
Generation of Rules from Incomplete Information
Systems

Marzena Kryszkiewicz
hlstitute of Computer Science

Warsaw University of Teclmology
Nowowiejska 15/19, 00-665 Warsaw, Polmad

e-mail: lnkr@ii.pw.edu.pl

Abstract. h~ the paper we define certain and possible roles in an incomplete information
system as certain/possible olles in every completion of the initial system. The careful
examination of the depeudencies between an incomplete system mid its completions allow us
to state that it is feasible to generate all certahl rules and some important class of possible
rules directly from the incomplete information system. Space complexity of the proposed
method of rules' generation is linear with regard to the number of objects in the initial system.

I Introduction

The problem of knowledge discovering in the form of rules from incomplete
information systems (1S) is considered. By an incomplete system we mean a system
with missing data (null values). We do not consider the case of null value meaning
inapplicable value. This problem may be solved by adding a special symbol denoting
inapplicable value to the attribute domains. In the paper we deal with the problem of
unknown values.

Several solutions to the problem of generating decision tree from the training set of
examples with unknown values have been proposed in the area of Artificial
Intelligence. The simplest ones consist in removing examples with unknown values
or replacing unknown values with the most common values. More complex
aproaches were presented in [1-2]. A Bayesian formalism is used in [I] to determine
the probability distribution of the unknown value over the possible values from the
domain. This method could either choose the most likely value or divide the object
into fractional objects, each with one possible value weighted according the
probabilities determined. It is suggested in [2] to predict the value of an attribute
based on the value of other attributes of the object, and the class information.

The problem of rules' generation from incomplete systems was investigated also in
the context of Rough Sets [3-6]. The methodology from [3] consists in transforming
an incomplete system to a complete system, where each object with incomplete
descriptor in the source system is represented by a set of possible subobjects in the
target system. As we prove in [4], this method allows to generate the set of all certain
rules. Different methodology was presented in [5]. The method considered in [5]
allows to generate a subset of certain rules directly from the original incomplete
decision table. Modelling uncertainty caused by appereance of unknown values by
means of fuzz), sets was discussed in [6].

In this paper we refer to the results we obtained in [4-5] and extend them so that
the generation of all rules and some important class of possible rules is feasible. The
unique feature of certain/possible rules we consider is that they are certain/possible
in every completion of the initial 1S. The careful examination of the dependencies

157

between an incomplete IS and its completions allow us to state that such definitions
of decision rules do not require performing the calculations in all the completions of
the incomplete 1S. We propose a method of generation of all rules directly from the
original incomplete IS. Space complexity of the method is O(n), where n is the
number of objects in the initial system.

2 Information Systems

hlformation .system (IS) is a triplet ~= (�9 AT, J), where �9 - is a non-empty finite set
of objects and A T is a non-empty finite set of attributes, such that f~: �9 --, Vo for any
a~_A T, where 1~ is called domain of an attribute a. Any attribute domain Va may
contain special symbol "*" to indicate that the value of an attribute is unknown
(null). Here, we assume that an object ~xo possesses only one value for an attribute
a, a~A T, in reality. Thus, if the value of an attribute a is missing then we may
conclude that the real value must be one from the set Va\{* }. System in which values
of all attributes for all objects from �9 are known is called complete, otherwise it is
called incomplete.

Let d ' = (�9 AT, f) . We say that ,~' is an extension o l d i f d ' is an IS such that if
f~(x)~ * thenf~ '(x) =fa(x) for all a~_AT and x~Y. We say that d ' is a completion o l d
if d ' is a complete IS, which is an extension of d.

Let us note that if card(V~) = 1 then null value occurring for attribute a may be
substituted by the unique domain value va@Va vdthout changing information
capabilities of the system. Hence, any system d is equivalent to its extension d ' such
that iff~(x) = * thenf~'(x) = v~, v~EVa, for each attribute a~_AT such that c a r d (V a) =

1 and for each yE�9 From now on, without loss of generality, we will consider only
systems that do not have null values for attributes a such that card(I/~) = 1.

