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Abstract. The problem of computing roots of a polynomial over the 
ring Z, is equivalent to  factoring n. Starting from this intractable pro- 
blem we construct a public key encryption scheme where the message 
blocks are encrypted as roots of a polynomial over Zn and a signature 
scheme where the signature belonging to  a message is a (set of) root(s) 
of a polynomial having the message blocks as coefficients. These sche- 
mes can be considered as extensions of Rabin's encryption and signature 
scheme. However, our signature scheme has some new properties: a short 
signature can be generated for a long message without using a hash func- 
tion, and the security features of the scheme can be chosen either to be 
similar to those of the RSA scheme or to  be equivalent to those of Rabin's 
scheme. 

1 Introduction 

In this paper we investigate an intractable problem related to the problem of 
factoring. This problem can be stated as follows: 

Root Finding Problem (RFP): Compute one (all) root(s) of a polynomial 
f(x) over the rang Z,, where n = pq  i s  the product of two large primes. 

For randomly chosen polynomials the RFP is equivalent to the problem of 
factoring n whenever f(z) has at least two different roots. If f(x) has exactly one 
root, the root finding problem seems to be related to the problem of decrypting 
an RSA ciphertext. Section 2 summarizes some mathematical results on the 
RFP. 

In Sect. 3 we present a public key encryption scheme the security of which 
is based on the difficulty of the root finding problem: A message is divided into 
blocks and a certain redundancy is added to these blocks. The result of this ope- 
ration is interpreted as an integer less or equal to n. These numbers 21,. . . , zk 
are then encrypted as roots of the polyriornial J(z) := (z- z 1 ) .  . (z-zk) rriod n. 
The public key used for this operation is the modulus n. Decryption can be done 
by using the private key ( p ,  q )  to compute roots of the polynomials f(z) mod p 
and f(z) mod q in the corresponding finite fields, e.g. with the algorithm de- 
scribed by Ben-Or in [B081], and by combining these results via the Chinese 
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remainder theorem. The chosen redundancy scheme will then help to  find the k 
correct roots out of the k 2  solutions, 

In Sect. 4 a signature scheme is described where the roles of coefficients and 
roots are interchanged: The blocks of the message are interpreted as coefficients 
of a polynomial. The signature z of the message is a root of this polynomial. 
However, since not all the polynomials in +,[z] have a root, some randomization 
must be used in order to generate a signature, e.g. by choosing the  coefficient of 
xo randomly. The feasability of the signature scheme is guaranteed by Thm. 3. 
This theorem and the corollaries following it give the number of polynomials in 
Z,[2] which have at least one root (at least two roots, resp.). 

The encryption and signature scheme presented in this paper are extensions 
of ideas of Rabin [Rab80], but due to  the more general setting they are more 
flexible. By choosing a randomized polynomial with the appropriate number 
of roots, the security features of our signature scheme can be chosen either to  
be equivalent to those of Rabin's scheme or to be similar to those of the RSA 
scheme. 

Furthermore, our signature scheme has the property that we can generate 
short signatures for long messages without using a hash function. As far as the 
authors know no other signature scheme with this property exists. 

2 Some Properties of Polynomials over Z, 

The root finding problem is a new intractable problem based on the problem 
of factoring integers. Other well-known problems based on factoring are the 
problems of computing square roots of quadratic residues and breaking the RSA 
public key cryptosystem. In this paper, n always denotes an integer that is the 
product of two large primes p and q :  n = p q .  

Finding a root of a randomly chosen polynomial f E Z,[x] is equivalent to 
factoring n if f(z) has at  least two different roots. This will be proved in Thm. 2. 
If f(z) has only one root over Z,, then the root-finding problem includes the 
problem of decrypting an RSA ciphertext as a special case: To decrypt c = me, 
we have to find the unique root of the polynomial ze - c E Z,[z]. 

