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Abstract. Ong-Schnorr identification and signatures are variants of thc 
Fiat-Shamir scheme with short and fast comniuIiication and signa1,ilres. 
This scheme uses secret, keys that arc 2'-roots modulo AT of the public 
keys, whereas Fiat-Sharnir uses square roots modulo N .  Security for par- 
ticular cases has recently been proved by Micali [M94] and Shoup [ShYG]. 

We prow that identification and signatures are secure for nrbilrury 
moduli N = p q  unless N can rasily be facimed. The proven security 
of identification against active impersonation attacks depends on the 
maximal 2-power 2'" that divides either p - 1 or p - 1. We show that sig- 
natures are securc against adaptive chosen-message attacks. This proves 
the security of a very efficient signa.t,ure scheme. 

Keywords: idcntification, signature, Fiat-Shamir scheme, active/passive irn- 
personation attacks, adaptive chosen-mcssage attack, raiidorri oracle niodcl, fac- 
toring of integers. 

1 Introduction and Summary 

Fiat and Shsmir [FS86] proposed a practical idtmtitication arid signature schcmc 
tha t  is based on a zeroknowlcdge protoc~il of Gold\vasser, Micali arid Rackoff 
[GMR89] for proving quadratic residuosit,y. Thc C;Q-protoc:ol of Guillou and 
Quisquater [GQ88] and Ong-Schnorr idcntification and signatures [OS90] a,rc 
variants of the Fiat-Sharriir scheme which provide shorter communication and 
signatures than the Fiat-Shamir schcme. T h e  Ong-Schnorr scheme is a direct 
generalization of thc Fiat-Shaniir scheme, whcre square roots modulo N are  re- 
placed by 2'-roots. This compact variant of the Fiat-Sharnir scheme is as fast, 
in the number of modular multiplications, as the original scheme. Until recently 
it was only kiiawri that  Ong-S(:hnorr identification is secure provided that par- 
ticular 2'-roots modulo N are hard to compute [OS90]. Recently there has been 
surprising progress for the cast of Blurn intcge7:s N ,  i.e. N = p y with primes p ,  
q tha t  are wngruerit 3 mod 4. 

Previous results. Micali [M94] proves tliiit, Ong-Schnorr signatures are secure 
if t,hc secret key is a. 2'-root of 4, 2 is a, quadratic: non-residue modulo N arid N 
is difficiilt to factor. In the case considered by Micali, the secret key, the 2'-root 
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of 4, reveals the  prime factors of N .  Tliercfore, tlistiiict users must have different 
rrioduli N ,  and N ninst, he part of thc sccret key rather than a public pxramet(:r 
as in tlic Fiat-Sharriir scheme anti its mteiision by Ong-Sclinorr. M i d i  assumes 
tha t  the hash function used for signatures acts as a raridom oracle. 

Shoup [ShgG] proves that Ong-Schiiorr identification with Bluni int*egers A‘ 
is secure against active adversaries iiriless N is easy t,o fitctor. Shoup transforrns, 
less efficiently than for t h r  Fiat-Shaniir scfirme, active impcrso~iation attacks 
into the factoriz;ttiori of N .  Shoup’s retiiict,ion is not cnt,irely construc:tive, :is it) 
requires a priori knowledge on the  adversary’s probability of success. 

Our results. We prove tha l  Ong-Schnorr identification is secure for arbitrary 
moduli N = py. This extends and improves the results of Shoup in various wags. 
It sheds iiew light on the prime factors p and (I of the  rnoclulus N .  The cfficiericy 
of our rcdiict,ioIi from factoring N = T J ~  l o  inipcrsonat,ion attacks depends 011 

t,he rnaxinial 2-powt\r 2”’ tha t  divides cithcr p -- 1 or q -- 1. We distinguish 
activc and of passive attacks. In a n  (JM?ZW nttuck the advcmary poscs, before the 
inipersoiiation a t tempt ,  as verifier. in i~ scqiicnc~r of executions of the ID-protocol 
arid asks qiicst,ions of his choice iising t ,hc i  legit,iiiiatr! im’r as oracle. In a. ~ U S S Z ~ I C  

inzpcrsor~utiar~ ultack thc  adversary is givcii tho piiblic key: but he caniiot PVCII 

listen in to  cxwiitioris of the ID-protoc:ol. 
The  casts t,liat 711 2 t ,  respectivcly 711, < 1 ,  are quite different. For na 2 1 we 

transform active irripersonn.tion att,acks into a. fa.c:torizatiori of N ,  as etficiciitly 
as for Fiat-Shanrir ID. ‘This factoring mtt~lrod orily requires tha t  the advcrsary’s 
success ra,tc: is twice the succcss rat,e for guessing the exam posed by t,he verifier. 
Moduli N with 711 2 t provide optimal sccurity against act,ive/passive impersori- 
atioii attacks provitled that, N is tlifficult t,o factor. 

For the ciLsc 111 < t ,  wc transform p a  7 ~ e  irriprrsonation a.ttacks into tli? 
factorization of N, iLs cffic:icntly ;LS for Fi Shamir 11). The  factoring ruethoti 
uses public keys that, ar(> generate(1 together with ;L pseudo-key whkh  is indr- 
pmdcnt, of t,hr: sc:c:ret key. Having only a. pst:utlo-key c:oniplicates for srriall 711 the 
reduction from factoring to active iiripersoiiation attacks. It becomes difficult to 
siniulatc the ID-protoc:ol, which is n a.ry to provide thc information needed 
by the  adversary for a n  artive irripersc,iia.t,ioir ii.t,t,a.(:k. This leads to a trade-off’f 
which we t1esc:rihc: iri Theorem 8: cithcr there is an additional tirne factor 2‘“’‘ 
for factoring N or the minimal required success rate of the active ac1vcrs;tr.y in- 
creases by thr factor 2 t - r 7 1 ,  