In the sequel, any attribute-value pair (a,v), a~AT, vEVa, will be called an atomic
property. Any atomic property or its conjunction will be called descriptor.
Conjunction of atomic properties for all attributes A T will be called fidl descriptor.
Descriptor that does not possess null values for attributes A C_ AT will be called
A-complete. The set of objects having the atomic property (a,v), i.e. {xE�9 f~(x) = v},

will be denoted by II(a,v)ll. Let us note that II(a,*)ll n II(a,v)ll -- 0 , if w * . The set of
objects satisfying any descriptor t will be denoted by Iltll and will be computed in the
usual way, e.g. IIt^sll = Iltllnllsll.

3 Indiscernibility of Objects and Set Approximations

3.1 Indiscernibility of Objects

Let A-=-(�9 AT, J). Each subset of attributes AC_A T determines a binary indiscernibili~
relation IND(A), IND(A) = {(xy)@ox�9 I Va~A, fo(x) = fa(Y)}. The relation IND(A),
AC_AT, is an equivalence relation and constitutes a partition of �9 which we will
denote by �9 Let IA(x) denote the object set {V(E�9 I (xy)~_IND(A)}. Objects
from IA(x) are indiscernible ~4th regard to their description in the system, but they
may have different properties in reality, unless the system is complete. Objects
perceived as indiscernible in the complete system are indiscernible also in reality.

158

Another similarity relation SIM(A), SIM(A)={(x~v)~�9215169 Va~.A, f~(x)=fafy) or
f~(x) =* orfdy)=*}, treats two objects as similar if they may have the same properties
in reality. Similarity relation is reflexive and symmetric, but may not be transitive.
By SA(x) we will denote the set of objects {y~�9 (xy)~_SIM(A)}.
Property 3.1.1
�9 Let B ___ A _ A T. Then: IA(X) ~ IB(X); SA(X) C SB(X); In(x) C_ SA(X).
�9 Let g' be a completion of ~. Then: IA '(x) = SA '(x); Sa'(x) ___ Sn(x).
�9 &(x)= [_JG'(x).

~s' is a completion of.g

3.2 Set Ap0roxlmations

Let AE_:_�9 and AC_.AT. First we recall standard rough set definitions of lower

approximation A2~V and upper approximation A 2~vDX of X in a complete IS:
A~w~Y = {xE�9 I In(x) C_ cY}={xU__~] In(x) C_ X},

Beneath we generalize these definitions for the case of incomplete IS:
= {x -ol SA(X) G X} = {x -Xl SA(X) C_ X}.

A {xC-ol Sn(x)rV;.

A_sacX is a set of objects that belong to X with certainty, while A s~X is a set of

objects that possibly belong to X. Obviously, A sL~4X=A~wDX and Asu~V=A~DX in a
complete IS. AsasX and A sa.~X will be denoted also by AX and AX, respectively.
Property 3.2.1

�9 Le ts ' be an extension o f d andAG�9 andAC_,AT. Then:XC AA" C_ AX.

�9 U (A X) ' : A X .
~s' is a completion of~S

Property 3.2.2
LetA*(v) denote {aEA[fo(v) =*} and L~(v) denote]-Jcard(l~). Let Full(Y) denote

aU.A (y)

the set of all objects from Y which have full complete descriptors. Let Desc(IO denote
the set of all different descriptors of objects Y.