If we know the factorization ( p ,  q )  of n, the problem of finding a root of a 
polynomial f E Z,[z] can be reduced to the (easy) problem of computing roots 
in the finite fields GF(p) and GF(q) [B081]. The results can be combined to 
construct solutions of the root-finding problem by using the extended Euclidean 
algorithm and the Chinese remainder theorem. Details of this construction can 
be found in the appendix. 

In order to get a better understanding of the structure of the set of roots of 
a polynomial defined over Z,, and in order to be able to prove Thm. 2 given 
below, we need the following definitions. 

Definition 1. Let f (z )  be a polynomial over Z,. 
(1) Two roots z1 and z2 of f(x) are said to  be in the same row (resp. in the same 
column) if they are equivalent modulo q (resp. modulo p ) .  
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(2) A set {q, . . . , z t }  of roots of f E B n [ x ]  is called a partial transversal if no 
two of its elements are in the same row or column. A transversal is a maximal 
partial transversal. 

0 6  0 1 2  0 3  

0 1 1  0 2  0 8  

0 1  0 7  0 1 3  

The following examples illustrate the concepts of transversal and being in a 
row or column. 

Example 1. (1) The set (211,. . . , u t }  is a transversal of the set of roots of g(z) := 
(x - u1)(z - " 2 ) .  . (z - u t )  mod n if the ui are such that ( ~ i > ~  # ( ~ j ) ~  and 

(2) In the picture given below the set of roots of the polynomial g(z)  = 
( x - l ) ( x - 2 ) ( ~ - 3 )  (mod 15)isgiven.It  hassixtransversals {1 ,2 ,3} , {6 ,7 ,8} ,  
{11,12,13},  {1 ,12 ,8} ,  {6 ,2 ,13}  and {11 ,7 ,3} .  

( " 4 q  # ( " j ) p  for i # j. 

The proofs of the following theorems can be found in the appendix. 

Theorem 2. The problem of computing roots of polynomials over B ,  which have 
a t  least two different roots is equivalent t o  the the problem of factoring n. 

If we choose a polynomial f(x) at random, e.g. by choosing its coefficients 
at random, we cannot be sure if this polynomial has a root or not. E.g. if f(z) 
is irreducible either over G F ( p )  or over G F ( q ) ,  then f(z) has no roots modulo 
n. The following theorem gives the percentage of polynomials of degree k which 
have exactly m roots over the finite field GF(p). 

Theorem3. The fraction of polynomials of degree d ouer GF(q)  which have 
exactly m roots converges f o r q  --+ co t o  .C:zT(-l)i. A .  B y  increasing d-m 
this number converges very quickly t o  ' e- ' .  

The following corollaries guarantee that the generation of signatures in the 
signature scheme described in Sect. 4 is feasible. They give the probability that 
a randomly chosen polynomial will have a1 least one root (at least two roots, 
resp.). 
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Corollary 4. ( I )  The fraction of polynomials o f  degree d over GF(q) which have 
no roots converges for  q + 00 t o  Cf=o(-l)i . h.  By increasing d this number 
converges very quickly to e-l w 0.36788. 
(2) The fraction of polynomials of degree d over GF(q)  that have at  most one 
root converges for  q --+ m t o  2 Ci,o(-I)* . A) - ( -I)d . $. B y  increasing d ,  
this number converges very quickly to 2e-' M 0.73576. 

Corollary5. (1 )  For large d and q the fraction of polynomials of degree d over 
GF(q) that have at least one root (at least two roots, resp.) can be approximated 
by 1 - e-' (1 - 2e- l ,  resp.) .  
(2)  For large d and n the fraction of polynomials of degree d over H, ihat have 
at least one root can be approximated b y  (1  - e-1)2 .  
(3) For large d and n the fraction of polynomials of degree d over Z, that have 
a t  least two roots can be approximated b y  1 - 2e-l. 

( d  

3 Encrypting a Message as Roots of a Polynomial 

In the preceding section we have established an intractable problem: computing 
roots of a polynomial defined over B, .  It is quite natural to use this problem to  
encrypt data, in the same way as Rabin used the problem of computing square 
roots for his encryption system [Rab80]. 