Security of signatures. Thr ,2forc.nieritioiIt:d results t,ranslat,e into correspond- 
ing securit,y rcsiilt,s for Oiig-SdiIrorr signaturcs. Wr w r i t :  that  tlic put)lic hash 
fiinc:tioIi of the signatnre scheinc~ ac ts  ;i.s a i w ~ d o i n  oracle. The randoin ora,clr 
assiiiiiption lias alrmdy l w n  usrtl irr [FS86] a d  is coniinonly accept,ed to be kip- 
propriate for liasli fimctions wit8hoii t c’ryptograpliic: weaknesses, s~ [BR93]. WP 
consider the st8rongcst8 t y y  of ;it,t;wks, c i d a p t i , ~  c~irose7l-iricusnge attacks. Hcrc the 
adversary iist’s, hefore atternpting to  gericxLt,r> a. valid sign;tt,iire-niessage pair, the 
legitimate sigiier as oracle to sign nit 

Pointcheval and Stcrn [PS96] sho\v how t,o lrairsform security proofs for tlis- 
tgrs of his choice. 
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crrtte logarithm identification sc:herncs itit,o spciirity proofs for the corresponding 
signature scheme. Using similar argiirnents we transform security of Ong-Schnorr 
ID, against passive attacks, into security of the corresponding signature scheme, 
against adaptive chosen-message attacks. In 'Theorem 6, we prove that  signa- 
tures cannot be produced faster by an adaptive chosen-message at,tack, than t)y 
random trials unless the niodulus N can easily be factored. We get the same 
result for arbitmry keys and moduli N whic,h Micali (M94] proves for particular 
keys and moduli W .  

Generalizing the properties of Blurrl integers. Bluni integers N arf c1ia.r- 
acterized by the property that squaring acts as a permutation on thc set QRlv 
of quadratic residues modulo N .  The cryptographic. re1ev;int:e of Bliirri integers 
relies on this property. One of our basic: tool is a. generalization of this property 
to arbitrary iritegers N based on Lcrnrria 2.  

2 0 ng- S chnorr ident ificat, ion 

Let, N be a product of two largc primes p m d  y. Assume that  N is public: with 
unknown fact,orixation. Let Z;, denote t,hr Iriultiplicativc group of integers mod- 
ulo N .  Let the prover A have the private kcy .s = (s1, ..., ,sk) with components 
s1, ..., 51 E Z.,. Thc corresponding puhlic~ key I I  : ( ~ 1 )  . . . , , I  i k )  has components 
'u, satisfying I/?), = .sJ" for j = 1, _ _ . , A ; .  Wc assutnc that, thc verifier B has itc:cess 
t,o A's public: key v .  

Ong-Schnorr ID-protocol ( A ,  23) ( A proves its identity to  verifier B) 
1. 
2. 
3 .  
4. 

Standard forgery. It is known t l i a ~  a fra.utiulent prover cari cheat by guess- 
ing the e x m i  e and seiiding thc c~roolcc~d proof :)' := r2' TI, ,/).;' ] y := T .  The 
probability of success is 2 I f .  Our go;il is t,u prow: that this 2- "' succcss rate 
cannot be much improvtrd unless we c a ~ i  wsily factorize N .  As the security lcivel 
is p t  . wc are interested in paranieters k ,  t wlierc k t  is approximately 72. 

Ong-Schnorr signatures are obt,;tiried by replacing in the ID-protocol t,he 
verifier R hy a public: hash function h.. To sign a rriessage M the signer picks 
a ramlorn T E ff Z> forins :x: := 1'- imd c:oinpiites the hash value r := h(z ,  M )  
in [O, 2'))" as  well as g := 'r n, .s;', The sigriatiirc of the incssage M is the pair 
( e ,  y) .  It is verified hy dircking t,liat, h(y" fl., , I ) ; '  , M )  = e holds true. 

The length of signatures arid communication. For a security lcvel of 2' 
steps we only need hash-values I: = h(:c, 114) that are t bit,s long. The length of 
signatures is thc, Ieiiglh of  t h e  rnodiilus plils / hits. Fiat., Shamir [FS86] caut,iously 
recommend hash-valiic~i with 128 bits. It has 1)ecii ;trguerl a.gainst shorter hiis11 

. I  

A picks a random T E R  ZZL and sends 7; := r2' to B. 
B picks a random exam P - ( r , ,  . . . . ('1 ) 
A setids y := ~n .Y" t,o B. ' I '  I D checks that  z = y' n, I);'. 

[O. 2 t ) k  and sends it t o  A .  

'1 1 
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values that the signer can compromise his key by constructing distinct messages 
having the same signature. By the birthday paradox, the signer can generate 
such colliding messages in time 0 ( 2 t 1 2 ) .  However this attack is not relevant, as 
the legitimate signer can always corrupt his key by revealing his secret. o n  the 
other hand successful attacks, without using the secret key, require 2t steps. 

In the ID-scheme, A can send in step 1 a hash-value h(s) instead of 2. Then 
B checks in step 4 that h(z )  = h(:y2' n, 7);'). Even in case of the ID-scheme, 
it suffices that h ( z )  is slightly longer t,han t bits, see Girault, Stern [GS94] for 
a thorough analysis. It is tempting to let h,(z) consist of some bits of IC. 0111~ 
rather weak attacks are known, see [GS94]. 

Efficiency. For Ong-Schnorr identification (resp. signatures), both the prover 
(resp. signer) A and the verifier B perform OIL the average yt multiplications in 
Z&. For k = 8, t = 9, these are 45 miiltiplications. Further optimization is ~ O S -  

sible in the same way as for the Fiat-Sharnir scheme, see [FSSS], [MS88]. While 
very fast generation of  signatures requires long multi-keys, signature generation 
is rather efficient, even for singlc coinporient keys. For k = 1, t = 72 generation 
of signatures requires only 108 modular rniiltiplicstions whereas KSR, using a 
1000 bit modulus, reqiiircs 1500 rnodular multiplications on the average. 

Verification of signatures is very efficient if the public key components vj are 
integers with only a few non-zero bits in their biriary representation. The ver- 
ifier performs only t squarings, for computing y'' in Z>, and a fcw additions, 
shifts and reductions modulo N .  If th(. binary representation of :uJ has w3 many 
ones, a multiplication by 'u, requires wJ additions, shifts and reductions modulo 
N .  The reductions modulo N can he dismissed if the uuI are small integers. Mi- 
Cali and Shaniir [MSSS] propose public keys consisting of small primes vj. More 
generally, the 'ui can be small integers that are relatively prime and have sma.11 
Hamming-weight. 

