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Abs t rac t .  T h e  Gabidulin Public Kc:y C;ryptusyst,em (PKC), like the 
well known McEliece PKC, is based OH error correcting codes, and was 
introduced as an alternative to the McEliece syst,ern wit,h the claim that 
much smaller codes could be used, resulting in a more practical system. 
In this paper an attack on the Gabidulin PKC is given which breaks it 
for codes of the size envisaged, destroying much of its advantagc over the 
McEliece system. The attack succeeds in polynomial time for Gabidulin’s 
choice of one of his system parameters, but it does show how to choose 
this parameter more appropriately. Tt c:onsists of a reduction of the de- 
cryption problem for the Gabidulin PKC to consideration of a search 
problem that is easier to describe, and which with luck should be easier 
to analyse. It therefore provides a possible starting point for a proof that 
decryption for the Gabidulin PKC is an NP-complete problem. 

1 Introduction 

1.1 

An Algebraic Coded Public Key Cryptosystem (PKC) is based on a family F 
of linear block error correcting codes with a fast decoding algorilhm whose op- 
eration for each rneniber of F requires knowledge of a key for tha t  member. An 
instance I of the  PKC uses a member C: of F with key K .  The public key for I 
is any generator matrix G for G, and the secret key is It‘. Four Algebraic Coded 
PKC’s have been proposed: 

Algebraic Coded Public Key Cryptosystems 

I.  McEliece[lO] (1978), using Goppa codes, 
2.  Niederreiter[ll] (1986), using generaiised Reed-Solomon (GRS) codes, 
3. Gabidulin[4] (1991) and [6] (1993), using Gabidulin codes, 
4. Sidelnikov[l2] (1994), using Reed-Muller codes. 

The  Neiderreiter system was broken by Sidelnikov and Shestakov[l3] in 1992, 
though a modification suggested by Gabidulin[6] remains unbroken. The Sidel- 
nikov syst,em is t,no recent t,o have been evaluated. The  McEliece system remains 
unbroken, -- the statement by Sidelnikov and Shestakov that becaiise Goppa 
codes are subfield codes of GRS codes their methods can easily be adapted t80 
break the  McEiiece system is just  wishful thinking. The  McEliece system is prob- 
ably the hardest of the four systems to break precisely because it uses subfield 
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codes. An analysis of the 1991 version of the Gabidulin system has been given by 
the author in [7]. I t  is to the modified 1993 version that this paper is addressed. 

1.2 The search for an NP-secure PKC 

Unlike the RSA system, Algebraic Coded PKC’s suffer from message expansion. 
The  encrypted message is longer than the original, usually about twice as long, 
which means the sender’s key cannot be kept secret,, so tha t  they cannot be used 
for signature schemes. They also tend to have large public keys. However the 
RSA system is unlikely to be NP-secure[l]. 

There is no  known PKC for which decryption is a n  NP-complete problem, 
and i t  is an  open question whetsher such a PKC exists. If one does exist it  is 
possible tha t  an  Algebraic Coded PKC might provide a n  example. Although 
such an  example would not necessarily be practically secure, since NP-complete 
problems are notorious for being almost always easy, there is some evidence[9] 
t ha t  NP-security, once obtained, can be amplified to the required cryptographic 
security. 

1.3 Gabidulin codes and the Gabiduliii P K C  

Definitionl. Lct z be any q-vector over GF(2‘“). ‘I’he p x  q Gabidulinmatrix 
with generating vector .z is the matrix whose first row is 2, and whose i th row 
is the square of the i - 1 th  row, i = 2 . .  .p, powers of vectors being taken 
co-ordinalewise. 