The public key of this encryption scheme is the modulus n, the private key 
is the factorization ( p ,  q )  of n. 

Encryption function E(m) 

1. Split the message m into blocks m = 7EilI . . . 
2.  Add some redundany to these blocks to make them recognizable and to order 

3.  Interpret ml ,  . . . , mk as numbers less or equal to n. 

5. Transmit the ciphertext c = E(m)  := ( u k - I , .  . . , u1,no). 

them. Let m l ,  . . . , mk denote the result of this operation. 

4. Compute f(z) := ( z -ml)  ' .  . (z-mk) mod n = z k S a k - 1 ~  k - l+ .  ' .+a1z+ao. 

The necessity of the second step, making the numbers recognizable, will be- 
come clear when we look at the decryption function. 

Decryption function D(c) 

1. Reconstruct the polynomial f(z) = zk + a k - l ~ ' - ~  + .  . .+ u1z +a0 from the 
ciphertext c := (ak-1,  . . . , a l ,  uo). 

2. Compute the roots vl,. . , , v k  of fp(x) := f(z) m o d p  over GF(p) and 
w1, . . . , W k  of f,(z) := f ( z )  mod q over GF(q). 

3.  The extended Euclidean algorithm yields 1 = Xp + p q .  Use this equation 
in the Chinese remainder theorem to compute the k 2  roots zij = wiXp + 
v jpq  mod n of f(z) in H,. 

4. With high probability, exactly k of these roots will fit into the given red- 
undancy scheme. Arranging these roots in the right order and removing the 
redundancy will give the original message m := D(c) .  
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Security of the encryption scheme 

Public Key property. Computing a root of a polynomial over Zn is equi- 
valent to  factoring n by Thm. 2. Rut we cannot apply Thm. 2 directly since 
we are not dealing with random polynomials, but only with a certain subset of 
R[s] Z,[s]. It consists of those polynomials which have at  least one transversal 
satisfying the redundancy scheme. 

However, if the redundancy scheme is weak in the sense that this subset is 
large, we could use an oracle that outputs a root which fits into this redundancy 
scheme exactly like the more general oracle in the proof of Thm. 2. This would 
just increase the number of trials by a factor of &, where &[2] consists of 
the polynomials of degree d from R[a]. 

There is a clear relation betwccn the strength of the redundancy scheme and 
our ability to prove equivalence to the factoring problem. But if we choose the 
redundancy scheme too weak, the second plaintext attack described below can 
break the system completely. 

It should be clear that is not possible to break the system (i.e. to factor the 
public key n) by simply choosing some message blocks ml , . . . , mk and the trying 
to use these roots and the corresponding polynomial f(z) to  factor n, because 
with overwhelming probability the numbers ml , . . . , m k  will form a transversal 
(cf. proof of Thm. 2). 

Second plaintext attack. If an attacker chooses the message blocks 
ml,  . . . , mk and then manages to make the owner of the private key decrypt the 
ciphertext c for him, the redundancy scheme must be strong enough to prevent 
this attack. 1.e. regardless how the attacker chooses ml , . . . , m k ,  the probability 
that there is a root different from ml , . . . , m k  satisfying the redundancy scheme 
is negligible. 

GCD attack. If two messages m,m' are encrypted with the same public 
key n, and if these messages have one message block m; in common, then i t  
may be possible to recover mi by calculating the greatest common divisor of 
the corresponding polynomials f and f ' .  However, this does not mean that the 
system is broken. Observe that information which is common in many messages 
can not be considered to  be very confidential (e.g. the name of the owner of the 
public key). 