(AX)'=(AX) \ H, where ~E�9 and
~S' is a completion of~S

H = {y ~ (-AX\,V) I card(Desc(Full(Sa(y) fq A))) < L~-~x(y)}.
Proof:
By Property 3.2.1 AX is the set of all objects yE�9 such that vE(AX)' in some

completion d' of~s. On the other hand, H is a set of objects yqAX)~X satisfying the

condition card(Desc(Full(Sn(v)s which implies that y~(AX)" in some

completion ~" of d. Hence, H is the set of all objects from AX that do not belong to

N (AX)'. Thus, the difference between A X and H is equal to N (AX)'.
~s' is a completion of~5 ~S' is a completion o f d

[]

159

Property 3.2.3
Let A~_�9 and AC_AT. Let ,~' and ~ ' be completions of ~ which differ only for an

object x@�9 IfSA(x)C__ (-](AX)'" then (AX)'=(AX)' .
s a completion of~

Proof:

- - S ' (x ~ C "-~ Since SA(x)C_ N (A X) ' " then A ~ ; _ t ~ A l . Additionally, SA'(x)MSA"(X)={X}
~"'is a completion of~

because completions ~s' and ~ ' differ only for x. Hence, S,~'(x)\{x}CC_(A,D'~SA"(x)

(A (X~{x}))". Similarly, we may derive: SA"(x)\{x}CC(A (~V~{x}))'.
We may also notice that SA'(F)=SA"(V) or SA'(y)=SA"CV)\{x} or SA'~v)=SA"fy)U{x}

for any yG]~{x}. Hence: (A (~{x})) ' U {x}=(A (~V~{x}))"U {x}.

Applying the results obtained above, we may write: (AAg" = SA"(x)U(A (~A{x}))"

= (SA'(x)\{x})U{x}U(A (,~{x}))"U(SA'(x)\{x}) = (SA"(x)\{x})U{x}U(A (X~{x}))'U

(Ss (x)\{x}) : {x}U(-A (X~{x}))'U(SA'(x)\{x}) -- (-A (.~{x})) 'USs (x) = (-AX)'.
[]

4 Complete Decision Tables

Decision table (DT) is an information system g = (�9 A~_J{d},/), where d, d~AT
and *~Va, is a distinguished attribute called decision, and the elements of AT are
called conditions. If DT is a complete IS then it is called complete decision table,
othel~vise it is called incomplete decision table,

In Section 4 we ~411 restrict our considerations only to complete decision tables.

4.1 Decision rules

Decision rules we will consider ~411 have the form: t--->s, where t=-A (c,v), cffAC_.A T,

v~l~, and s=(d,w), ~EVa. In the sequel, we will call t and s condition and decision
part of a rule, respectively. We will say that object x, xE�9 supports a rule t--,s in ~S
(or a rule t--->s covers an object x in ~) i fx has both property t and s in ~. A decision

rule t---,s is certain in ~ if MI --- IIsll in ~. A decision rule t---,s is possible in g if MI c_

ATIIsJ] in ~s. A certain (possible) decision rule t--->s is optimal in ~s iff it is certain
(possible) in s and no other rule constructed from a proper subset of atomic
properties occurring in t is certain (possible) in d.
Proper ty 4.1.1
If object x, xC-o, supports a certain rule in d then IAV(X) CC_ I{a~(x).

4.2 Reducts

Here we wiU present a method of computing all optimal rules supported by an
arbitrary, object xE�9 Let t--~s be an optimal rule supported by object x@�9 The
decision part s is determined by the decision d(x). The condition part t is a
conjunction of atomic properties of x for attributes A, where A is the set of all
attributes occurring in t. Since t - - > s is optimal A is a minimal attribute set for which
t--->s is certain or possible, respectively. Any set A of this property will be caUed a
reduct for x. Below we provide formal definitions of a certain and possible reduct:

160

SetA, AC_ATis a certain reduct forx, 1AT(X) C I~a](X), in g, iffA is a minimal set
such that 1A(x) C_ l~a~(x). Set A, AC__AT is a possible reduct for x, xC--o, in d, iffA is a

minimal set such that IA(x) C_ AT(l~a}(x)).
In general, object x may serve as a generator of all optimal rules such that their

conditional parts are determined by reducts for x and their decision part is equal to
(d,d(x)).

In order to compute reducts of DT we will exploit the idea of so called
discernibility functions [7]. Their main properties are that flley are monotonic
Boolean functions and their prime implicants determine reducts uniquely.

