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Abstract. We present a new method to forge EIGamal signatures if 
the public parameters of the system are not chosen properly. Since the 
secret key is hereby riot fourid this attack shows that forging ElGamal 
signatures is sometimes easier than the underlying discrete logarithm 
problem. 

1 Introduction 

ElGamal's digital signature scheme [4] relies on the difficulty of computing dis- 
crete logarithm in the multiplicative group IF'; and can therefore be broken if the 
computation of discrete logarithms is feasible. However, the converse has never 
been proved. In this paper we show that it is sometimes possible to  forge signa- 
tures without breaking the underlying discrete logarithm problem. This shows 
that the ElGarrial signature scheme and some variants of the scheme must be 
used very carefully. 

The paper is organized as follows. Section 2 describes the ElGamal signature 
scheme. In Section 3 we present a method to  forgc signatures if some additional 
information on the generator is known. We show that signatures can be forged if 
the generator Q is smooth and divides p -  1. Hence for example Q = 2 is a totally 
insecure choice. In Section 4 we discuss the case where the public parameters 
are not chosen by the user itself. The authority that chooses these parameters 
may generate some trapdoor information, which will allow it to sign arhit,rary 
messages for any user. Section 5 contains a brief description of some possible 
countermeasures. In Section 6 we discuss a variant of the ElGamal scheme over 
Z/nZ  with n = pq,  which was believed to  be as hard as factoring and computing 
discrete logarithms. However, the factorization of n can often be derived from 
known signatures. Moreover, we show that in this case computation in only one 
of the groups IF'; or IF; is sufficient to  forge signatures. Again it is not ncccssary 
to  discover the complete secret key of a user to generate signatures. 
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2 ElGarnal's signature scheme 

ElGamal's signature scheme can be described as follows. 

Public parameters. Let, p be a large prime and a a generator of the multiplicative 
group IF;. 

Secret key and public kev. Every user A chooses a secret key XA E (0, . . . , p  - 2) 
and publishes YA G ax* (mod p )  as his public key. 

Computation of a signature. Let 0 5 h < p - 1. To compute a signature on h 
user A proceeds as follows. First he chooses a random value k E ( 0 , .  . . , p  - 2) 
relatively prime to p - 1 and computes 1 5 7' < p and s by 

r = a Ic (mod p )  

and s = (h - xAr)k-'  (mod p - 1). 

The pair (T ,  s )  is a valid sigmture on 11. 

Verification of a signature. Any user knowing the public key IJA can vcrify the 
signature by checking that 1 5 r < p and the following equation are satisfied. 

The ElGamal signature scheme can bc broken when discrete logarithms in 
IF'; can be computed. The prime p must therefore be chosen large enough to 
prevent the computation of discrete logarithms by the number field sieve [6] and 
p - 1 must contain at least one large prime factor to  disable the algorithm of 
Pohlig and Hellman [13]. The value h, that occurs in the signature is normally 
not equal to the message to sign, it is rather the result of a collision free hash 
function applied to  the message. This avoids the existential attack described in 
[4]. It is important that the verifier checks whether 1 5 r < p is satisfied. If he 
would accept signatures where r is larger than p then any signature ( r ,  s) on h 
could be used to generate a signature ( r z ,  s2) on an arbitrary hash value h2 by 
setting u = h2h-l (mod p - 1). This implies 

NOW (r2, s2) can be found by setting .fa E su. (mod p - 1) and by computing 
7'2 satisfying ~2 ru  (mod p - 1) and r2 = r (mod p )  by using the Chinese 
Remainder Theorem. This kind of attack will for example be used in Section 6. 
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3 Weak generators 

Thc security of the ElGamal signature scheme depends heavily on thc parameters 
p and a. The following theorem shows that, ElGarnal signatiires can be generated 
when some additional information on the generator cy is available. 

Theorem 1. Let  p - 1 = bw where b is  smooth and let y~ be the public key of 
user  A. If a generator /3 = ctu with 0 < c < b and a n  inte,qer t are known such 
that Pt G LY (mod p )  then  a valid ElGurnul signature (rl  s )  o n  a given h can be 
found.  

Proof. First, we show that the eqiiat,ion 

ow' = ( y ~ ) ~  (mod p )  

can bc solved for z .  It follows from p - 1 = bui that the subgroup H generated by 
IY" has order b. Since b is smooth it is possible to  corripute discrete logarithms 
in H by using the algorithm of Pohlig and Hcllman [13], so that z can be found. 
Now let 

r = / 3  
s E t ( h  - cwz)  (mod p - 1). 