Previous protocols. l 'hc original F'ist-Sharnir scheme is the case t = 1 of the 
Ong-Schnorr protocol, repeated several t,imes. While Fiat-Shaniir ID reqiiirrs t 
sequential rounds for a security level Z k t ,  the Ong-SchIiorr scheme compacts 1 
rounds of the Fiat-Sharnir scheme into a single round. Fiat-Shamir ID is sccurc 
against passive and active atttacks unless N can easily be factored. Fiat-Shamir 
signatures are secure in the random oracle rnodel [FSSS], [FFS88]. Attacks with 
a sii(:ccss rate that  is a t  1ea.st twice t h r  probability of guessing the exam e ,  can 
be transformed into the factorization of N .  

The GQ-protocol [GQ88] is the case of single corriponent keys, where 2'- 
powers x = T ~ '  are replaced by wpowcrs IL' = T" for an arbitrary inleger u less 
than N .  The GQ-protocol consists of a single round with a large exam e.  This 
greatly reduces the length of transmission and of signatures compared to  the 
Fiat-Shamir schemc, at the cxpeiise of a. slightly increased work load. 

Notation. Let, the fraudulent prover A be an interactive, probabilistic Tiiring 
machine that is given the fixed iiiput,s k ,  t ,  N ( k ,  t arc sometimes omitted). Let 
RA be the sequence of coin tosses of A. Define t,hc success bit S,,U(RA, e )  to  be 1 
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if A succeeds with 'u, RA, e ,  N and 0 otherwisc. Accordingly call the pair (RA, e )  
successful/unsuccessful. The success rate SA,~,  of A with v is the expected value 
of S j , , (R4 ,  e )  for uniforrrily distributed pairs (RA,  e ) .  For simplicity, we assume 
that the time T A , ~ ( R A , ~ )  of a with v, RA, e is the same for all pairs ( R A , e ) ,  
i.e. T A , ~ ( R A ,  e )  = T A , ~ .  This is no restriction since limiting the time to twice the 
average running time of succcssful pairs (RA,  e )  decreases the success rate Si,?, 
a t  most by a factor 2. For simplicity we assume that T.A,?, = R ( k .  t(log, 
and thus T A , ~  covers the time of the correct verifier R. 

Theorem 1. [OSSO] There is (L prohahilistic ulgorithm A L  which, given the 
attacker A, N und 11, computes (y, y,  e ,  e) such th,nt y, y E Z;, el  e E [0, 2 ' j k ,  e # 
E and ( ~ / f j ) ~ '  = n.i v:-". If S j  > 2-"+', th,en AL ruris in expected time 

,v - (mi,t, 
The proof of Theorem 1 is a straightforward ext,ension of Lemma 4 in [FFS88]. 

Algorit,hm AL constructs a random pair ( E A , e )  wit,h L S / i , p l ( R A , ~ )  = 1 and 
produces a second raIidom exam e for which -4f siicceeds with the same RA. AL  
outputs c ,  E together with the replies y ,  y of A associated with RA. 

Theorem I. does not yet transform successful attacks into a factorization of N .  
Let the public key components vj are generated as 1j3  := .qy2i froin random s 7  E R  

ZN. Denoting Y := y l j j  and S := n3 .s;'-'', we have Y2' : S2i. Unfortunately 

S2" can be independent of the 2'-roots s,i of v j .  Otherwise, the factorization 
{gcd(Y f S,N)} = {p, q} would hold at least with probability i. 

As our security proofs are based on Theorern 1, it is convenient to  introduce 
some notation for the entities of Theorem 1. Wc denote Y := y/y, I? := max{i 1 
e = E mod 2*}, Z := . 

Wc use the striicturc of the prime factors p ,  q of N .  Let p -  1 T 2"~2p', q -  1 = 
2T'L,1q' with p ' ,  q' odd. W.1.o.g. let, m,q 2 7 n P  and denote m := m4 = max(m,, mq). 
WC have n b  = 1 iff both p and Q are congruent, 3 mod 4, i.e. if N is ;t Rliim integer. 
For Bliim integers squaring acts as a pt?rmiitat,iori on the subgroup &RN of 
quadratic residues in Z> . This property characterizes the set of Rlum integers. 
Lemma 2 cxtends this propcrty to arbitrary cyclic groups. For a multiplicative 
group G let G" denote the siibgroup of 'wpowers in  G, G" = (9'' I g E G}. 
Lemma 2 is obvious. 

1 2 ' i Y  
s".' ")"'. By thc construction we have Y 2  = L 

J ?  

Lemma2. For an!! c:yclic group G of ordw /GI = 2"m. with 7% odd, squaring 
SQ : G2' 4 G2'+ ' ,  x H :i? is  a 2 - 1 rriuppin,g for  i = 0 , .  . . ,,rr/, - 1 m d  i s  1 - 1 
for  i 2 111. 

Extension of the Blum integer property. Let N ,  my 5 m,, = m, be as 
above. Z:, is dircct product of t,hc cyclic groups Z; and Z:, Hence squaring 

SQ : Zi2' ---f Z:?'", x H x2, acts as il 4 ~ - 1  mapping for i < inp, as a 2-1 
mapping for m,p 5 i < mg , and as a ptmniita.tion for i 2 mn(, = TI,. With 
this obscrvatiori we can exterid c:ryptograpliic- applic.ations from Blum integers 
to  arbitrary modnli. 
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3 Passive impersonation attacks for m 2 t 
We show that, Ong-Schnorr ID is for ' rr~,  >. t as secure as Fia.t-Shamir ID. WJc 
assume that  k, and f are given as input a101ig with N ,  but r n  may be unknowri. 

Theorem 3. Thwc is u probabilistic n l g o ~ i t l m ~ ,  which on input A, N geizcrates 
n random. 1mblic key E R  (Z:')"., factor izt :s N with p ~ o b u b i h h ~  at leust l / 2 ,  
with respect t o  its coin, tosses, and  ~ u ' r i % ~  iir. expected tinic ( I (TA,u/S,4q,)  provided 
that S,~z, 2 2 k t + L  arid t 5 *m,. 