Let g be an  rn-vector over GF(2’”) whose coordinates are linearly independent 
over G F ( 2 ) ,  and let G be the k x m Gabidulin matrix with generaling vector g. 
The  Gabidulin code C with generating vector g has generalor matrix G, and  
corrects e = (rn - k )  div 2 errors. Gabidulin in [3] and [5] givcs fast decoding 
algorithms for C for which g acts as a key. Errors for Gabidulin codes are not 
counted using the usual Hamming metric, but with the rank rnetric induced by 
the rank norm 1211 of a vector v over G F ( Z m ) ,  which is defined to be the  number of 
coordinates of v that  are linearly independent over G F ( 2 ) .  The  associated rank 
norm ID1 of a matrix D over GF(2-)  is the number of linearly independent 
columns of D over G F ( 2 ) .  It can be shown tha t  lvDl 5 t ,  with equality for some 
v, if and  only if ID1 = t .  

An instance of the Gabidulin PIi‘C using the code C is constructed by choos- 
ing a random k x k non-singular scramble matrix S over G F ( 2 m ) ,  and a ran- 
dom k x m distortion matrix D over G F ( 2 m )  with rank norm t < P .  The  
public key is then 2 = S(G + 0)) and the secret key is the triple ( 9 ,  D ,  5’). 

T h e  code C‘ with generator matrix Z corrects at least e - t  errors. Encryption 
of a n  information vector w is performed by encoding v with Z and adding e - t 
random errors to obtain a received word T’ of C’. It  is easy to show tha t  a 
decoder for C with key g ,  together with knowledge of D and Z ,  can be used to 
recover w from T’. 
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The distortion matrix D is needed because it is easy to show that if D is 
known then a secret key can quickly be determined. The McEliece PKC does 
not need a distortion matrix, but one can be used for the Niederreiter PKC, and 
that was Gabidulin’s inodification to this system referred to  earlier. 

The distortion matrix D can be written in the form D = A R ,  where B is 
a t x nz binary matrix of rank t ,  and A is a k x t matrix over GF(2m)  which 
has t linearly independent columns over G F ( 2 ) ,  but whose rank s over GF(2m)  
merely satisfies 1 5 s 5 t .  The matrices A and B will be called the row and 
column distortion matrices, and the system parameters s and t the row and 
column distortion ranks. There may be secret keys with different values of s and 
t ,  but the minimal values of s and 2 are determined by 2. Secret keys with t not 
minimal provide only partial decoders for Lhe code with generator matrix Z.  

Both s and t play a crucial role in the analysis of the PKC. In [4] Gabidulin 
suggested s = 1, and then, when the present author [7] gave an algorithm to 
break medium sized instances of the PKC, suggested in [GI to take s = t ,  which 
turns out to be an unmitigated disaster, since the algorithm of this paper will 
find a secret key to such an instance in polynomial time! However the algorithm 
does show how to choose s more appropriately. 

1.4 The. trapdoor attack of this paper 

There are two distinct kinds of attack on any PKC, corresponding to two distinct 
problems. A trapdoor attack solves the trapdoor problem by obtaining the 
secret key (trapdoor) from the public key, whereas a dircct attack addresses 
the decryption problem by showing that it is computationally feasible to 
decrypt individual messages. This paper presents a trapdoor attack, and does 
not tackle the question of whether the decryption problem might be easier than 
the trapdoor problem. 

It was to  improve security against a direct attack that Gabidulin introduced 
his PKC. What, he showed was that for comparably sized codes a direct attack 
would be much harder to mount for his system than for the McEliece PKC, SO 

much smaller codes could be chosen, resulting in a more practical system with 
a smaller public key. Unfortunately he chose the codes so small that his PKC 
became vulnerable to the trapdoor attack of this paper, and a program has been 
written using this attack which even on a personal computer will break instances 
that use codes of the size he suggested very quickly. The necessary increase in 
the size of the code used both destroys much of the advantage claimed for the 
Gabidulin system, and begs the question of whether it remains practical. The 
attack does show however that with careful choice of system parameters the 
codes can be chosen small enough to  produce a public key which is smaller than 
that of the McEliece PKC. 