Let aA(x,y) be a set of attributes a~A such that (x,y)~_SIM({a}). Let XaA(xy) be
equal to 1, if ~ZA(Xy)= O. Otherwise, let Y,~zA(x,y) be a disjunction of Boolean
variables corresponding to attributes comained in CZA(Xy).

Ao(x) is a certain discernibility function for object x, IAr(x) C_ I{a~(x), iff
A~(x) = ~ X~Ar(X,y) , where 1~= �9 I{a}(x).

Ap(x) is a possible discernibiB& fimction for object x, x~_o, iff

Ap(x) =]--[~e~Ar(X,y), where]~= �9

5 Incomplete Decision Table

5.1 Certain Rules

Following the approach to incomplete information systems presented by Lipski in
[8], we propose the following definition of a certain rule: Rule t--->s is certain in ~s if
it is certain in every, completion of g. A certain decision rule t---,s is optimal iff it is
certain in g and no other rule constructed from a proper subset of atomic properties
occurring in t is certain. Object xC-o supports a certain rule t---,s in ~s iff x supports
t---,s in each completion o f g in which [ltl[~O.
Property 5.1.1
Rule t-->s is certain in ~ if it is certain in every completion o f ~ in which Iltll~O.
Proposition 5.1.1
Rule t-~s is certain in ~ if there exists an object xqltl] in some completion of ~ and
t-->s is certain in all completions of ~ in which x~][t[[.
Proposition 5.1.2
Let ~ be an extension of ~ such that there is an object x~lltll having full complete
descriptor in ~ and S may differ from ~ only for object x.
Rule t ~ s is certain in ~ if it is certain in ~ .
Property 5.1.2
Let ~ be an extension of ~ such that there is an object xElltlt having full complete
descriptor in ~ and ~ may differ from ~ only for object x.
If object x, xE�9 supports a certain rule in J then SAye(x) C l{~(x).
Proposition 5.1.3
Let ~ be an extension of ~ such that there is an object xE�9 having full complete
descriptor in ~ and SA~(x) C_ l{~(x) and ~ may differ from s only for object x.

161

Any rule t---,s is certain in ~ if t--->s is certain and supported by x in ~ .
Proof: Immediate from Proposition 5.1.2 and Property 5.1.2.

[]

5.2 Computation of Certain Reduets

It is stated in Proposition 5.1.3 that certain rules may be computed in any extension
of 3 such that the values of all attributes are the same in 3 and ~ for all objects

from ok{x} and x has full complete descriptor in f f and SA~(x)C_J{~(x). The number
of different extensions S is equal to the number of different substitutions for null
values in x.

In order to compute the condition attributes of an optimal certain rule the notion of
a certain reduct in ~ may be exploited: Set A, AC_~AT is a certain reduct for x,
SAr~(x)C_,Iia~(x), in system ~ iffA is a minimal set such that 1Ar'(X)C_J{~(x) in every
completion ~S' of ~ . The set of all certain reducts of x in ,z is equal to the
set-theoretical stun of all certain reducts for x computed in all ft.
Ao~(x) is a certain discernibilityfimction for object x in ~ , S~(x)C__I{a~(X), iff

A:(x)= ~] - ~ etAr'(X,y), where I~=�9 \I{~(x).
~s' is a c o m p e t ion of~S e ' c

All certain reducts ofx in a ~ may be computed as all prime implicants of Ace(x).
Proposition 5,2.1

e C Ao~(x) is a certain discernibility function for object x in =r SAt (x)C.~_l{a~(x), if
Ao*(X)=I-~. ~ C~Ar ~ (x,y), where Yo= �9 \ l{a~(x).