4 Signing a Message by Computing a Root 

A less obvious application of polynomials over Z, is the signature scheme de- 
scribed in this section. We get a signature scheme based on the RFP if we 
interchange the roles of coefficients and roots in the encryption scheme of the 
last section. In this scheme, blocks of a message are interpreted as coefficients 
of a polynomial. The signature of this message consists of one or more roots of 
this polynomial; in case of two or more roots, thcse roots must of course be part 
of a transversal. 
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Signature function Sig(m) 

1. Divide the message m into blocks a k - 1 , .  . . , al.  
2. Interpret these blocks as numbers less or equal to n. 
3.  Choose a random number 5 n. Add some redundancy to this number and 

use the result a0 as the coefficient of 2". 
4. Compute one or more roots T I , .  . . , rt (1 5 t 5 k) which are part of one 

transversal of the polynomial f (z)  := rk + ak-lxk-l +. . . + alz + ao mod n. 
If f(z) has no roots or doesn't have enough roots, then repeat step (3). 

5. Add the signature s = Sig(m) = (ao, r1, . . . , rt) to the message m. 

If we add at  least two roots from a transversal, then the problem of breaking 
this signature scheme is equivalent to the problem of factoring. 

Verification function Ver(m,s) 

1. Reconstruct the polynomial f(r) := x k  + uk-lxk-l + ' .  . + u1z + a0 from m 
and s = (ao, q,. . . , r t ) .  

2. For i = 1 , .  . . , t compute f ( r ; )  mod n and check whether all these values 
equal 0. If this is the case, the signature is accepted, otherwise rejected. 

The signature can be made much shorter than the message to be signed: it 
is sufficient to  use one root r ,  and the random part of the coefficient a0 can be 
made as short as it is possible without allowing for an exhaustive search attack. 
E.g., this means if factoring of 768 Bit numbers is considered to  be intractable, 
a short signature could consist of 768 + 64 Bit, for messages of arbitrary length. 
To produce such a short signature, no hush function is necessary. 

Choosing a0 at random is not the only way to make the signature scheme 
work. It is only necessary to use some randomization for generating messages, 
but there are various other possibilities for doing this, e.g. choosing some bits of 
each coefficient at  random. However, this randomization has to be integrated in 
the signature function in such a way that the attacks described below will not 
work. 

Security of the signature scheme 

Any direct attack on the signature scheme, i.e. trying to directly compute a 
signature for a given message m, is in difficulty either equivalent to factoring TI 

or related to the security of the RSA signature scheme If the polynomial f(z) 
has at least two different roots, Thm. 2 applies and guarantees the equivalence 
with the factoring problem. If f (z)  has only one root, our scheme includes the 
computation of a RSA signature as a special case: the RSA signature of m is the 
unique root of xe - m 

We can now state a number of possible attacks on our  scheme and how they 
can be made impossible. In describing the security features of our signature sche- 
me we make use of the classification of attacks and features given in [GMR88]. 

(mod n) .  
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Existential forgery by multiplication with a linear polynomial. It is 
possible to  get a valid pair (m,  s) by first choosing a message &, computing the 
corresponding polynomial f(z) of degree k - 1 and multiplying this polynomial 
by x - T :  f(z) := f(z)(z - r )  mod n. Then the coefficients ( a k - 1  J .  . . , al)  of f(z) 
form the message rn, and (ao,  T) is a valid signature for this message. However, 
if we proceed in this way, it is difficult to determine 6 and r in such a way that 
the resulting message m makes any sense: If we could fix the message (m, ao) in 
advance and then determine 6 and T ,  this would give an algorithm for solving 
the root finding problem. 

It should be noted that a similar attack works for the RSA signature scheme: 
Choose a number r and compute re mod n. Then (m, s) := ( r e ,  r )  is a valid 
message-signature pair. 

Universal forgery by choosing a pair (a0 , s). If we want to sign a message 
( a k - 1 , .  . . U l ) ,  we may simply use the polynomial g(z) := zk + Q k - 1 z k - ’  +. . .+ 
alz to compute a0 from s. Choose r randomly and let s := r and a0 := -g(r) .  
Then the polynomial f(z) = g(z) + a0 = g(z) - g(r)  has s = r as a root. 