A very interesting side feature of the attack is that it indicates that subject 
to some normalisation, trapdoors to the Gabidulin PKC, at least those of the 
kind being sought, are in most cases uniquely determined, and t h i s  may be one 
of the reasons they are easier to find than expected. 
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The attack consists of a polynomial time reduction of t8he trapdoor problem 
to a search problem that is easier to describe, and which with luck should be 
easier to analyse. The reduction is in the sense that under some mild assumptions 
any solution to an instance of the trapdoor problem provides a solution to the 
corresponding instance of a special form of the search problem. It is probable 
that these assumptions can be removed, and also probable that the special search 
problem is equivalent to a sub-problem of the trapdoor problem. "All" that is 
required therefore is to show that the special search problcm is NP-complete 
and almost always hard, and then to show that decryption is at least as hard as 
finding a secret key. If that could be done it would certainly be worth finding a 
way of coping with any impracticalities of the Gabidulin PKC. 

2 Summary of Results 

2.1 On breaking the Gabidulin PKC 

Consider an instance of the Gabidulin PKC of length nz, dimension k ,  generating 
vector g with corresponding generator matrix G, row and column distortion 
matrices A and B ,  minimal row and column distortion ranks s and t ,  scramblc 
matrix S, and public key 2 = S(G + AH). The breaking algorithm takes Z as 
input and returns the secret key (G, A,  B ,  S )  as output. In the ensuing discussion 
t is assumed given, but this is not in fact, necessary. Without loss of generality 
R may be sought in row echelon form. 

Write n = k + t + 2. It is necessary to assume the conditions IZ 5 fri arid 
t + 2 5 k ,  but note that if n > m Ihen the code P with generator matrix Z 
corrects no errors, and if t + 2 > k then either P corrects no errors or rn, 2 3k .  

The cost of the algorithm depends on a quantity called the deficiency d of 
Z. In all cases 0 5 d 5 t ,  and computational evidence strongly suggests that 
d 2 rrtaa(0,t - 2s), with equality almost always. It is defined with respect to a 
systematic form of a selection of n columns of 2, and does not, appear to depend 
on which columns are selected. Suppose therefore that Z is in systematic form 
to start with. 

Define the partial column distortion matrix C to be t,he first n columns 
of B. The bulk of the work of the breaking algorithm is tjo find C ,  and the main 
theorem of this paper is the one t8hat shows how to reduce finding C t,o a search 
problem. It will be assumed throughout that C has rank t .  IXscussion is made 
more complicated when C does not have rank t ,  but, it is then actually easier to 
find a trapdoor. The following notation is used: 

1. For any integer k ,  Ik denotes a k x k identity matrix. 
2. For any matrix X over GF(2m),  X(2) denotes t8he result, of squaring ea.ch 

element of X .  
3.  For any matrix X over G F ( 2 " ' ) ,  N(X) denotes a matrix whose coluninsform 

a basis of the null space of X ,  i.e., the set of column vectors w with X u  = 0.  
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Definition2 Let [ I k ,  V ]  be the first n columns of i: 
Write V = U + 
The deficiency of 2 is d = t + 1 - r .  

Theorem 3 The Main Theorem. 

and let V have rank r .  

Write W = [ r+2] N ( V ) ,  so  that W is an n x (d+  1) matrix ojrank d +  1. 

Then under some mild assumptions, GCli has rank d .  

The search problem with parameters ( n t )  d),  0 5 d 5 t 5 n/2 - 2. 

1. The general form. 
Given an n. x ( d  + 1) matrix X over G F ( Z m )  of rank d + 1. 
Find a 1 x n binary matrix D of rank t such t,hat the rank of DX is d. 

Given a,n ( n - t - 2 )  x ( t + 2 )  rriatrixX over G F ( Z m )  such that Y = X + X ( 2 )  
has rank t + 1 - d.  

Find a 1 x 11 binary matrix D of rarik t such that D [ f+2] N ( Y )  has rank 

d. 

Brassard[l] shows that a proof that a problem i s  both NP-complete and in Co- 
NP is a proof that NP = Co-NP. However the search problem seems unlikely to 
be in Co-NP. A given instance of either form of the problem does not necessarily 
have a solution, a.nd t#here seems no easy way of determining when it docs not. 
The corresponding decision problem can just be: given an instance of the search 
problem, does it have a solution? 