Then ( T ,  s) is a valid signature on h since 

Corol lary 2. If Q i s  smooth and divides p - 1 th,en it is possible t o  generate a 
iinlid ElGamal signature o n  an arbitrary m h r e  h. 

Proof. Let ,L? = ( p  - 1)/u arid t = ( p  - 3)/2.  Then Pt = (-1)P-l = Q: (mod p ) .  
0 Thus it follows by Theorem 1 that signatures for all h can be forged. 

Thus if the generator 01 is chosen badly then signatures on every given mcssage 
can bc found without knowing the secret key. Choosing cy = 2 is exceptionally 
bad since it allows to forge signatures independently of the choice of p .  Such small 
generators are sometimes chosen in order t,o get ar i  efficient exponentiation. 

It should be noted that this attack succeeds because of the special choice of 
r l  which reduces the discrete logarithm problem in IF'; t o  the discrete logarithm 
problem in a subgroup of with smooth order. Another attack that is based 
on the fact that discrete logarithms in small subgroups are computable has 
been described recently by Menezes Qu arid Vanstone [ll]. (Their attack shows 
that authcnticity is not guaranteed in a few Diffie-Hellman based key agreement 
protocols .) 
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4 Constructing a trapdoor 

The public parameters 1) and a inay be fixed so that, every user in the system uses 
the same group arid generator. Such a convention is attractive because it allows 
the use of shorter public keys. Additionally, signatures can be computed and 
verified much faster by using precomputed exponents [2].  However, the authority 
choosing the prirris p and the generator cy for a signature system may addit,ioiially 
generate some trapdoor information that can be used to forge arbitrary messages 
later. 

One way to  generate a prime p such that IF; has a trapdoor has been pointed 
out in [l, p.501. The prime p can be generated together with a polynomial that  
is highly suita.ble for the number field sieve. The authority will then be able to  
compute discrek logarithms faster than a user who does not know the trapdoor 
[ 5 ] .  However, this gives only a moderate advantage and can be avoided by chosing 
the prime p sufficiently large. Moreover, such primes can be recognized fairly 
easily [14]. 

Here we present another way to generate a trapdoor. An authority that can 
choose the public parameters p and (Y can generate these parameters such that  
it additionally knows secret values p and t satisfying the constraints of Theo- 
rem 1. We illustrat,e t,his possibility by giving two different methods to  generate 
the trapdoor. The first method shows how a generator a and the trapdoor infor- 
mation can be generated given a fixed prime p .  The second method shows how 
a prime p and the trapdoor information can be generated given a fixed small 
generator a. There is no guarantee t,ha.t, t,hPse methods succeed. However, the 
probability of success is sufficiently high t,o threaten the security of the system. 

Method A .  Let, p - 1 = bw with b smooth. If b is not too small then we can find 
a ,  ,I3 and t in the following way. We choose c E { 1, . . . , b - 1) randomly until 
p = cw is a generator of IF;. Finally we chose /, with gcd(t,y - 1) = 1 and 
compute a = P t .  

This a t t x k  is practical when a generat,or /j = cw of IF; can be found in 
reasonable time. When b is too small then no generator of the form cw may exist. 
However, the number of generators of  I!?; is cp(p- 1). Sinw n/cp(n) = O(l~iln(rt)) 
(see for example [7])  we expect to  find a generator after O(ln ln(p)) trials. 

When t is chosen uniforrrily from the set of all 1 5 t < p -  1 that are relatively 
prirne to  p - 1 then a = p t  is a random generator of F;. Thus it is impossible to  
detmt the trapdoor as long as no false signature has been published. However, 
the trapdoor can be reconstructed from a given false signature (p ,  s) on h since 
ah z y i p s  (mod p )  implies h E t s  (mod 711). In order to find t it is then sufficient 
to  compute log,(p) (mod h)  a.nd this can be done efficiently as h is smooth. 

Method 13. When the genemtor a is fixed then p , f i  and t can be generated as 
follows. First three positive integers I L , V , C :  are selected such that 'u is odd and 
cUau has approximately the size of the prime to  construct. Next the smooth 
divisors of cuau, - 1 are computed. This can be done easily using for example 
trial division or Pollard-rho factorization since only the small prime factors of 
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c"au - 1 are wanted. If there exists a smooth divisor d > c of Pau - 1 such that 
p = PazL - d" is prime, 9 - I L  is relatively prime to p - 1 and a is a generator 
of IF; then it is possible to construct a trapdoor as follows. 

