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Abstract. h~ the paper we define certain and possible roles in an incomplete information 
system as certain/possible olles in every completion of the initial system. The careful 
examination of the depeudencies between an incomplete system mid its completions allow us 
to state that it is feasible to generate all certahl rules and some important class of possible 
rules directly from the incomplete information system. Space complexity of the proposed 
method of rules' generation is linear with regard to the number of objects in the initial system. 

I Introduction 

The problem of knowledge discovering in the form of rules from incomplete 
information systems (1S) is considered. By an incomplete system we mean a system 
with missing data (null values). We do not consider the case of null value meaning 
inapplicable value. This problem may be solved by adding a special symbol denoting 
inapplicable value to the attribute domains. In the paper we deal with the problem of 
unknown values. 

Several solutions to the problem of generating decision tree from the training set of 
examples with unknown values have been proposed in the area of Artificial 
Intelligence. The simplest ones consist in removing examples with unknown values 
or replacing unknown values with the most common values. More complex 
aproaches were presented in [1-2]. A Bayesian formalism is used in [I] to determine 
the probability distribution of the unknown value over the possible values from the 
domain. This method could either choose the most likely value or divide the object 
into fractional objects, each with one possible value weighted according the 
probabilities determined. It is suggested in [2] to predict the value of an attribute 
based on the value of other attributes of the object, and the class information. 

The problem of rules' generation from incomplete systems was investigated also in 
the context of Rough Sets [3-6]. The methodology from [3] consists in transforming 
an incomplete system to a complete system, where each object with incomplete 
descriptor in the source system is represented by a set of possible subobjects in the 
target system. As we prove in [4], this method allows to generate the set of all certain 
rules. Different methodology was presented in [5]. The method considered in [5] 
allows to generate a subset of certain rules directly from the original incomplete 
decision table. Modelling uncertainty caused by appereance of unknown values by 
means of fuzz), sets was discussed in [6]. 

In this paper we refer to the results we obtained in [4-5] and extend them so that 
the generation of all rules and some important class of possible rules is feasible. The 
unique feature of certain/possible rules we consider is that they are certain/possible 
in every completion of the initial 1S. The careful examination of the dependencies 
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between an incomplete IS and its completions allow us to state that such definitions 
of decision rules do not require performing the calculations in all the completions of 
the incomplete 1S. We propose a method of generation of all rules directly from the 
original incomplete IS. Space complexity of the method is O(n), where n is the 
number of objects in the initial system. 

2 Information Systems 

hlformation .system (IS) is a triplet ~= (�9 AT, J), where �9 - is a non-empty finite set 
of objects and A T is a non-empty finite set of attributes, such that f~: �9 --, Vo for any 
a~_A T, where 1~ is called domain of an attribute a. Any attribute domain Va may 
contain special symbol "*" to indicate that the value of an attribute is unknown 
(null). Here, we assume that an object ~xo  possesses only one value for an attribute 
a, a~A T, in reality. Thus, if the value of an attribute a is missing then we may 
conclude that the real value must be one from the set Va\{* }. System in which values 
of all attributes for all objects from �9 are known is called complete, otherwise it is 
called incomplete. 

Let d '  = (�9 AT, f ) .  We say that ,~' is an extension o l d  i f d '  is an IS such that if 
f~(x )~ * thenf~ '(x) =fa(x) for all a~_AT and x~Y. We say that d '  is a completion o l d  
if d '  is a complete IS, which is an extension of d. 

Let us note that if card(V~) = 1 then null value occurring for attribute a may be 
substituted by the unique domain value va@Va vdthout changing information 
capabilities of the system. Hence, any system d is equivalent to its extension d '  such 
that iff~(x) = * thenf~'(x) = v~, v~EVa, for each attribute a~_AT such that c a r d ( V a )  = 

1 and for each yE�9 From now on, without loss of generality, we will consider only 
systems that do not have null values for attributes a such that card(I/~) = 1. 

In the sequel, any attribute-value pair (a,v), a~AT, vEVa, will be called an atomic 
property. Any atomic property or its conjunction will be called descriptor. 
Conjunction of atomic properties for all attributes A T will be called fidl descriptor. 
Descriptor that does not possess null values for attributes A C_ AT will be called 
A-complete. The set of objects having the atomic property (a,v), i.e. {xE�9 f~(x ) = v}, 

will be denoted by II(a,v)ll. Let us note that II(a,*)ll n II(a,v)ll -- 0 ,  if w * .  The set of 
objects satisfying any descriptor t will be denoted by Iltll and will be computed in the 
usual way, e.g. IIt^sll = Iltllnllsll. 