2' Proof. The factoring algorit,hiii picks random s3 ER EL,  sets ~ , ' T J ~  := s,, for 
j = 1,.  . . , k ,  runs algorit,hm AL of Theorem 1 on input A, N, 11 producing t>he 
out,put (y ,  a, c ,  c ) ,  and computes th(, cxxxspondirig P, Y,  Z wit,h Y2' = Z 2  . 
Then, it checks whet,hcr 

I. + I 

N ) )  --- { p ?  q }  tioltls for somt~ i ,  O 5 Z < t . 
{@(p * Z"+' 

For thri analysis we itssume w.1.o.g. that, (cI - ?,)/a' is odd. The proba.hility 
space consists of t>hc coin tosses of ClL indiiding ,s1 EK Z> for , j  = 1,.  . . , k .  
To simplify the analysis we fix Y, Z(rriod p ) ,  .s2(mod q ) ,  . . . , sk(mod y) so that 
the probability space reduces to  ,s1( mod q )  t~ ZZ;. By Lemma 2 and siIic:e t 5 'nL 
there are 2' different 2'-roots sl(rnorlq) of l / v l  = s f ' (mody) .  They yield 2f 
different values Z(mody).  Since P < t 5 m, we h a v ~  for a t  Iea.st 2'-' of these 
cases that 1' # *Z2' arid that l'"' = Z2"'+' holds for the largest i < t which 
satisfies Y2'  # &Z2'+'.  Hcnce for a t  least half of the cases we obtain sqiiare 
roots lT2' and Z"" of the sa111e s c p ~ r e  rriodulo N ,  that  are distinct even whcn 
chniigiug the  sign, and thus {gcd(l i_ Z""",  N ) }  -: { p ,  y } .  This shows that. the  
algorithm factorizes N with probability a t  least 1 /a. 

The expected time of the factoring algorithrri is that of algorithm Al ,  of 
Theorem 1. T h r  otlier steps arc iiegligihlc dut1 to the assumption 7>,t, = R(k . 

A basic difficulty with tlw abovc l a c t d n g  algorithm is that  it requires P < r r ~ ,  
while the coristructiori only guarantees P < t .  If P 2 m. it can ha.ppcn that 
Y = Z2' holds for all possible 2'-roots .s.] of l/,t)]. Iri this case the factoring 
method breaks down completely. 

Lernma4. Let rr/.  he nn UT-/J~~I-O,T.:!/  inteqw with 1 <: 7 i i  5 t .  Algorithm A L  of 
~hc07-emr~ I p7.od.rrcc.s on iiiput. ii, I I  wi. or/,tprt (~y,  5, ( j ,  v )  s o  tlrai r' # F mod 2"' 

t(log, N ) " ) .  0 

hold? witll p ~ ~ b ~ b i l i t y  2 114 p y 0 U 6 d d  t l ~ ~ t ,  S A , ~ ~  2 2-A' ' '  " ,  

Thr 1,ernrria shows t,liat tlir algorithm of Thcmern 3 factorizes N u7itl1 pr.01)- 
abilitJy at least, 1/8 and riins in c q m ' f t d  t , i r r i t x  O(7'~A,7,/Sj,,,) provided that 
S,>?, 2 'L-""t" , 

Proof. A coin t,ossing s t ~ ~ u e n c e  H A  of .-i i s  callrtl ?? / , - /mmy if C, , S A , ~ , ( R A ,  v)  



149

2kt-km+i^ j c j£ ̂  succeeds for at least a 2~klll + l fraction of the e. The claim
follows from facts A and B.

Fact A. If RA is m-heavy and SAv(RA,c) =- 1 then e. / e mod 2"1 holds
for at least half of the e with SA v(RA,e) — 1.

Proof. For every e we have #{e e - e mod 2'"} < 2kt~k™ since et =
e, mod 2™ holds for at most a 2~'"-fraction of the e,. Now the fact follows since
RA is m-heavy.

Fact B. / / 5^ v > 2"kn>+2 then RA is m-heavy for at least half of the pairs
(RA,e) with SAJRA,C) = 1.

Proof. If RA is not m-heavy at most a 2""4'"'' ^fraction of the e satisfy
SAv(RA,e) = 1. On the other hand, since SA v > 2-kfn+2, at least a 2-kfh+2

fraction of the (RA,e) satisfy SA ,,(RA,e) = 1.'

Algorithm AL generates a random pair (RA,e) with SAv(RA,e) = 1. By
Fact B RA is -m-heavy with probability > 1/2. After fixing (RA,e) so that
SAll{RA,e) = 1, AL generates a random S with S^ ,,(i?..4, e) = 1. By Fact A
e / e mod 2"1 holds with probability > 1/4. •

Remark . The lower bound SA v > 2~k'" is necessary in Lemma 4. It is possible

to position a 2~~k)"-fraction of successes so that e = e mod 2"1 always holds.

4 Passive impersonation attacks for m <, t

For m < t we give another reduction from factoring to impersonation. The
factoring algorithm generates a random public key v together with a pseudo-key
s which enables to transform successful attacks of a passive adversary A into the
factorization of TV.

Theorem 5. There is a prob. algorithm, which, given A and N, generates a
random public key v £R {7L*^ ) k , factorizes N with probability > 1/2 with respect
to its coin tosses, and runs in expected time 0(7',, ,,/S^ v) provided that SA v >
2 kt+1 and m < t.

Proof . Fac tor ing a l g o r i t h m

1. Pick random Sj GR /Z*V , set l / i ; ; := ,s2 for j - 1 , . . . ,k ( thus v-j €R 7L*^ ) .
2. According to Theorem 1 compute AL : (A,v) f~» (y,y,e,e) and set

I := max{i | e = e mod 2'}, Y := y/y, Z := T], ^J ~?')/2' •
3. Test whether for some t, ( < i < I.: {gcd(V2'"' i: Z2 '+"'~', N)\ - {p,q}.