P - 1  t E u(- - 1 1 ) ~ ~  (mod p - 1) 
2 

It follows from dl(c"a" - 1) that d divides p -  1. Thus /3 satisfies the precondition 
of Theorem 1. Because of a"c" = d" (mod p )  we have Q? = (cd- l )"  (mod p )  
and therefore ,!?" = (-cd-l)" G ( - l ) ~ - ~  :: L Y ( P - ~ ) / ~ - ~  (mod p ) .  Hence Pt = 
a (mod p ) .  It follows that Theorem 1 can be applied. 

A heuristic analysis sliows that the runtime of this method depends on the 
size of c and should find a trapdoor after trying O((lnp)(lnlnp)2) values for p 
of An example for such a trapdoor, which has been generated in less than a day 
on a SPARC IPC, is given by the values a = 5,u  = 2 2 7 , ~  = 1 , c  = 1629 and 
d = 22 . 7  ' 23 ' 47.78541 .3489781. 

5 Countermeasures 

The attacks shown in Section 3 and 4 can be avoided if signatures ( T , s )  are 
considered to be valid only if - additionally to the other conditions -- T is 
not divisible by a large prime divisor q of p - 1. This condition should always 
be checked by the verifier. Moreover, an authorized signer will almost always 
generate a valid signature since it is very unlikely that he randomly generates 
an r that is divisible by q.  Such a condition has been included in the digital 
signature standard (DSS) [12]. Hence the DSS is not susceptible to the attacks 
presented in this paper. 

Alternatively trapdoors may be avoided if the authority that is choosing the 
public parameters p and Q is forced to use an algorithm like the one proposed 
by NIST for the generation of p in DSS. The values produced by this algorithm 
allow to verify publicly that the parameters have indeed been generated by the 
algorithm. This would make it very hard for a dishonest authority to  create a 
trapdoor. The two methods to generate trapdoors shown in Section 4 indicate 
that both p and a must, be generated with this algorithm if no other steps to 
prevent the attacks are taken. 

Yet another possibility to avoid the attacks might be to modify the equations 
for signature generation and verification (see for example [9] for an overview of 
ElGarnal variants). Such a variant must be chosen carefully since other problems 
may arise. For example if a signature on h is computed by T = ak (mod p )  and 
s 3 ZA + IikT (mod p - 1) and therefore verified by as z Y A T ~ '  (mod p )  then a 
chosen message attack is possible if the signer can be forced to sign a message 
h where gcd(p - 1, h)  is large. Any such signature leaks information about the 
secret key ZA since s ZA + hkr  (mod p - 1) implies s = XA (mod gcd(p - 1, h)) .  
A special case of this attack has been discussed in [9]. 
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6 An ElGamal scheme over Z/nZ  

In [15] Saryazdi has proposed a variant of the ElGamal signature system using 
(Z /nZ)*  where n is the product of two large primes p and q. The author hopcs 
that the security of the proposed signature system relies on the factoring problem 
and the discrete logarithm problem. Moreover, the existential attack shown in 
[4] seems not possible in that scheme, because this attack requires that the order 
of the group (Z/nZ)* is known. However, Horster et al. observed in [lo] that 
the signatures leak information that can be used to factor the modulus. Even 
though thcir attack does not work as described it, is possible to  modify the attack 
in such a way that it works for Saryazdi’s scheme as well as the improved scheme 
proposed in [lo]. Moreover, we show that computing discret,e logarithms in only 
one of the two groups TF; or IF; is sufficient to break the scheme. 

Description of the scheme. In Saryazdi’s variation of the ElGamal signature 
scheme every user A chooses two large primes p and q and computes n = pq.  
Then she tries to find an integer a E (Z/nZ)* with order A(n). Furthermore he 
chooses a random element XA and computes 9~ = azA (mod n). p, q and ZA are 
kept secret whereas n, a and y are published as A’s public key. To sign h. E Z/nZ 
user A chooses a random number k E ( H / d ) *  and computes 

Then (T ,  s) is the signature on h where h is either the message or the hash value 
of a message. A verifyer accepts a signature (r, s) on h if 1 5 T < n and 

Q” = ( y A I T ~ ’  (mod n). 

This scheme does not allow a modulus n that is common to all users, since 
every user has to know p(n) in order t o  be able t o  compute signatures. 

Description of the attack. Assume that t is a small prime that divides p - 1 but 
not q - 1. Assume further that ( T , , s , )  : 1 5 i 5 d are known signatures on h, 
such that t divides s, and such that the system 

d 

x c , h ,  -- 0 (mod t )  ( 3 )  

and ~ I : , T ,  c 0 (mod t )  (4) 
i= 1 

has a nontrivial solution (i.e. ci $ 0 (mod t) for at  least one i )  in the coefficients 
ci. Such a solution to (3) and (4) can always be found when at least 3 signatures 
with tlsi are known. If we set B := zt=l cih, and C := xt=l ciri then we have 

d 
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Since t divides all exponents in (5) we can compute the gcd of n and 

d 
(pit - (yA)c'/t ~ p ' / t  

2= 1 

This will factor 71 if exactly one of the following 

2 x 1  

d 

two equations are satisficd. 