3 Indiscernibility of Objects and Set Approximations 

3.1 Indiscernibility of Objects 

Let A-=-(�9 AT, J). Each subset of attributes AC_A T determines a binary indiscernibili~ 
relation IND(A), IND(A) = {(xy)@ox�9 I Va~A, fo(x) = fa(Y)}. The relation IND(A), 
AC_AT, is an equivalence relation and constitutes a partition of �9 which we will 
denote by �9 Let IA(x) denote the object set {V(E�9 I (xy)~_IND(A)}. Objects 
from IA(x) are indiscernible ~4th regard to their description in the system, but they 
may have different properties in reality, unless the system is complete. Objects 
perceived as indiscernible in the complete system are indiscernible also in reality. 
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Another similarity relation SIM(A), SIM(A)={(x~v)~�9215169 Va~.A, f~(x)=fafy) or 
f~(x) =* orfdy)=*}, treats two objects as similar if they may have the same properties 
in reality. Similarity relation is reflexive and symmetric, but may not be transitive. 
By SA(x) we will denote the set of objects {y~�9 (xy)~_SIM(A)}. 
Property 3.1.1 
�9 Let B ___ A _ A T. Then: IA(X) ~ IB(X); SA(X) C SB(X); In(x) C_ SA(X). 
�9 Let g' be a completion of ~. Then: IA '(x) = SA '(x); Sa'(x) ___ Sn(x). 
�9 &(x)= [_JG'(x). 

~s' is a completion of.g 

3.2 Set Ap0roxlmations 

Let AE_:_�9 and AC_.AT. First we recall standard rough set definitions of lower 

approximation A2~V and upper approximation A 2~vDX of X in a complete IS: 
A~w~Y = {xE�9 I In(x) C_ cY}={xU__~] In(x) C_ X}, 

Beneath we generalize these definitions for the case of incomplete IS: 
= {x -ol SA(X) G X} = {x -Xl SA(X) C_ X}. 

A {xC-ol Sn(x)rV;.  

A_sacX is a set of objects that belong to X with certainty, while A s~X is a set of 

objects that possibly belong to X. Obviously, A sL~4X=A~wDX and Asu~V=A~DX in a 
complete IS. AsasX and A sa.~X will be denoted also by AX and AX, respectively. 
Property 3.2.1 

�9 Le ts '  be an extension o f d  andAG�9 andAC_,AT. Then:XC AA" C_ AX. 

�9 U ( A X ) ' : A X .  
~s' is a completion of~S 

Property 3.2.2 
LetA*(v) denote {aEA[fo(v) =*} and L~(v)  denote ]-Jcard(l~). Let Full(Y) denote 

aU.A (y) 

the set of all objects from Y which have full complete descriptors. Let Desc(IO denote 
the set of all different descriptors of objects Y. 

(AX)'=(AX) \ H, where ~E�9 and 
~S' is a completion of~S 

H = {y ~ (-AX\,V) I card(Desc(Full(Sa(y) fq A))) < L~-~x(y)}. 
Proof: 
By Property 3.2.1 AX is the set of all objects yE�9 such that vE(AX)' in some 

completion d' of~s. On the other hand, H is a set of objects yqAX)~X satisfying the 

condition card(Desc(Full(Sn(v)s which implies that y~(AX)" in some 

completion ~" of d. Hence, H is the set of all objects from AX that do not belong to 

N (AX)'. Thus, the difference between A X  and H is equal to N (AX)'. 
~s' is a completion of~5 ~S' is a completion o f d  

[] 
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Property 3.2.3 
Let A~_�9 and AC_AT. Let ,~' and ~ '  be completions of ~ which differ only for an 

object x@�9 IfSA(x)C__ (-](AX)'" then (AX)'=(AX)' .  
s  a completion of~ 

Proof: 

- -  S ' ( x ~ C  "-~ . . . .  Since SA(x)C_ N ( A X ) ' "  then A ~ ; _ t ~ A l  . Additionally, SA'(x)MSA"(X)={X} 
~"'is a completion of~ 

because completions ~s' and ~ '  differ only for x. Hence, S,~'(x)\{x}CC_(A,D'~SA"(x) 

_(A (X~{x}))". Similarly, we may derive: SA"(x)\{x}CC_(A (~V~{x}))'. 
We may also notice that SA'(F)=SA"(V) or SA'(y)=SA"CV)\{x} or SA'~v)=SA"fy)U{x} 

for any yG]~{x}. Hence: (A (~{x})) '  U {x}=(A (~V~{x}))"U {x}. 