Proof:
Let ~' be a completion of ~ such that all null values occurring in ~ are replaced in
~' with the respective attribute values occurring in the descriptor of x. Let ,g' r ~' be
an arbitrary completion of ~ . One may easily notice that for each y~_o\lIa~(x),
~,ctA (x,y)^ Y~xA (x,y)--~,CtA (X~V)--~(1, A (x~y) . Since was chosen arbitrarily then we
may generalize the above observation:

I I - - - - �9
~s" is a comple t ion of~s ~ y~9\lfd) (x) yU:rd\l(dr (x) y~zg\lld } (x)

[]
5.3 Possible Rules

Rule t---,s is possible in d if it is possible in every completion of ~. A possible
decision rule t---,s is optimal iff it is possible in d and no other rule constructed from
a proper subset of atomic properties occurring in t is possible. Object xC-o supports a
possible rule t---,s in g iffx supports t---,s in each completion o f d in which Iltll,'~.
Property 5.3.1
Rule t--,s is possible in ~ if it is possible in every completion o f~ in which Iltll~.
Proposition 5.3.1
Let ~ be an extension of ~ such that there is an object xqltll in ~ and S~r(x)~,
where X = N (A TIIsll)', and ~ may differ from ~ only for object x.

~S' is a comple t ion of~S

The rule t---,s is possible in ~ if it is possible in ~ .

162

Proof:
Let F(z,t) denote a set of all completions of 2; in which zEIJtll. Let x and y be arbitrary
objects such that xr and F(x,t)~O and F(v,t),,fJ. Additionally, we assume that rule
t---,s is possible in all completions from F(x,t). Let 2;' be an arbitrary completion of 2;
such that 2;'~F(v,t)~(x,t). Obviously, xq~H'. On the other hand there is a
completion ~ ' in F(x,t) such that ~r differs from 2;' only for object x. This implies

that xqltlr'. Since IItII"C_(ATH)" and [itlru{x}=Mr, and (ATIIslI)'=(-A-TIIsII)" (by
Property 3.2.3), then Iltll'cIItll"C_(ATtlsll)"=(ATllslt) '. Hence, rule t---,s which is
possible in J ' is also possible in 2;'.

Since our choice of 2;' was arbitrary we may conclude that if rule t---,s is possible in
all completions F(x,t), then it is also possible in all completions Fly, t). Additionally,
since we chose x and y arbitrarily, we can infer that if rule t--,s is possible in all
systems F(x,t),,O generated by any object x supporting rule t--,s, then it is possible in
all completions F(y,t) generated by all objects y such that F(y,t)r Proposition 5.3.1
is an immediate consequence of this conclusion and Property 5.3.2.

[]

Proposition 5.3.2
Let ~ be an extension of 2; such that there is an object xqltll having full complete

descriptor in ~ and SAr(X)C_,)(, where A ~ ['-] (A Tllsll)', and ~ may differ from 2;
.S' is a completion of~S

only for object x.
The rule t---,s is possible in 2; if it is possible in g ~.
Proof:
Let x be an object having full complete descriptor and xqltll in ~f. Let F(x,t) be a set
of all completions of 2; in which xqltll. Let G(x,t) be a set of all completions of
having the same descriptor of object x. Since x~lltll in ~ then G (x , t) ~ and
G(x, OCF(x, t)~. Additionally, we assume that rule t--->s is possible in ~ , i.e. t--->s is
possible in all completions from G(x,t). Let 2;' be an arbitrary completion of 2; such
that 2;'~-F(x,O\G(x,t). There is a completion ~" in G(x,t) such that S ' differs from 2;'

only for object x. However, IIt[l'=lltll " and (ATIIsII)'=(ATIIsI[) '' (by Property 3.2.3), so

Iltll _(AZllsl[) implies MrG(ATIIsII) ' . Hence, rule t--->s which is possible in J ' is
also possible in 2;'. Since our choice of 2;' was arbitrary we may conclude that if rule
t---,s is possible in all completions G(x,t) (i.e. if rule t--->s is possible in g=), then it is
also possible in all systems F(x,t). Additionally, since we chose ~ and x arbitrarily,
we can infer that if rule t---,s is possible in ~ , then it is possible in all completions
F(x,t) and F(x,t),~. Proposition 5.3.3 is an immediate consequence of this
conclusion and Proposition 5,3.2.