(mod P )  (6) 

(mod q)  (7)  
7 = 1  

Since t is relatively prime to q - 1 it, follows from (5) that (7) is satisfied. Since 
Q is a generator modulo p it follows that (6) is satisfied if and o~i ly  if 

d 

~ / t  = z A ( ~ / t )  + C ~c,c i ( s i / t )  (mod p - 1) 
i= I 

or equivalcntly 
d 

u = x,,~c + C liic,s, (mod t ( p  - 1)) ( 8 )  
1 = l  

is satisfied. From (2) follows only R 3 ~ A C  + ztzl k,c2s2 (mod cp(n)). Let, tZ  be 
the maximal power of t dividing cp(n). It fo l lo~s  that tZ divides p - 1 and hcncc 
tz+' divides t ( p  - I ) .  Thus wc expect that (8) is only satisfied with probability 
about 1 / t . 

It should bc iiotcd that an attackel- does not know which primes t may be 
successful since lie does riot know p arid q and can generally not determine 
whether a given t divides p - 1 but not y - 1. But this is not a big problem 
because an attacker can simply try all small primes t that are a divisor of somc 
s, 's. 

If the fact,orizat,ion of n (:;in he (1isc:overed then signatures can be found 
if computing discrete logaritlinis in 'IF; but riot necessarily in IF; is feasible, 
provided that p is not much slrialler than q. This can be done as follows. 

We may  assume that the at,tac:ker knows a valid signature ( r ,  s) on 11. This 
may bc a prcviously given signature or one that was generated using the exis- 
tential forgery described in [4]. If he waiit,s to generate a signature on h' then he 
uses the Chinese Remainder Theorem to compute 0 5 r' < q ( q  - 1) such that 

T' s rh- - l I~ '  (mod q - 1) 
7' = T (mod q )  

If p is not much smaller than y then he will find an  T' < n in reasonable time. If 
we set s q  G sh-  'h' (mod y - 1) then we have 

- ~ I . '  . I S , ,  
= (%I) 7 (IIlod 4 )  
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Assuming that the discrete logarithm in IF’; is feasible it is possible t,o .wlvc 

h’ = logO(yA)T’ + log,(r’)s, (mod p - 1) 

for sp  if 1oga(r’) is rehtively prime to  p - 1. If additionally t,he system 

s’ E s, (mod p - 1) 
s’ = sg (n1od (1 - 1) 

is solvable then (T ’ ,  s’) is a valid signature on h’. 

Remarks. If t divides both p - 1 arid q - 1 then it follows from (2) that  

d 

B = x*c + c Ic,czsz (rnod cp(n)) 
2-1 

is satisfied. This implies that (8) arid the analogous equation modulo y - 1 arc 
satisfied. The at,tack does thercfore riot work when t divides p - 1 and q - 1. 
The attack described in [lo] considcrs the case t = 2 only and does not work 
therefore. However., it would wciIk when equation (2) is reduced modulo X(n) 
instead of cp(n) provided that the maximal powers of 2 in p - 1 and q - 1 are 
not the sarrie. The authors of [lo] propose that only signatures ( T ,  s) where s is 
odd arc allowed. This proposal docs not prevent, the attack described here since 
s can still be divisible by a small prime divisor t.  

Another consequence of the note above is that  the attack does not work when 
the smooth parts of p - 1 and q - 1 are equal. Thus the at,t>ack presented here 
can be avoided by choosing p - 1 and q - 1 such that ( p  - 1) /2  arid (q  - 1) /2  a.rc 
prime, since then no small prime t exist,s dividing p - 1 but not q - 1. Some of the 
extensions proposed in [lo] scem to avoid the attack presented here too. 0t)her 
variants of ElGarnd based on t,he discrete logarithm problem and the fact,oring 
problem that are rriore practical than Saryazdi’s scheme have been proposcd hy 
Brickell and McCurley [3] and Harn [S]. 

7 Conclusion 

The results presented in this paper show that ElGamal signatures can be forged 
in some cases without knowing the secret key. The attacks presented can be 
avoided by restricting the valucs of signatures that are considered to be valid. 
The ElGamal digital signature scheme has t,herefore not been broken but it has 
heen shown that, the system must be used very carefully. 
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