Theorem4 The Breaking Theorem. 

2. The special form. 

1. Fiizdinq G can in most cases he reduced with O ( k 3 )  multiplications t o  an 
instance of the specaad search problem with parameters (n , t ,  d ) .  
The reduction is in the sense that C pro’uides a solution to this instance. 

2. This instance can be solved at a cost of O ( i ~ d 2 ~ ( ” ~ ) )  multiplications. For 
d = 1 and d = 2, the cost can be improved l o  O(nd2d(k+2))  additions with 
storage for O(nd+’) m-bit integers. For t l  = 0 the cost i s  O(n2) additions. 

3. Once C is known, the remainder of the .secret k e y  can be found with 
0(k3 + (m - t 1 t 2 ~ )  multiplications. 

There is strong computational evidence that the row echelon form of B is 
uniquely determined, and indeed that when d = maz(0, t - 2s) the search prob- 
lem has a unique solution in row echelon form. When it did not there were 
relatively few solutions, and just one of them enabled a full secret key to be 
found. All of them provided a partial secret key for the first n columns of Z ,  and 
since these columns are the input to the special search problem the indication is 
that  the special search problem is equivalent to the trapdoor problem restricted 
to codes of length n. 
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In [GI ,  Gabidulin took s = t , when for almost all instances the deficiency d will 
be 0 ,  and  the  cost just  O ( k 3 )  multiplications! He suggests m = 20, k = 10, t = 3 ,  
and s = 3 .  It  takes just  2 seconds to  break such an instance on a personal 
computer. When d = 1, the algorithm is still very fast. If in the example above 
.Y is chosen to  be 1 as in the 1991 version of the PKC, then d will in most cases 
be 1, and  the instance will still be broken in about 2 seconds. 

2.2 On the minimum size of code needed for the Gabidulin PKC 

Consider again an instance of the Gabidulin PKC with the parameters described 
in Section 2.1. It corrects e = ( m  - k) div 2 - t errors, and the  examples in [6] 
have e = 2 ,  which seems a bit small to guard against a direct attack. In the  
example given below, the heuristic 2e  > k has been adopted, since this means 
that if a systematic generator matrix is chosen as public key information symbols 
in a codeword can then be hidden by distinct noise coordinates when performing 
encryption. 

Theorem5. An znstance with rri = 48, k = 24, s = 2, and t = 7 wall take about 
2" multzplzcatzons over GFp4') t o  break vszng the breakang algorzthm for  t h e  
modzjied PKC, and about 2'12 mullaplaca!zons uszng an extended versaon of  the 
breakang algorzthm for the orzgznal PKC gaven an [6] 

This example will have a public key of 56,000 bits, half tha t  if given in sys- 
tematic form, which compares with 500,000 bits for an  instance of the  McEliece 
PKC with the  parameters suggested in [lo]. I t  will havc a deficiency of d = 3, 
and correct e = 5 errors. I t  should be regarded as having the absolute minimum 
size acceptable, and it would probably be better to choose m = 64, k = 32 ,  s = 2 ,  
and t = 7, giving d = 3 ,  e = 9, and a public key of 131,000 bits. 

3 Some Technical Lemmas 

At the heart of the main theorem is a technical lemma called the Matrix Update 
Lemma, whose proof seems to be difficult, and which has some interest, in i ts  
own right. Proofs of the other two lemmas of this section are relatively easy and 
are omitted.  The  notations X ( ' )  and N ( X )  are those of Section 2 .  