Applying the results obtained above, we may write: (AAg" = SA"(x)U(A (~A{x}))" 

= (SA'(x)\{x})U{x}U(A (,~{x}))"U(SA'(x)\{x}) = (SA"(x)\{x})U{x}U(A (X~{x}))'U 

(Ss (x)\{x} ) : {x}U(-A (X~{x} ) )'U(SA'(x)\{x} ) -- (-A (.~{x} ) ) 'USs (x) = (-AX)'. 
[] 

4 Complete Decision Tables 

Decision table (DT) is an information system g = (�9 A~_J{d},/),  where d, d~AT 
and *~Va, is a distinguished attribute called decision, and the elements of AT are 
called conditions. If DT is a complete IS then it is called complete decision table, 
othel~vise it is called incomplete decision table, 

In Section 4 we ~411 restrict our considerations only to complete decision tables. 

4.1 Decision rules 

Decision rules we will consider ~411 have the form: t--->s, where t=-A (c,v), cffAC_.A T, 

v~l~, and s=(d,w), ~EVa. In the sequel, we will call t and s condition and decision 
part of a rule, respectively. We will say that object x, xE�9 supports a rule t--,s in ~S 
(or a rule t--->s covers an object x in ~) i fx  has both property t and s in ~. A decision 

rule t---,s is certain in ~ if MI --- IIsll in ~. A decision rule t---,s is possible in g if MI c_ 

ATIIsJ] in ~s. A certain (possible) decision rule t--->s is optimal in ~s iff it is certain 
(possible) in s and no other rule constructed from a proper subset of atomic 
properties occurring in t is certain (possible) in d. 
Proper ty  4.1.1 
If object x, xC-o, supports a certain rule in d then IAV(X) CC_ I{a~(x). 

4.2 Reducts 

Here we wiU present a method of computing all optimal rules supported by an 
arbitrary, object xE�9 Let t--~s be an optimal rule supported by object x@�9 The 
decision part s is determined by the decision d(x). The condition part t is a 
conjunction of atomic properties of x for attributes A, where A is the set of all 
attributes occurring in t. Since t - - > s  is optimal A is a minimal attribute set for which 
t--->s is certain or possible, respectively. Any set A of this property will be caUed a 
reduct for x. Below we provide formal definitions of a certain and possible reduct: 
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SetA, AC_ATis a certain reduct forx, 1AT(X) C I~a](X), in g, iffA is a minimal set 
such that 1A(x) C_ l~a~(x). Set A, AC__AT is a possible reduct for x, xC--o, in d, iffA is a 

minimal set such that IA(x) C_ AT(l~a}(x)). 
In general, object x may serve as a generator of all optimal rules such that their 

conditional parts are determined by reducts for x and their decision part is equal to 
(d,d(x)). 

In order to compute reducts of DT we will exploit the idea of so called 
discernibility functions [7]. Their main properties are that flley are monotonic 
Boolean functions and their prime implicants determine reducts uniquely. 

Let aA(x,y) be a set of attributes a~A such that (x,y)~_SIM({a}). Let XaA(xy) be 
equal to 1, if ~ZA(Xy)= O. Otherwise, let Y,~zA(x,y) be a disjunction of Boolean 
variables corresponding to attributes comained in CZA(Xy). 

Ao(x) is a certain discernibility function for object x, IAr(x) C_ I{a~(x), iff 
A~(x) = ~ X~Ar(X,y) ,  where 1~= �9 I{a}(x). 