By the construction we have Y2' — Z2' ''" and ( < I. W.l.o.g. let {e\ ~e\)/2e

be odd. Arbitrarily fix Z(modp), .^(modf;) , . . . , ,^ mod q and Y so that the
probability space reduces to the 2"' solutions ,S](mody) of s2 = l/v-\ mod q.
These 2™ solutions yield 2"' different, values ,s'i £ 'IL*N and, since [e.\ — ci)/2e is
odd, they generate 2'" different values Z € 7L*N. For at least 2" '"1 of these cases
we have that y2 '~ '~' / ±Z2""' and that Y2'"'^ = p'+-~'+^ h o l d s for t h e
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*Z2'+"'-, 
largest, i, which sat,isfies y"-' . Hcncc for at least, half of the cases 
we ohta.in square roots Y2' - - ' ,  Z"+"'- '  of thc same square, that  are distinct 
even when changing the sign, and thus { g c d ( Y 2 ' - '  f 22'+""-' , N ) }  = { p ,  q } .  This 

0 shows that tlie algorithm factorizes at, least, with probability 1 /2 .  

The  above proof rst,al)lishes sec:iirit,y of public: keys 7) that  are generated wit,li- 
out a corresponding secret key s .  We h a w  gericrated 'u 1roni a random pseudo-keg 
.S so that  1/?13 = 3;"' holds for , j  = 1 ,  . . . k .  Wc cannot genemte first a secret key 
s to produce a pseudo-key .i by sqiiariiig t,he c:orriporient,s of s ,  as the component>s 
2, arc, with probability 3/4, quadratic non-rcsiducs. If wc have w and .T together 
with i, we can easily factor N .  

5 Security of Ong-Schnorr signatures 

We study the security of Ong-Schnorr signatnres in t,he r m d o r n  v i d e  model 
where the liasli function h is replaced ljy a random oracle. This is widely be- 
lieved to  be the appropriate model for hash functions without cryptographic 
wcakncsses. This model 1ia.s already l ~ c w  usecl in  [FS86] and has l x c n  fiirther 
developed in [BR.SS]. In t,he random orarlc model, the hash function h, produces 
for each query (Y,  M )  a random value h(:r ,  Ad) E R  [O,  Z t ) ' .  If the same query is 
repeat,ed, t h e  same answer must bc b' riven. 

We consider the most powerful attacks: adaptive chosen-message a t  tacks as 
introduced by Goldwasscr, Micali, Rivest [GMR88]. The  adversary, before al- 
tempting to generate a new mc gesiignat,urc, pair, iiscs the legitimate signer as 
an oracle to sign messages of his choice. 

gc attack gets somewhat diluted 
by the random oraclc assurriphri. Tlit: hash ies /L ( :c ,  M )  are ra~idorn in [0, 2')' 
and independent for distinct, pa.irs (2, Ad). Tlie adversary cannot get anything 
from signat,ures ( e ,  y) that  art: prodnc:eti ac:c:ording t,o t,he protocol. Such signa- 
tures are random pairs in [0, 2f)k x 22;. In the random oracle model, adaptive 
chosen-message attacks are not, st,ronger t,h;tn no-mcssagc attacks, where the 
at,tac:ker is mcrclg given the public key. 

For the next, thcorcm, Ict A, be ttaclrer which, given N and thc public 
key ?I, exccutcs an adaptive choseIi-rr e at,tac:k, where the oracle for the hash 
function h is queried at most ,f times, f 2 1. Firstly, J4,,'u asks for signatures of 
messages of his choice, and then itt~t~en1pt~s to product a new mcssgae-signatwe 
pair. Let T,,j f.', bc its expected t,iIrie arid S,T, , ~ ,  it,s sii(:(:ess rate with i i .  

Theorem 6.  
and N ,  ger ie ru tes  0, rtimdorn, 11 

provided tliat SA, ,,,, 2 f 2 p k 1 + '  . 

The  strerigt,h of the adaptiw rhosen-inc 

Th,crc is a probabilistic, algorithm nlh , given, the attuckcr ilf 
(Z$')'., factorizes AT with probability at least 

rmpcct to rts c x i r r  tossrs, arid ritms in exprrtcd time O ( f  Y ' , J , , t , / S j l , , , )  

Chrnparcd t,o Theorem 3 there is a i l  addit,ional factor 
bound for factoring a s  well as in tlie minimal required SIN 
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explain below that, t,he second factor J is nccessary. The first factor .f comes in 
because the adversary cannot, solicit a successful oracle query, one that results in 
a valid signature. It is open whether the factor .f in the time bound is necessary. 
This is not) a. weakness of Ong-Schnorr signatures as t,his factor appears already 
for Fiat-Shamir signa.tnres, see Lemma 7 of [FSXG]. This Lcmnia claims the time 
hound O(T22") without giving it proof. W(> prove a stronger time bound for 
general Ong-Schnorr signatures. 

Proof. Depending 011 wlict,hrr m 2 f or  / r )  < I ,  wc mimic the factoring algo- 
rithms corresponding to  Theorems 3 md 5. \4,Te first, give an informal argument, 
for the case m. 2 t .  

' I / , u . ~  := s," for j = 
1, . . . , k ,  and lets A,f exec:nte his attack 0 1 1  the piiblic key 1). For the sigriatures 
requestred by A f  it prodiic:cls random pairs in [0, 2 t ) k  x Z;. Slipposc that A f  
queries the h-oracle about (xz, A[,) for i = 1. .  . . , ,f and outputs the message- 
signature pair (As, E ,  yj. 

We (:an assume that, (y2'  n.j v;', Ad) = ( r ) ,  M I )  holds for some a 5 J ,  since 

otherwise c = h,(y2' n, ti-;' , Ad) holds with probahilitg 2--kL. If the adversary 

produces x; := y2' n, 'u.;' for some preselected P and y, the oracle returns the 
preselected e with probability 2 ' l .  Each oracle query contributes a t  most 2 p k L  
to the succcss rate S A , , ~ , .  Hence at  least with probability S A , , ~  - f 2 p k t ,  the 

attacker At is able to produce two distinct, pairs ( e , g )  and (e,y) so that  e # e 
and yaf ni w:' = ij2' n, 7,: = z,. For thcse pairs we have ( ~ / y ) ~ '  = n, u:"", 
and (y, g,  e ,  F!) has the same propertics its the output, of algorithm AL of Theorem 
1. It yields thc  factorization of N with prot);tbilitg 1 /2  as described in Theorem 
3 .  

The formal factoring algorithm c:onstructs thc above mentioned pairs ( e ,  y ) ,  
(C, 9) employing a version of algorithni Al ,  o f  Theorem 1 .  It simulates Af using 
statistically independent, oracles for h,. 