Lemma6. The Matrix Update Lemm.a 
Let K be a non singular k x k matrix ouer GF(2"')), J 1 I { - ' ,  and L = J + J ( ' ) .  
Let B be a binary k x k matrix, and  suppose I ( *  = li + B as anvertable. 
Define corresponding J *  and L* in  the obvious way. 
Suppose L and L* have the same rank r ,  and that there is a permutation T 

of the columns of L and L' for which the first r columns of L x  and L'T are 
independent. 
Then there is an invertible matrix R, such that J * N ( L * ) R  = J N ( L ) ,  from which 
it follows that N ( L * ) R  = ( I k  + B J ) N ( L ) .  
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Method of proof 

The Sherma.n Morrison matrix update formula [2] provides an explicit formula 
for J *  in terms of J in the case when B has just one non-zero element,, and can 
be used to  prove the lemma for this case. To lift the result to  the general case 
requires the assumption that K can be transformed to  I<* with a succession 
of additions of 1 to one element while preserving the invertibility of A' and 
the conditions on L and L* a t  each stage. This is a long and unsatisfactory 
proof involving ail additional assumption which is almost certainly unnecessaby. 
Details can be found in [8]. 

Lemma?. The rank f lemma 
Let G be a k x k Gabiddin matriz with generating vector g ,  let H be a k x f 
Gabiddin matrix with generating vector 11, and suppose the vector [ g ,  h] has  
independent coordinates over GF(2) ,  so th,at G is nun-singular. Let X = C-'II .  
Then X + X ( 2 )  has rank 1, and has no zero elements. 

Lemma8. The null space l e in i rm 
Let A and H he matrices over any f i e l d ,  each wilh the same n.umber of columns. 
Then ranlc(AN(B))  - r a n k ( B N ( A ) )  = rcmk(A)  - r a n k ( B ) .  

4 The Breaking Algorithm 

4.1 Overview 

The object of this section is to prove the main theorem of Section 2, a.nd to 
indicate how it  is uscd to  obtain the breakirig theorcni. There is a final paragraph 
on the soliltion of the search problem, but, an efficient solution must form the 
subject of a separate paper. Details havc been given in[8]. 

For the whole of this section the convention is adopted that matrix blocks 
are suffixcd with the number of columns that they have. As in Section 2 ,  N ( X )  
is a mat,rix whose columns form a basis of t8he null space of the matrix X,  and 
X(?' is obtained by squaring each elemerit of .Y. 

Consider an instance of the Gabiduliii P K C  as described in Section 2.  The 
breaking algorithm proceeds in three stages, but the story is told backwards, 
because that  is the way the algorithm iinfolds. In stage 3 ,  the column distortion 
matrix B is assumed known, and the rest of the secret key is recovcred. The 
method of doing so sets t,he framework 011 which stages 2 and 1 build. In stage 2, 
only the partial column distortion matrix C is known, and the method of stage 
3 is extended using the rank 1 and null space lemmas to recover the rest of the 
column distortion matrix. Finally, in stage 1 only the public key is known, and 
the rnethod of stagc 2 is further extended using t,he matrix update lemma to dig 
out the part,ial column distortion matrix. 

A number of a.ssumptions have to be made, all of which are probably either 
provable or unnecessary. The first, is probably unnecessary, but simplifics the 
discussion, arid does in fact hold most of the time anyway. 

Assumption 1 A n y  selection of 11 columns of z are in.dependent. 
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4.2 

Stage 3 starts with the observation that since B is binary, the rri x (m- t )  matrix 
N ( B )  can be taken to be binary, so that if H = G N ( B )  then H is a Ic x (m - 1 )  
Gabidulin matrix whose generating vector /a has linearly irideperiderit coordinates 
over G F ( 2 ) ,  and Z N ( B )  = S H .  Summarising the relations between the matrices 
defined so far, 

Stage 3: The column distortion matrix is known 

2 = S(G + A B ) ,  H = G N ( B ) ,  Z N ( B )  = SH. (1) 