[]
Proposition 5.3.3
Let ~ be an extension of ~ such that there is an object x~�9 having full complete

descriptor in ~ and SA~(x)C_ ~'] ('A TI a (x))' and ~ may differ from g only for x.
~s' is a completion of~S

Any rule t---,s is possible in 2; if t---,s is possible and supported by x in ~ .

163

Proof: Immediate from Proposition 5.3.2.
[]

5.4 Computation of Possible Reduets

Let S be an extension of ~ such that ~ may differ from ~s only for some xE�9 In this
subsection we will show how to compute possible rules supported by object x having

full descriptor in ~ and such that SAr(x)C_ [~(ATId(X))'. There may be several
-S' is a completion of~S

extensions S of :s for a fixed x. Our approach is justified by Proposition 5.3.3. In the
remainder of this subsection, ~ (p___erhaps accompanied by an index referring to the

respective system) will denote �9 TI{~(x).
In order to compute condition part of an optimal possible rule the notion of a

possible reduct in ~ may be exploited. Set A, AC_A T is a possible reduct for x, where

SAT(,X)C_ [~I(ATId(X))', in system ~ iff A is a minimal set such that
~' is a completion of<S

ln(x)c_A Tl(ai(x) in every completion g' of S . The set of all possible reducts ofx in ~s
is equal to the set-theoretical sum of all possible reducts for x computed for all :f.

Ape(X) is apossible discernibility function for object x, SAr(X)C ~ (A-fla(x))',
~s' is a completion of~S

in ~ , iff

A P e (X) = g , is acomplp-Ietionof ~, ~ ~ Ctnr'(X'Y)" y~-./p'

All possible reducts ofx in A ~ may be computed as all prime implicants of Ape(X).
Proposition 5.4.1
Let :s ~ be a completion of ~ such that all null values occuring in g# are replaced in
~ with respective attribute values characterizing object x. Let [3n(x,y) be a set of
attributes a64 such that a(x)~a(y) or a(x) =* or a(y) =* in ~ .

Ape(x) is a possible discernibility function for object x, SAT(x)CC_ N(ATId(X))',
:s' is a completion of:S

in ~ , iff

Ape(X) = I-I~ATe(x,y) A ~ ~(IAT~(X,y), where Y=�9 ~(A---TId(x))'.
y~'\lp y(EYp ~' is a completion of~S ~

Proof:
Let *,, denote a special value which is different from any domain value. Let s be an
1S such that all null values occurring in ~ for all objects from X are replaced in
with respective attribute values characterizing x and all the other missing values in

are replaced by special value *~. Let us consider five types of completions of :f:
1) ~' is a completion of ~ such that all null values occuring in ~ for all objects

from �9 are replaced in ~' with arbitrary attribute values different from
those characterizing x and the other null values are replaced by respective
attribute values characterizing object x.

2) :s' is a completion of ~e such that all null values occuring in ~ for all objects
from �9 are replaced in ~' with arbitrary attribute values different from
those characterizing x.

164

3) ~' is a completion of S such that all null values occuring in f f are replaced in
~' ~4th respective attribute values characterizing object x.

4) ~' is a completion of ~ such that null values occuring in ~ are replaced in i
with respective attribute values characterizing x at least for all objects l{al(x).

5) ~' is any completion o f ~ .
If:s' is a completion of type 1 then o~m.'(x,y)=otA~(x,y) for eachyE�9
Let <:r be a completion of type 2. For any ~ ' there is is a completion ~' of type 1

such that attribute values in the both completions are the same for objects from
�9 j(x). One may notice that aAr"(x~v)=aAr '(x,y)=c~A~(x~) for each yE�9

Let be a completion of type 3. There is only one completion of that type, namely
2 . We may easily notice that aA~(x~v) = o~A~(x,y) for each),C--coV{a/ (x).