. i  

The factoring algorithm picks randorii sj E J ~  Z:, , 

Factoring algorithm 

Pick random s 3  ER Z*,, set, l /o.]  1 -  .z f  for ,I = 1, .  . . X: imd 71. := 0 
Pick a random sctquence of coin tosses RA for -4,. 

For the message signature pairs reyuestcd by Adf providc random signaturt's. 
Ixt, the adversary query the 11,-oraclc ;tt)oiit ( x z ,  M , )  for i 1 1, . . . , f. 

v:' = 5, for some z 
(in this case we call t,he pair (RA,e)  sirccrssful with . r t )  then fix RA, '1, x,, 
A4,, e ,  y, set u := 4uf and go t,o step 4. Otherwise, increase u by 1 and go back 
to step 2 undoing A j ' s  computation. 
(sec:ond signing attcmpt) Simulate the ;adversary A f  with 1 1 ,  RA. 
Let the oracle answer the first i - 1 queries thc same way as in step 3. 
Let it aiiswer the other qiieries statistically iritiepeiidcnt from previous 
oracle outpnts. (111 particular, t,he orack  is rcpcat,edly queried about the 

, I  

mpt) Simuhte t,lit: adversary A, with " I ,  RA. 

If A,  fabricates a signatixrc: ( e ,  yj satisfying y" 
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(x,, ML)  of step 3 providing statist,ic:ally independent replies F . )  

then go to step 5. Ot>herwise, set IL := 71, - I .  if u > 0 go back to  step 4, 
if 7~ = 0 go hack to  step 2 (undoing thr  rorripiitation of A, in either casc) 

If Af fabricates a seronti signature (e, ?/) satisfying g'' n, u,:' = 2,' 

( e ,  F , ) / 2 ?  5 .  Compute I' := y/$, Y := inax(/ I (' = F mod 2') ~ Z := n, sl 
6. Test whether {gcd(l"'- '  i Z"+' I ,  ,&'I} -- { p , q }  holds for some z 5 t .  

Sketch of the analysis. On the ;tvc\rage it, takes l/Sj,,,, many passes of steps 2 
the siibscquent step 4 fabricatcs 

a second signature (c,fj) with the saine ,ri at, least, with probability a ( l ~  2.7 '). 
For this we note: wit,li probability a t  1 w s t  i, st tp  3 proljes al  leas1 'u 2 TSA,,~, 
rriariy pa.irs (R.4, c )  arid fixes some R.3 for w1iic:h t,hc fraction of successful pairs 
(RA,  c) is a t  least adSr1 . In tliis c;tsc, at, lcast a ~ ~ S , ~ : , ~ , - f r a c : t i o I i  of F: si1c:c:eeds 

in step 4 with t,hc .r, of step 3 .  Since st,cp 4 prohes at, least, 2 f S A f  , ~ ,  ninny random 
f. it succeeds a t  lwst, with probabilitj, 1 -- 2.7 ' .  (?'lie additional factor f' for 
the riiirriber u of probes ill step 4 corriperisatrts for tlrc number of possibilities 
for successful qiwrics. Only a second sigimture with the same i,, 2 ,  of the first 
sigriatiire ran possibly factor N . )  Finally, stcys 5 and 6 factorize N a t  least with 
probability 112. 

In case that, 'nL < t ,  the factoring algorithrn generates, as in the proof of Thc- 
orern 5, the public key from a randora pseiido-key S and factorizes N acc:ortfirig 
to Theorem 5 .  U 

(hcncc. Y 2 '  = P1+?').  

M,, P ,  y .  If &S.,if ,,, > .f Z" 

1 1  

.4 f , I I  

6 Ong-Schnorr ID is secure against active inipersoiiatiori 

Theorem 7 cxtciids tlif: rrtiiiction of Theorrni 3 frotii passive to active irnpersori- 
at,iori attacks. T h w r m i  8 presents. for arhitrnry rriodiili A' = p . y with 777, 5 t ,  a 
reduction from factoring t,o kictive iniyc.rsori;Ltiotr att,acks. The lat,ter resiilt ex- 
tends and irnprovrs the reduction given by Shoup for the case of Blum intcgcrs 
N. The efficiency of the rixiuctioii depmds in a n  interesting way on the par;m- 
cter 771. Whilo the reduction is quite PfIicierit. for 7n, close to t ,  it is less efficierit. 
for Blum integers, whcrc m = 1. This dcficiency of Bliim integers was not ap- 
parent from Shoup's proof. Shoup's proof of sccurity is riot entirely c:onstriic:tive. 
It, rcquires a priori knowledge ;tholit, the srircess rat(> of the adversary A,, given 
the knowledge froni t,he ,f r,xec:utiotrs of tlir p m t o c d  ( A ,  i f ) .  We eliminate this 
a priori knowledge. Iri a. way, Theortirn 7 c'onihines Shoup's ;trF;unient with tmhc 
proof of Lerrirria 4 [FFS88]. 

An active advtw;try. before t.hr i t i i ~ ~ ~ ~ r s ~ o ~ i a t ~ i o r i  at,ti)mpt, poses as R in a se- 
quence of executions of thc  protocol (A ,  B ) ,  asking il qnest,ions of his choice 
without necessarily following the protocol of B. Then, h c  at.tempts to  pose as A 
in the protocol ( A ,  R) .  For short we let A /  dcnote ari active adversary who asks 
for .f ID-proofs of A via ( A ,  Af) and thrn ;tt,tcmpts to impersonate A in protocol 
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(Af,B). Let rl\ v denote the total running time for / consecutive executions

of protocol (A,Af), followed by protocol (Af,B). The success rate S^ v of Aj

refers to the coin tosses of Aj, A, B in these / + 1 protocol executions. We first

show that Theorem 3 holds in case m, > t for any active adversary Aj.

Theorem7. There is a probabilistic algorithm, 'which given N and an active,
adversary Aj, generates a random public key v £/-; (Z^T ) k , factorizes N with
probability at, least 1/2 with respect to its coin tosses, and runs in expected time
O(TAfJSAjv) provided that SAfV > 2~A '+ i and m > t.