Assume from now on that 2 is in systematic form, arid that columns Ic+ 1 . . . k + t  
of H form an identity matrix. Since C has rank t ,  assumption 1 guarantees that 
this normalisation is possible. Write f = m - k - 1 ,  and partition 2, G, g ,  H ,  h ,  
and B as follows : 

where 

To solve (4) for h observe that g ,  and hence h,  is only determined up to a scalar 
multiple, so assume that h has been riormalised so that the first coordinate of h j  
is 1. Let z1 he the first column of X ,  and XI the k x Ic Gabidulin matrix whose 
generating vector is the 2nL-k-1 th power of z l ,  taken coordinatewise. Let e 
denote a Ic-vector of ones. Then after some manipulation, (4) implies Xlhk = e ,  
which dctcrmincs hk and hence h ,  provided XI is non singular. The condition 
that XI is non singular is that the coordinates of z1 are independent over G F ( 2 ) ,  
and in view of (9) and (11) below, this requires 

Assumption 2 the rows of X ure independent over G F ( 2 ) .  
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Once h is known, (5) can be used to  determine g ,  (6) l o  determine A ,  and 
(7) to  determine 5’. In (5), ya can be chosen randomly subject to ensuring that 
g has independent coordinates over G F ( 2 ) ,  and this flexibility of choice can be 
used t o  ensure A has its minimal rank s, which determines g uniquely when 
d = rnaz(0,t - 2s). Note that (7) ensures that Q is invertible, since H k  and S 
are invertible. 

4.3 

In terms of the previous section, BE and the first two columns of H J  are known, 
and the remaining columns of H J  have to  be determined. From the definition of 
X in (a), 

Stage 2 : The partial colunin distortion matrix is known 

x(2 )  + s = VY,  (9) 

where 

Equation (4) states that  H j  = H E X ,  so applying the rank 1 lemma gives 

Lemma9. The Stage 2 1emm.a 

V Y h,as rank 1, and h.ns n o  zero elements. (11) 

Suppose 17 has rank r ,  and let d = t + 1 - T .  ‘l’he colurnns of Y form a basis of 
the null space of [ I t ,  B j ] ,  so applying thc null space lemma gives 

Theorem10 The Stagc 2 Theorem. 

[ I t , B j ] N ( V )  is a t  x ( d + f - 1 )  m a l r i x o f r a n k d .  (12) 

This theorem is used to determine Bf . The rrielliod requires 

Assumption 3 T h e  first t colunc.ns of V s p a n  the column space of V ,  a n d  n o  
selection of d columns of [ Z t ,  B f ] N ( V )  are dependent. 

Assumption 3 means that the last, d + f - 1 rows of N ( V )  can be taken to he  
an identity matrix. Let b be the first coliiinii of BJ , and c be any other column. 
‘I’hen for a suitable known T x ( d +  1) matrix W ,  equation (12) gives 

The vector b is known, and for d < 2 equation (13) determines c very quickly. 
For d 2 2 i t  determines c after a search over the last d - 1 coordinates of c. Thus 
when the first column of Bj is known, the Stage 2 theorem can be used to find 
each of the remaining columns of Bj i r i  turn. at a total cost of O(t (m  - k ) 2 d )  
multiplications. Further details are given in [8]. 

It can be shown tjhat due t o  the special form of Y’ the Stage 2 lemma implies 
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Leinmall. The Stage  2 Corollary 

The first t i- 1 columns of V d o  s p a n  t h e  column s p a c e  o f  V 

This corollary will be used to  show that under assumptions made in stage 3,  the 
quantity d is the deficiency of Z as defined in Section 2. Note that the Stage 2 
theorem implies that 1 5 r 5 t + 1, so that 0 5 d 5 t .  

4.4 

Stage 1 finds the first n = k + t + 2  columns of B ,  and therefore restricts attention 
to  the first n columns 2, so that the f of stages 2 and 3 is f = 2,  but the symbol 
J will cont,inue to be used t,o indica.te the  number of columns in matrix blocks. 
Writ>e p = t + 2 and q = k - p .  The conditions n 5 rn and t + 2 5 k ensure that 
there are n columns of 2 to play with,  and that q 2 0. 

