.28...
133 0.81... 0.63... 83 0.74... 0.49...
134 0.73... 0.46... 84 0.48... -0.02...
135 0.65... 0.31... 85 0.68... 0.37...
136 0.69... 0.39... 86 0.64... 0.29...
137 0.83... 0.66... 87 0.62... 0.25...
138 0.60... 0.21... 88 0.57... 0.14...
139 0.83... 0.66... 89 0.74... 0.49...

Table 1. Bounds for probability.

For example, let p = 3, n = 81, M = 106. Then the probability, that both
the orders of A and B are greater then M , is greater then 1 − 10−26.

Table 1 shows some examples for p = 2, 3.

4 Conclusion

We have proposed fixing of the SL2 hashing scheme against an attack by Charnes
and Pieprzyk. In fact, we have proposed an algorithm to decide whether the given
irreducible polynomial leads to vulnerable (against the Charnes and Pieprzyk
attack) hashing. We have also shown that the negligible part of the set of all
polynomials is vulnerable to this attack. Finally, we give a generalization of the
Tillich-Zémor hashing scheme.
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