Ap(x) is a possible discernibiB& fimction for object x, x~_o, iff 

Ap(x) = ]--[~e~Ar(X,y), where ]~= �9 

5 Incomplete Decision Table 

5.1 Certain Rules 

Following the approach to incomplete information systems presented by Lipski in 
[8], we propose the following definition of a certain rule: Rule t--->s is certain in ~s if  
it is certain in every, completion of g. A certain decision rule t---,s is optimal iff it is 
certain in g and no other rule constructed from a proper subset of atomic properties 
occurring in t is certain. Object xC-o supports a certain rule t---,s in ~s iff x supports 
t---,s in each completion o f g  in which [ltl[~O. 
Property 5.1.1 
Rule t-->s is certain in ~ if it is certain in every completion o f ~  in which Iltll~O. 
Proposition 5.1.1 
Rule t-~s is certain in ~ if there exists an object xqltl] in some completion of ~ and 
t-->s is certain in all completions of ~ in which x~][t[[. 
Proposition 5.1.2 
Let ~ be an extension of ~ such that there is an object x~lltll having full complete 
descriptor in ~ and S may differ from ~ only for object x. 
Rule t ~ s  is certain in ~ if it is certain in ~ .  
Property 5.1.2 
Let ~ be an extension of ~ such that there is an object xElltlt having full complete 
descriptor in ~ and ~ may differ from ~ only for object x. 
If object x, xE�9 supports a certain rule in J then SAye(x) C l{~(x). 
Proposition 5.1.3 
Let ~ be an extension of ~ such that there is an object xE�9 having full complete 
descriptor in ~ and SA~(x) C_ l{~(x) and ~ may differ from s only for object x. 
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Any rule t---,s is certain in ~ if t--->s is certain and supported by x in ~ .  
Proof: Immediate from Proposition 5.1.2 and Property 5.1.2. 

[] 

5.2 Computation of Certain Reduets 

It is stated in Proposition 5.1.3 that certain rules may be computed in any extension 
of 3 such that the values of all attributes are the same in 3 and ~ for all objects 

from ok{x} and x has full complete descriptor in f f  and SA~(x)C_J{~(x). The number 
of different extensions S is equal to the number of different substitutions for null 
values in x. 

In order to compute the condition attributes of an optimal certain rule the notion of 
a certain reduct in ~ may be exploited: Set A, AC_~AT is a certain reduct for x, 
SAr~(x)C_,Iia~(x), in system ~ iffA is a minimal set such that 1Ar'(X)C_J{~(x) in every 
completion ~S' of ~ .  The set of all certain reducts of x in ,z is equal to the 
set-theoretical stun of all certain reducts for x computed in all ft. 
Ao~(x) is a certain discernibilityfimction for object x in ~ ,  S~(x)C__I{a~(X), iff 

A:(x)= ~ ] - ~  etAr'(X,y), where I~=�9 \I{~(x ). 
~s' is a c o m p  e t ion  of~S e ' c 

All certain reducts ofx in a ~ may be computed as all prime implicants of Ace(x). 
Proposition 5,2.1 

e C Ao~(x) is a certain discernibility function for object x in =r SAt (x)C.~_l{a~(x), if 
Ao*(X)=I-~. ~ C~Ar ~ (x,y),  where Yo= �9 \ l{a~(x). 

Proof: 
Let ~' be a completion of ~ such that all null values occurring in ~ are replaced in 
~' with the respective attribute values occurring in the descriptor of x. Let ,g' r ~' be 
an arbitrary completion of ~ .  One may easily notice that for each y~_o\lIa~(x), 
~,ctA (x,y)^ Y~xA (x,y)--~,CtA (X~V)--~(1,  A (x~y) .  Since was chosen arbitrarily then we 
may generalize the above observation: 

I I  - -  - -  �9 
~s" is a comple t ion  of~s ~ y~9\lfd) (x ) yU:rd\l(dr (x ) y~zg\lld } (x) 

[] 
5.3 Possible Rules 

Rule t---,s is possible in d if it is possible in every completion of ~. A possible 
decision rule t---,s is optimal iff it is possible in d and no other rule constructed from 
a proper subset of atomic properties occurring in t is possible. Object xC-o supports a 
possible rule t---,s in g iffx supports t---,s in each completion o f d  in which Iltll,'~. 
Property 5.3.1 
Rule t--,s is possible in ~ if it is possible in every completion o f~  in which Iltll~. 
Proposition 5.3.1 
Let ~ be an extension of ~ such that there is an object xqltll in ~ and S~r(x)~,  
where X = N (A TIIsll)', and ~ may differ from ~ only for object x. 