To make this attack impossible it is necessary to guarantee that the root T is 
calculated from the whole set of coefficients including ao. This can be achieved 
by e.g. requiring that the coefficient a0 fits into a given redundancy scheme, or 
by computing a0 from the other coefficients. 

Total breakability by a directed Chosen Message Attack. An attacker 
may choose the message ( a k - 1  J .  . . , u1) and a coefficient 6 in such a way that 
he knows one root of the corresponding polynomial. He may then try to  make 
the owner of the private key sign the message with the given G in order to get 
a different root in the same row or column. 

To avoid this attack, it must be guaranteed that the coefficient a0 (or any 
other probabilistic element of the scheme) is choosen by the signer of the message 
only. In this case the probability that a0 = Co is negligible. 

Another method to make such an attack impossible is to require that the 
coefficient a0 is chosen in such a way that the polynomial f(z) has exactly one 
root over Z,,. The fraction of polynomials with this property is large enough to  
guarantee the feasability of this approach (cf. Cor. 5). 

h 

A 

Redundancy Schemes 

During our previous discussions, we used the term “redundancy scheme” in a 
very broad sense. A redundancy scheme in this sense could consist of fixing some 
of the bits of the q ,  or of applying an error correcting code or a cryptographic 
hash function on the z. There may be some applications where some redundancy 
scheme is already given, e.g. an error correcting code is needed for the reliable 
transmission of the coefficients. The only requirement on the redundancy scheme 
used is that  the number of bits which will be determined through this scheme is 
large enough to prevent an exhaustive search attack; this number may e.g. range 
from 64 to  128 bits. 
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Encryption 
Decryption 

Generationof a 
signature 

Verification of 
a signature 

5 Performance 

0 (4 O(d) 
0 (d(1og d ) 2  log2 d logp) O(d log n) 

0 @(log d)2  log2 d logp) O(d log n )  

O(d) a d )  

The most time consuming task in the two schemes presented is to  compu- 
te roots of polynomials defined over GF(p)[z]. A fast probabilistic polynomi- 
al time algorithm for computing roots of polynomials of degree d in GF(p) 
was proposed by Rabin [RabsOa]. The investigation of its complexity was la- 
ter refined by Ben-Or [B081]: he proved that Rabin’s algorithm needs on- 
ly 0 (d(logd)2 log’ d1ogp)arithrnetical operations in GF(p) to compute all the 
roots of a polynomial of degree d .  

When using Rabin’s algorithm to compute roots of a polynomial in a finite 
field, in the worst case the same number of arithmetical operations is needed 
for computing only one root or all the roots. So the complexity for decryption 
of a ciphertext and for the computation of a signature only differ by a constant 
factor, namely the expected number of times one has to choose a random KJ to 
be able to compute a signature. 

The following table gives a comparison of the performance of our schemes 
with the RSA variant where the public exponent is always chosen to  be equal 
to 3.  Thc advantages of our scheme are more obvious if compared to  the normal 
RSA scheme. 

RSA ( d  blocks) 
with e = 3 Polynomial Schemes 

6 Open Problems 

An interesting open problem is to investigate in more detail the difficulty of 
computing the unique root of a polynomial that has only one root. This could 
throw some light on the famous open question about the security of the RSA 
scheme in relation to the difficulty of factoring integers. 

The following variant of our schemes has been proposed by one of the referees: 
Take f (z)  := akz‘ + . . . + a12 + a0 mod R as Alice’s public key, and let ( p ,  q )  
be her private key. Then a message m can be encrypted as the polynomial 
c(z) := f(z) - f ( m ) ,  where m is a root of c(z). The message m could be signed 
by computing a root of either c(z) or of C(z) := f(t) - m. The properties of 
the polynomial c(z) have to be investigated. This approch has as disadvantage 
the length of the ciphertext to be transmitted, but may be useful as a signature 
scheme. 
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8 Appendix: Proofs of the Theorems in Section 2 

For any a l p  E Z let u p  denote a mod p .  If p and p are different primes, the 
extended Euclidean algorithm computes integers X and p such that 

1 = x p +  pq. 