In stage 1, the matrix V is not available since B is not known. The basic idea 
of stage 1 is to  let VO be the value of V obtained by setting B = 0, and to  use 
the matrix update lemma to sec how V and VO are related. First some useful 
matrix blocks are defined. Note t8hat since 2 is in systematic form the block 2, 
consists of q columns of 2. Definc 

Stage 1 : Only the public key is known 

Write 

The first step is to define VO, and build it up t o  a square matrix so that  the 
matrix update lemma can be applied. With the matrix P of equation (8), define 

110 = [Zt, Zjl, 

JO = [UO, Z,], 
K O  = J o - l ,  

I,O = d o  + 

U = P U Q ,  
v = TI + 
J = P J O ,  
A' = J - l ,  

vo = uo + UO(", 

L. = J + J ( 2 ) .  

The matrices U and V defined here consist of the first t + 2  columns of the U and 
V defined in (8) and (10). The matrices 110 and VO are the t i  and V of section 
2. Note that JO is invertible by assumption 1, since it consists of k columns of 
2. After some manipulation, (8) and (16) yield 

I< = ICO + Dk, (17) 

Y Q  P Q  
LO = [ vo, Olk ,  L = [ V , V E , ] k .  

The stage is now set for the mat,rix update lemma, but an assumption must be 
made to  ensure i t  can be applied. 
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Assumption 4 V and VO have t h e  s a m e  rank r ,  and there is  a pernziilation 
T of the columns o f  V and VO such the first r columns of V ?r and VO i~ are 
independent . 

'rake 

p - r  Q P - l '  v 
(19) 

The matrix update lemma now says there is an invertible k x k matrix R with 
N ( L ) R  = (11, + Dk JO)N(LO) ,  and sorting out the matrix blocks in this expres- 
sion shows that there is an invertible p x p matrix T with 

N(V)T  = (& 4- Ek uo)~(vo). (20) 

Now it is straightforward to see that 

The final step is to use the Stage 2 theorem, but this theorem was developed 
using all rn columns of 2. However it remains true when only n columns are 
used, and states, with the Stage 1 definition of I/ and r ,  that [It, B j ] N ( V )  has 
rank d = t + 1 - T .  Further, the Stage 2 c,orollary together with assumption 
4 ensures that the quantities d and r defined in Stages 1 and 2 are tBhe same, 
and that d is the deficiency of 2 as defined in smtion 2. The Slage 2 theorem, 
toget>her with (20) and ( 2 l ) ,  gives 

Theorem12 The Stage 1 Theorem. 

C: [ y ]  N ( V 0 )  has rank d = t + 1 - r .  

A closer examination reveals that provided C does have rank t this result remains 
true even when columns k + l  . . , k+t of C do not form an identity matrix, at  least 
if assumption 1 holds, and with this observation t,lie main theorem of Section 2 
is proved. 

4.5 Solving the general search problem 

Given an n x (d+ 1) matrix X over GF(2"')  of rank d+ 1, it is required to  find a 
t x n  binary matrix D of rank t such that, the rank of D X  is d, 0 5 d 5 1 5 n /2 -2 .  
' l he  method of searching for 1) given in [8] requires an assumption which can be 
translated as one final assuniption about the matrices C and UO in (22) .  

Assumption 5 The first d rows and columns of D X  form an anvertable nsatrzz. 
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D can be sought in row echelon form, and with assumption 5 it is enough to  
search over the first d rows and n - t + d columns of D .  Thus the search is over 
d x ( n  - t + d) binary row echelon matrices of rank c l ,  and there are fewer than 
3 .5  * 2 d ( n - 1 )  of these. The work can be c u t  to  O ( n d )  multiplications per  matrix 
tested by enumerating the matrices so that each differs from the previous one 
in just one element, and using thc Sherman Morrison formula [a] as in the proof 
of the matrix update l e m m a .  To finish on an aesthetically pleasing note, this 
enuineratioii is an adaptation of the following way of enumerating r-bit integers 
so that  each differs from the previous one in just one bit position. Let s = 2‘ - 1 
and numbcr the intcgcrs a0 . , .a,, with any integer assigned to  ao. For i = 0 
to  s - I let j be minimal with bit j of i equal to  zero, and obtain a,+l by 
complementing bit j of u z .  
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