~S' is a comple t ion  of~S 

The rule t---,s is possible in ~ if it is possible in ~ .  
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Proof: 
Let F(z,t) denote a set of all completions of 2; in which zEIJtll. Let x and y be arbitrary 
objects such that xr and F(x,t)~O and F(v,t),,fJ. Additionally, we assume that rule 
t---,s is possible in all completions from F(x,t). Let 2;' be an arbitrary completion of 2; 
such that 2;'~F(v,t)~(x,t). Obviously, xq~H'. On the other hand there is a 
completion ~ '  in F(x,t) such that ~r differs from 2;' only for object x. This implies 

that xqltlr'. Since IItII"C_(ATH)" and [itlru{x}=Mr, and (ATIIslI)'=(-A-TIIsII)" (by 
Property 3.2.3), then Iltll'cIItll"C_(ATtlsll)"=(ATllslt) '. Hence, rule t---,s which is 
possible in J '  is also possible in 2;'. 

Since our choice of 2;' was arbitrary we may conclude that if rule t---,s is possible in 
all completions F(x,t), then it is also possible in all completions Fly, t). Additionally, 
since we chose x and y arbitrarily, we can infer that if rule t--,s is possible in all 
systems F(x,t),,O generated by any object x supporting rule t--,s, then it is possible in 
all completions F(y,t) generated by all objects y such that F(y,t)r Proposition 5.3.1 
is an immediate consequence of this conclusion and Property 5.3.2. 

[] 

Proposition 5.3.2 
Let ~ be an extension of 2; such that there is an object xqltll having full complete 

descriptor in ~ and SAr(X)C_,)(, where A ~ ['-] (A Tllsll)', and ~ may differ from 2; 
.S' is a completion of~S 

only for object x. 
The rule t---,s is possible in 2; if it is possible in g ~. 
Proof: 
Let x be an object having full complete descriptor and xqltll in ~f. Let F(x,t) be a set 
of all completions of 2; in which xqltll. Let G(x,t) be a set of all completions of 
having the same descriptor of object x. Since x~lltll in ~ then G ( x , t ) ~  and 
G(x, OCF(x, t )~.  Additionally, we assume that rule t--->s is possible in ~ ,  i.e. t--->s is 
possible in all completions from G(x,t). Let 2;' be an arbitrary completion of 2; such 
that 2;'~-F(x,O\G(x,t). There is a completion ~" in G(x,t) such that S '  differs from 2;' 

only for object x. However, IIt[l'=lltll " and (ATIIsII)'=(ATIIsI[) '' (by Property 3.2.3), so 

Iltll _(AZllsl[)  implies MrG(ATIIsII) ' .  Hence, rule t--->s which is possible in J '  is 
also possible in 2;'. Since our choice of 2;' was arbitrary we may conclude that if rule 
t---,s is possible in all completions G(x,t) (i.e. if rule t--->s is possible in g=), then it is 
also possible in all systems F(x,t). Additionally, since we chose ~ and x arbitrarily, 
we can infer that if  rule t---,s is possible in ~ ,  then it is possible in all completions 
F(x,t) and F(x,t),~. Proposition 5.3.3 is an immediate consequence of this 
conclusion and Proposition 5,3.2. 

[] 
Proposition 5.3.3 
Let ~ be an extension of ~ such that there is an object x~�9 having full complete 

descriptor in ~ and SA~(x)C_ ~'] ('A TI a (x))' and ~ may differ from g only for x. 
~s' is a completion of~S 

Any rule t---,s is possible in 2; if t---,s is possible and supported by x in ~ .  
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Proof: Immediate from Proposition 5.3.2. 
[] 

5.4 Computation of Possible Reduets 

Let S be an extension of ~ such that ~ may differ from ~s only for some xE�9 In this 
subsection we will show how to compute possible rules supported by object x having 

full descriptor in ~ and such that SAr(x)C_ [~(ATId(X))'. There may be several 
-S' is a completion of~S 

extensions S of :s for a fixed x. Our approach is justified by Proposition 5.3.3. In the 
remainder of this subsection, ~ (p___erhaps accompanied by an index referring to the 

respective system) will denote �9 TI{~(x). 
In order to compute condition part of an optimal possible rule the notion of a 

possible reduct in ~ may be exploited. Set A, AC_A T is a possible reduct for x, where 

SAT(,X)C_ [~I(ATId(X))', in system ~ iff A is a minimal set such that 
~' is a completion of<S 

ln(x)c_A Tl(ai(x) in every completion g' of S .  The set of all possible reducts ofx in ~s 
is equal to the set-theoretical sum of all possible reducts for x computed for all :f. 