This equation is used in the Chinese remainder theorem to construct a solution, 

a = aqXP + appq ,  

which is unique in Z,, of the system of congruences 

a 3 up (modp) and a =  uq (mod q ) .  

Lemma 6 .  T h e  in teger  a is a root of t he  po lynomia l  f E Zn [x] ( n  = p q )  if and  

only  i f f (ap)  z 0 

Proof. Reducing modulo p (modulo q )  is a ring homomorphism from Zp4 to Zp 
(Z,), so it is clear that from f(a) 0 (mod n) the two reduced equations 
follow, 
On the other hand, f(a) f(ap) 0 (mod p )  and f(a) 3 f ( u q )  0 (mod q ) ,  

(mod p )  and f (u , )  = 0 (mod q ) .  

which gives f ( a )  E 0 (mod n). 0 
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Lemma 7. (1) The map GF(p) x GF(q) -+ Zpy gaven b y  (apl a q )  H a E a,Xp+ 
a,pq (mod n) is a ring isomorphism. 
(2) If 

a E a,Ap + a,pq (mod n) and b E byAp + b,pq (mod n) 

are roots o f f  E Zn[z], then 

c G a,Xp + b,pq (mod n) and d E b,Ap + a,pq (mod n) 

ore also roots o f f .  
(3) I f k ,  and k,  are the numbers of roots of f (z)  in GF@) and GF(q) resp., then 
k p k q  is the number of roots o f f  E Zn[x]. In  particular, the number of roots of 
f(z) 

Proof. (1) The solution given by the Chinese remainder theorem is unique in 

(2) We have f ( c )  (mod q )  and f(c) z f ( b p )  E f ( b )  E 0 
(mod p ) .  Combining this we get f ( c )  (mod n) ,  and the same argument 
applies to d. 
(3) This follows from (l), Lemma 1 and the fact that in the fields GF(p) and 

0 

(mod n) is at most (degf)’. 

+n. 

f(a,)  E f ( u )  E 0 
0 

GF(y) the polynomial f has at most degf roots. 

If we know the factorization of n,  we can compute all roots of f(z) mod 
n: There are probabilistic polynomial time algorithms for computing roots of 
polynomials of degree d [B081] that need 0 (d(1og d ) 2  log2 d logp) arithmetical 
operations in GF(p), and from the two lemmas above we get all the roots in Zn. 

Lemmas. Let g(z) := (x - u l )  a . . (z - ut )h(x)  a poIynomial from Zn[2], where 
( ~ 1 , .  . . , u t }  is a transversal of the set of roots of g(x). 
(i) If we know two roots of g(z) that are in the same row or in  the same column, 
then we can easily compute the factorization of n. 
(2) If { z ~ , . .  . , z t }  is  a transversal diflerent f rom { u I , .  . . , ut}, then g(z) E 
(z - 21). . .(z - z , )h(z )  (mod 71). 

Proof. (1) Let zi and z j  be in the same row, i. e. ( z i ) ,  = ( ~ j ) ~ .  Then 

( 2 )  We have (z - 211). .(z - u t )  . h ( z )  f (z - ( ~ 1 ) ~ ) .  . . (z - (tit),) . h ( z )  
( z - ( ~ ~ ) ~ ) . . . ( z - ( z ~ ) ~ ) . h ( z ) ~  ( X - Z ~ ) . . . ( ~ - Z ~ ) . ~ ( X )  ~ g ( z )  (modp).  A 

q = gcd(n, Z; - ~ j ) .  

similar equation holds for q ,  so the statement is proved. 

Proof of Theorem 2. If we know the factorization of n ,  we can compute the 
roots of f (z)  in the finite fields GF(p) and GF(y) in polynomial time [B081] 
and combine the results via Lemma 1 and 2. 