Proof. The factoring algorithm picks ,s; €/,• 7L"N for i = 1 . , . . ,k and generates
the public key v as 1/u, := sj for j = l , . . . , /c . Using the private key s =
( s i , . . . ,.s/t), the algorithm executes the protocol (A,Af) /-times providing to
Af the information necessary to impersonate A with success rate S^ v.

A key observation is that the protocol [A,Af) is witness indistinguishable
and witness hiding in the sense of [FS90], The protocol (A,Aj), executed using
the secret key s, does not reveal to Af any information about which 2'-root
Sj of 1/VJ has been used by A. The same distribution of data is given to Af
in protocol (A, Af), no matter which of the 2'-roots s} has been chosen by the
factoring algorithm. For this we note that in step 1 of protocol (A,Aj), A sends
x = r2 , a random 2*-power in TL*^ . In step 3, A sends y = r • Jj . s^', a random
2*-root of %/YLjvjJ that is uniformly distributed among all possible 2*-roots.
This uniform distribution is based on the random choice of r and is independent
of the 2(-roots ,s, of 1/vj.

Using the data transmitted within the / execrations of protocol (A, Aj), algo-
rithm AL of Theorem 1 produces an output (;(/,»/, e, e) so that Y2 = Z2 holds
for Y := y/y and Z := YijSj ' • The distribution of Y does not change
if Sj is replaced by another 2'-root of the same l/»r This holds even though
y, y formally depend on ,s. On the other hand, Z — \\ s*'~e changes
with the choice of the 2'-roots s}. Therefore the factoring method of Theo-
rem 3 remains intact. With probability at least 1/2, {gcd(Y2' ± Z'r+',N)} =
{p,q} holds for some i with 0 < i < t. D

Secure moduli. In view of Theorem 7, moduli N with m > t provide optimal
security against active impersonation attacks provided that AT is difficult to fac-
tor. This raises the question on how the difficulty of factoring a random integer
N depends on the parameter m. We are not aware of a factoring algorithm that
makes a relevant difference for small values of m, say for m < 10, the relevant
case for Ong-Schnorr ID.

The previous reductions cannot be easily extended to the case of active ad-
versaries if m, < t. At best, we can combine Lemma 4 with the use of pseudo-keys
as in Theorem 5. The factoring method of Theorem 3 requires i < m which in
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turn necessitates a large success rate: &?A, ,,, > T~~~ . Using a pseudo-key S. we 
can faetmizc N with smaller success rates SA,  , ~ ~ .  

Suppose the pseudo-key S satisfies 9:"' = l/v, for j = 1, . . . , k  with in 5 m, 5 t .  
IJsing such a pseudo-key the fac:toring ii~ct~liod works iff I < t+in-fi.  The  clraw- 
back is that  thc factoring algorit,liiri, without secret key, cannot easily simulate 
the protocol ( A ,  Af) which is n ry t,o provitic t,hc information needed by the 
adversary for iin active impersuriatiuii at tack. Following Slioiip [Sl196], we can 
simulate the protocol ( A ,  in zcroknowledge fashion by guessing the exam f: 
partly. It is sufficient t o  guess e rriocl 2'-" since the [2"-'e,J-part of the exam 
can be answered using the pseudo-key 5. To guess e mod 2 tpr iL ,  we need on the 
avcrage 2 '(' many trials. This causes a t,ime fartor 2k( 'pm)  for t,he factoring 
algorithm. 

Theorern 8 present,s a trade-off in  cssc of small 7n-values. We can either have 
an additional time factor 2k(t-rir) for fac:t,oring N ,  or clsc a required success rate 
S A ,  z, that  is 2 k ( n L p r n )  times larger than the success rate required in case m. 2 t .  

Theorem 8. There is n. probabilistic a1,qorithm wlr,ich, yiuerc the active attacker 
Af, N and fi?, with in. 5 5 t ,  g e r m u t e s  u rundom, public k q  71 ER (Z?')', 
factol-izes N fii~ith probability at lcast 1 / 8 ,  iuath respect t o  its coin tosses,and runs 
in, expected time 0(2k( t -r i1)T-  A f , 7 , / ~ , , j ,  provided t l ia t  S A ' , ~  2 2 p k t + k ( m - - n 1 ) + 2 .  

This theorern c:ont,ains thc result of Shoup [Sh96] that active impersonation 
attacks can be transformed in polynomial time into thc factorization of a Blum 
inleger rriodulus AT. If the success rate S . Z , , ~  is at least l /( log(N)) '  for somc 
constant c > 0 and if we have a corresponding a priori lower bound for SA' ," ,  
we apply Theorem 8 with th r  iriaxiinal 7ii .  satisfying 2-kt+k(7'1-TrL)+2 < '~ 5'- l t f ,V '  

With this m, the time factor 2 k ( L - ~ r ' t )  is polynomiirlly bounded, and togetskier with 
a polynomial time adversary A f , the factoring algoritliin becomes polynomial 
time. A priori knowledge of A ' s  success rate is not rcquired sirice we can simply 
guess the optimal in,, which increases t,he fitctoring time by the small f ac. .tj or m , .  

Proof. Factoring algorithm 

1. Pick random S,  E H  Z;, set 1/11, :-= .i; 
2.  Pick a random sequence of coin t,osscs RA for A.t.. 

,] !,! 
for = 1, .  . . ,A: and u := 0 

To similate f cxccutions of (A. ..If) using ", repwt st,eps 2.1, 2.2 f times. 

2.1 Pick r E K  Z;, c' = ( c i , .  . . ,(';) E F ~  [O.2'-"')'; and set x := r2' n, ~ 1 ~ ~ ' .  

2.2 Compute CJ E [o, fo~lowirig -/if. 

e' 

If c # e' mod 2t-'7' go t)ac:l< to step 2. I uricioirig tlie computation of ilf. 
Otherwise sct :y := T n .S'"" ' " "  ( A n  easy calculatiori shorn that 
y21 JJ 71v1 = .c. The f iteratioils of steps 2.1 a.nd 2.2 provide to the 
adversary iZf the information, needed for impersonation att,ac:ks.) 

/ .I 

1 ./ . 