Ape(X) is apossible discernibility function for object x, SAr(X)C ~ (A-fla(x))', 
~s' is a completion of~S 

in ~ ,  iff 

A P e ( X ) = g ,  is acomplp-Ietionof ~, ~ ~ Ctnr'(X'Y)" y~-./p' 

All possible reducts ofx in A ~ may be computed as all prime implicants of Ape(X). 
Proposition 5.4.1 
Let :s ~ be a completion of ~ such that all null values occuring in g# are replaced in 
~ with respective attribute values characterizing object x. Let [3n(x,y) be a set of 
attributes a64 such that a(x)~a(y) or a(x) =* or a(y) =* in ~ .  

Ape(x) is a possible discernibility function for object x, SAT(x)CC_ N(  ATId( X) )', 
:s' is a completion of:S 

in ~ ,  iff 

Ape(X) = I-I~ATe(x,y) A ~ ~(IAT~(X,y), where Y=�9 ~(A---TId(x))'. 
y~'\lp y(EYp ~' is a completion of~S ~ 

Proof: 
Let *,, denote a special value which is different from any domain value. Let s be an 
1S such that all null values occurring in ~ for all objects from X are replaced in 
with respective attribute values characterizing x and all the other missing values in 

are replaced by special value *~. Let us consider five types of completions of :f: 
1) ~' is a completion of ~ such that all null values occuring in ~ for all objects 

from �9 are replaced in ~' with arbitrary attribute values different from 
those characterizing x and the other null values are replaced by respective 
attribute values characterizing object x. 

2) :s' is a completion of ~e such that all null values occuring in ~ for all objects 
from �9 are replaced in ~' with arbitrary attribute values different from 
those characterizing x. 
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3) ~' is a completion of S such that all null values occuring in f f  are replaced in 
~' ~4th respective attribute values characterizing object x. 

4) ~'  is a completion of ~ such that null values occuring in ~ are replaced in i 
with respective attribute values characterizing x at least for all objects l{al(x). 

5) ~' is any completion o f ~ .  
If:s' is a completion of type 1 then o~m.'(x,y)=otA~(x,y) for eachyE�9 
Let <:r be a completion of type 2. For any ~ '  there is is a completion ~' of type 1 

such that attribute values in the both completions are the same for objects from 
�9 j(x). One may notice that aAr"(x~v)=aAr '(x,y)=c~A~(x~) for each yE�9 

Let be a completion of type 3. There is only one completion of that type, namely 
2 .  We may easily notice that aA~(x~v) = o~A~(x,y) for each ),C--coV{a/ (x). 

Let ~r be a completion of type 4. Let Z___�9 be a set of objects in which 
original null values were replaced in e ,  with respective attribute values 
characterizing object x. For any e ,  there is a completion ~' of type 1 that has the 

same values as ~ '  for all objects �9 In such a case (ATl{a~(x))" C (ATl{a~(x))" C 
Y " q ' -  Y " C Y  ' " _ x (ATI(4(x))X.and thus :p---'v - ' p .  We may also notice that a m  (x,y)-OtAT (x,y) ff 

3CZ and am" (x,y)=c~m. (xy)= ~tm~(xy) ifyE�9 
Let ~ '  be a completion of type 5. For any ~ '  there is a completion Wof type 4 that 

has the same values as e ,  for all objects �9 We may easily notice that 
aAf(x,y)=CXAT(X,y) for each yE�9 The result obtained for e ,  is valid for any 
completion of ~ .  Therefore, we can write: 

~s' is a comple t ion  o f d  ~ y~r~p, y E / ~  

Let us note that N (A T1 a (x))'C_(A Tl{al(x)) x, so Yp'~_~: Furthermore, aAP(x~v) 
~s' is a comple t ion  o f  3 ~ 

x _ x _ ~ s _ 8 ^aAr (x~V)-a~r (x,.v)-aAr (x,y) and aAr (x~v)-l$Ar (x,y) for eachy~�9 Hence, 

y~\r~ y~7 y~'\r~ y~l 7 
[] 

6. Illustrative Example 

Table 1 presents an incomplete decision table ~ containing information about cars. 
Attribute domains of ~ are as follows: Vp~={high,low}, Vja#~g~={high,low}, 
Vs~={full, compact} , VM~-s~,a={ h igh,low } , Va={poor,good, excel. }. 