NOW lets assume that we have an oracle that,  when fed with a polynomial 
f (z)  E Z,[z], which has at least two different roots, outputs one root of this 
polynomial. We can use this oracle to factor n in the following way. 
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First we choose a, b E Z, and g ( s )  E Z,[x] at random. Then we compute 

f(z) := (X - a)(. - b ) g ( X )  

and ask thc oracle about a root of f(x). Let the oracle's answer be c. If c is 
different from a and b and lies in the same row or column than a or 6 ,  we can 
factor n. If not, we repeat this process again. 

Now let d be the minimal degree of a polynomial for which the oracle works. 
In this case we may choose as g ( z )  a random polynomial of degree d - 2. Then 
f(x) has at  most d2  roots. The probability that n can be factored by applying 
the process described above once is larger or equal to 

4 d - 6  = const., 
d2 

so by repeating the process roughly times n will be factored. 0 

This result is a generalization of the problem of computing square roots in 
Z,. In [Shag31 Shamir generalized this problem in terms of factorizations of 
polynomials: If one can factor the polynomial x 2  - a E (z - b)(z  - c )  f Z,[Z], 
then b and c = - b  are square roots of a. To factor n ,  one has to  find two different 
factorizations of this form. 

Proof of Theorem 3. For fixed d and q ,  we may represent the number of poly- 
nomials from GF(q)[z] of degree d that have no root over GF(q) as a polynomial 
from R[x] of degree d in the variable q. Since we are only interested in asymptotic 
results, we consider only the coefficient of q d .  

The number of polynomials of degree d having a multiple root in GF(q) can 
be expressed as a real polynomial of degree d - 1 .  Therefore in our analysis we 
can ignore all effects coming from multiple roots, and we may assume that all 
the roots of the polynomials we are considering are different. 

Now let d be fixed. Let the number of monic polynomials of degree d over 
GF(q) which have exactly m roots be asymptotically equal to 

(The right hand side term being the definition of c,,,.) 

w e  now count the (k+l)-tuples ( f l , f 2 , .  . . ,  fk ,g) ,  where the fi are monk 
linear polynomials and g is a monic polynomial of degree d - k over GF(q). The 
number of these tuples equals q k  . qd-' = 9 .  

We can also count differently: If we associate to  each tuple (fi , f2, . . . , fk, g )  
the polynomial f l f 2  . . . f k g ,  then each polynomial with exactly m 2 k (different) 
roots occurs exactly (myk) . k! times. (Here we ignore multiple roots.) 

Together we get 

q d =  ( ) .k!.Arn(q). 
m - k  

m=k 
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Division by qd gives: 

d d 
m! Cd-m 

1 = C  am = c ( m - k ) ! '  
m=k (m - k)! 

m=k 

With j = d - k and i = d - rn it follows that 

j - 1  
Ci 

cj = 1 -  C m. 
i = O  

This is a recursion formula for cj . With induction we get: 

1 k ct=C(- . - ,  l) i! 
i=O 

(It is sufficient to show that Cr=o (Ci=o(-l)i k . $) . & = 1. With the 

substitution j = m - k + i this is equivalent to  C:=, (Ci=, a) = 1, which 
holds in view of the binomial theorem.) 

Now we can calculate asymptotically the number of polynomials of degree d 
over GF(q) which have no roots: 

0 

Proof of Corollary 5. Part (1)  is an immediate consequence of Cor. 4. 
(2) Note that the mapping 4 : Z,[e] + Z p [ 2 ]  x Z,[2] defined by 4(f) := 

(f mod p ,  f mod q )  is a bijection by the Chinese remainder theorem. The poly- 
nomial f E Z,[z] has ah least one root if and only if both f mod p and f mod q 
have at least one root. Hence (2) follows from (1) .  

(3) A polynomial f E Z,[z] has exactly one root if and only if both f mod p 
and f mod q have exactly one root. Hence the fraction of polynomials with this 
property is approximately equal to (e-l)',  and so the fraction of polynomials 
with at  least two roots can be approximated by (1  - e-1)2 - e-' = 1 - 2e-I. [7 
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