3 .  (first impersonation att,empt) Pick c E H  [ 0 , 2 f ) k  a d  execute ( A f , B )  with 
exam e .  If S A , , ~ , ( R A , ~ )  = 1 set 71, := 471, and go to step 4. 
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Otherwise set u := u. t 1 and go back t ,o p 2 undoing the computation 
of A,. 

4. (second impersonatioii at tempt) Pick t' E H  [O, 2 ' ) k  and execute ( A I ,  B )  with 
exam 8. If S,f,v(RA,E) - 1 and e f p .  c:oInpute the replies y,y of A, with e ,  
E and go to  step 5. Otherwise set ' [ I  := 71, - 1, if 71, > 0 go ba.ck to  step 4, 
if u = 0 go back to  step 2 (undoing the> c:ompiitation of A, in either case). 

5. Compute Y := y/y.  i? := niax{i I f = r' mod 2') , 2 := n, 1 3  S ( . e ' - F ' ) ' 2 F  

6. Test whcthcr { g c d ( Y " - '  f 22'"+y-' , N ) }  - { p ,  q }  holds for some 
1. (hence y2' = 22""' 

i 5 rnin(t, 7~ + a) .  
Analysis. Each evaluat.ioii of +(RA,  c )  rcquircs f executions of protocol 

( A , A f )  followed by an execulioii of protocol (A4f,B). Here A, is dctermiried by 
its scqucncc of coin tosses RA whilc A and H follow the protocol (A, B )  with 
iridepeIideIit coin flips. 

The steps 2.1 arid 2.2 simulate the protocol (A,  Af) in zeroknowlcdge fashion 
using the pseudo-key S. This is possible by partially guessing the exam e. 

Step 3 counts the number u of probed pairs ( R A ,  c )  until a sii 
p 4 probes at, most 411, pairs t o  f i r i d  a second 

( B A , e )  for the same RA. Steps 2, 3, 4 are passed on the averagc at most 
O(l/S;l, T,) timcs. This follows from thc argument set, forth in Lemma 4 of 
[FFS88]. 

In st,ep 2.2, the equation e = c' mod 2 ' - r i L  holds with probability 2-k( t -" ' ) .  
Guessing a correct E takes on thc average 2k( ' -m1 many trials causing a time fac- 
tor 2k(t-"L). Hence the algoritlim runs in expected time o(P(~-" )T -  A f ,21 I SA f ,?I 1 . 

By the coiistructioii we have Y" = Zz'"+' . Therefore, the factorizat,iori at- 
tempt in step 6 succeeds with probability > 1/2  iff there exists i with l + f f - m ,  < 
i 5 min(t, fi + e ) .  This condition is satisfiable iff' P < t + m - 7i7.. By Lemma 4 and 
since 2 2-"f+"("-"')+2 , the inequalit,y P < t + rii, - fi?, holds a t  least with 
probability 2 114. IIerice the factoring of N succeeds a t  least with probability 
118. 

The required lower bound on S A , , ~ ,  is nearly sha,rp, as the inequality S;lt,?, > 
0 

Patent note. No patent has been filed for the Ong-Schnorr scheme. 'I'his makes 
it attra.ctive to  iisc iristanccs of this schemc t,liat do not fall iindcr the FS- or the 
GQ-patent. 

Acknowlwedgement. The author thanks V. Shoup for pointing out, an error 
iri a draft version and .I.€'. Spifcrt, for his cwmincnts. 

ry for t,he c:ondit,iori f < t + 717, - ni,. 
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Erra turn 

C.P. Schnorr: Security of 2t-Root Identification and Signatures, 
Proceedings CRYPT0'96, Springer LNCS 1109, (1996), pp. 143-156 
page 148, section 3, line 5 of the proof of Theorem 3. 
Correction. Thc proposed factoring method 

Check whether {gcd(Y2' f Z2'+', N ) }  = { p , q }  holds for some i with 0 5 1: < t 

fails if ~ 2 1  = - - ~ 2 ' + '  liolds for some i with o 5 i < t ,  otherwise it factors N 
with probability f. In the first case continue the factoring algorithm as follows 
until it factors N with probability i: 
Supplemental steps to the factoring algorithm. Repeat the entirc algo- 
rithm using independent coin flips and construct independent pairs (Y, 2) with 
~ 2 '  = ~ 2 ' + '  Iriotl N until either of the following two cases arises. 

Case I. Y" + -z"+' for all i with o 5 i < t holds for some (Y, z ) .  ~1ieI i  termi- 
riatc as the proposed factoring method siicceeds using Y, Z with probability 

Case 11. Y2' = -Z2'+' holds for two independent pairs (Y,  Z ) ,  (Y ' ,  2'). Then 
replace these pairs by (Yn,,,ZneW) with Y,,, := YY' ,  Z,,, := 22'. If 
YZ=" - - -Z,,, holds for some in,, then we have in,, < i ,  otherwise 
terrninate ( as the proposed factoring mcthod succceds using Y,,,, Z,,, with 
probability 4 ). 
Continue the repetitions of the entire algorithm using idependent coin flips 
and continue to decrease i until the algorithm either terminates in Case I or 
enters Case I1 with i = 1. In the latter case the proposed factoring method 
succeeds iising Y,,,, Z,,, with probability f ,  in particular {gcd(Y,,, k 
Z,,,, N ) }  = { p ,  q}  holds with probability f. 

With the supplemental steps the algorithm factorizes N with probability 4. The 
supplemental steps increase the time bound for factoring by a factor O(e). The 
correctness proof of the amended factoring method uses the following observation 

We see from Y2' = Z2"' mod N that Z 2 ' / Y  is a 2t-root of 1 mod N. This 
root is not necessarily uniformly distributed over all 2t-roots of 1 mod N. But 
it is uniformly distributed within certain cosets. 

Fact. Let Y = Y ( Z 2 ' )  be a function of Z2' that solves Y2' = Z2"' mod N with 
P < t .  Then Z2'/Y takes the roots in C Q R N ( ~ ~ ) ~ '  with equal probability for 
all CQ E R N ( ~ ~ ) ,  where R N ( ~ ~ )  denotes the group of 2t-roots of 1 mod N and 

1 
2 '  
- 

y r n e w + '  

C R N ( ~ ~ )  denotes the subgroup of 2'-powers. 

All subsequent factoring algorithms in the paper have to be amended in the 
same wa.y. 
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