Car Price Mileage Size 
1 hiEh low .full 
2 low * ,full 
3 * * camp 
4 high * full 
5 * * .full 
6 low low 

Max-Speed 
low 
low 
high 
high 
high 

fidl * 

Table 1. Car table 

good 
good 
pooF 
good 
excel 
good 

We will illustrate the method of rules' generation using object 6 as a rule generator. 
Further on, we will refer to the following sets of objects computed in ~: l{a/(6) = 
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]l(d, good)ll={1,2,4,6}, SAr(6)={2,5,6}, ATI~aj(6)={1,2,4,5,6}, ~(ATIa(6))'= 
~ '  is a completion o f ~  

{ 1,2,4,6} (see Property 3.2.2). There are two possible complete descriptors of object 
6: 
1. (P, low)A(M, low)^(S~dl)A(X, low), 
2. (P, Iow)A(M, low)A(S~dl)A(A, high), 
where P, M, S, X stand for Price, Mileage, Size and Max-Speed, respectively. 

Since S,~r(6)C_ f-](ATla(6))', then possible rules supported by object 6 may be 
3 '  is a completion of-5  

generated regardless its possible complete descriptor (see Proposition 5.3.3). The 
feasibility of generating certain rule covered by object 6 wiU depend on a considered 
possible complete desriptor of the object. 

Let ~ be an extension of,~ in which object 6 has full complete descriptor as in the 
case 1 and ~ differs from $ only for object 6. 

e C �9 Since SAz(6)={2,6}_I~a~(6), then certain rules may be generated from the 
descriptor of 6 (see Proposition 5.1.3). We will apply Proposition 5.2.1 to 
compute certain reducts: Y~ �9 ctAr(6,3)={S,,V}, ctA(6,5)={X}, so 
Ao~(6) = (SwD^(X)=X. Thus, there is only one certain rednct {,Y} found for 
object 6 in extension ~ ,  which means that only one certain rule is supported by 
object 6 in ~ ,  namely: (X, low)~(d, good). 

�9 We will apply Proposition 5.4.1 to compute possible reducts: 

(ATl{a~(6))x=-{1,2,4,6}, N(ATIa(6))'={1,2,4,6} (see Property 3.2.2), so 
~S' is a completion of~S ~ 

Y~;~�9 Y=�9 ~(AT1a(6))'={3,5 } and ~}~x=-o. 
~s' is a completion o f  3 ~ 

aAr(6,3)={S,X}, ~tA(6,5)={.V}, SO A~(x)=(SvX)A(X)=X. Hence we receive one 
possible rule: (X, Iow)--',(d,good). 

Let ~ be an extension of g in which object 6 has full complete descriptor as in the 
case 2 and ~ differs from ~ only for object 6. 
�9 SAf(6)={5,6} is not a subset of I{a~(6), so no certain rules may be generated from 

the descriptor of object 6 (see Proposition 5.1.3). 
�9 We will apply Proposition 5.4.1 to compute possible reducts: 

(AT1~(6))x=-{1,2,4,5,6}, ~(AT1a(6))'={1,2,4.6} (see Property 3.2.2), so 
~5' is a completion ofr  * 

YvX=-�9 Y=�9 ~(ATIa(6))'={3,5} and F~ypx={5}. 
~ '  is a completion of~5 ~ 

[SAr(6,5)={P,A4}, am(6,3)={S}, so Ap~(X)=(PvM)A(S)=PSvMS. Hence we receive 
two possible rules: (P, Iow)^(Sfull)--,(d, good) and (M, low)A(Sfull)--~(d, good). 

[] 
C o n c l u s i o n  

In the paper we defined the notions of a certain and a possible rule in an incomplete 
information system. According to our definitions a rule is certain/possible in the 
incomplete information system if it is certain/possible in every completion of the 
initial systems. We showed how to determine such rules directly from the incomplete 
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1S by applying e.g. Boolean reasoning. Rules may be generated as prime implicants 
of some Boolean functions. Hence, the problem is NP-hard. Nevertheless, efficient 
heuristics like Johnson's approximation strategy or genetic algorithms may be 
applied if we do not wish to generate all rules, but suboptimal ones with minimal 
condition parts. It is proved in [9] that suboptimal rules supported by an object may 
be generated in O(kn 2) or O(~nlogn) time, where n is the number of objects and k is 
the number of attributes. Space complexity of our method of rules' generation is 
linear with regard to the number of objects in the initial incomplete system. Rules 
supported by different objects' descriptors may be generated in parallel. The method 
allows to generate all certain rttles. Our method of possible rules' generation is valid 
also in the case of any object-generator such that all objects similar to it are 
contained in the upper approximation of the same decision class for each completion 
of an incomplete 1S. 
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