Let ~r be a completion of type 4. Let Z___�9 be a set of objects in which
original null values were replaced in e , with respective attribute values
characterizing object x. For any e , there is a completion ~' of type 1 that has the

same values as ~ ' for all objects �9 In such a case (ATl{a~(x))" C (ATl{a~(x))" C
Y " q ' - Y " C Y ' " _ x (ATI(4(x))X.and thus :p---'v - ' p . We may also notice that a m (x,y)-OtAT (x,y) ff

3CZ and am" (x,y)=c~m. (xy)= ~tm~(xy) ifyE�9
Let ~ ' be a completion of type 5. For any ~ ' there is a completion Wof type 4 that

has the same values as e , for all objects �9 We may easily notice that
aAf(x,y)=CXAT(X,y) for each yE�9 The result obtained for e , is valid for any
completion of ~ . Therefore, we can write:

~s' is a comple t ion o f d ~ y~r~p, y E / ~

Let us note that N (A T1 a (x))'C_(A Tl{al(x)) x, so Yp'~_~: Furthermore, aAP(x~v)
~s' is a comple t ion o f 3 ~

x _ x _ ~ s _ 8 ^aAr (x~V)-a~r (x,.v)-aAr (x,y) and aAr (x~v)-l$Ar (x,y) for eachy~�9 Hence,

y~\r~ y~7 y~'\r~ y~l 7
[]

6. Illustrative Example

Table 1 presents an incomplete decision table ~ containing information about cars.
Attribute domains of ~ are as follows: Vp~={high,low}, Vja#~g~={high,low},
Vs~={full, compact} , VM~-s~,a={ h igh,low } , Va={poor,good, excel. }.

Car Price Mileage Size
1 hiEh low .full
2 low * ,full
3 * * camp
4 high * full
5 * * .full
6 low low

Max-Speed
low
low
high
high
high

fidl *

Table 1. Car table

good
good
pooF
good
excel
good

We will illustrate the method of rules' generation using object 6 as a rule generator.
Further on, we will refer to the following sets of objects computed in ~: l{a/(6) =

165

]l(d, good)ll={1,2,4,6}, SAr(6)={2,5,6}, ATI~aj(6)={1,2,4,5,6}, ~(ATIa(6))'=
~ ' is a completion o f ~

{ 1,2,4,6} (see Property 3.2.2). There are two possible complete descriptors of object
6:
1. (P, low)A(M, low)^(S~dl)A(X, low),
2. (P, Iow)A(M, low)A(S~dl)A(A, high),
where P, M, S, X stand for Price, Mileage, Size and Max-Speed, respectively.

Since S,~r(6)C_ f-](ATla(6))', then possible rules supported by object 6 may be
3 ' is a completion of-5

generated regardless its possible complete descriptor (see Proposition 5.3.3). The
feasibility of generating certain rule covered by object 6 wiU depend on a considered
possible complete desriptor of the object.

Let ~ be an extension of,~ in which object 6 has full complete descriptor as in the
case 1 and ~ differs from $ only for object 6.

e C �9 Since SAz(6)={2,6}_I~a~(6), then certain rules may be generated from the
descriptor of 6 (see Proposition 5.1.3). We will apply Proposition 5.2.1 to
compute certain reducts: Y~ �9 ctAr(6,3)={S,,V}, ctA(6,5)={X}, so
Ao~(6) = (SwD^(X)=X. Thus, there is only one certain rednct {,Y} found for
object 6 in extension ~ , which means that only one certain rule is supported by
object 6 in ~ , namely: (X, low)~(d, good).

�9 We will apply Proposition 5.4.1 to compute possible reducts:

(ATl{a~(6))x=-{1,2,4,6}, N(ATIa(6))'={1,2,4,6} (see Property 3.2.2), so
~S' is a completion of~S ~

Y~;~�9 Y=�9 ~(AT1a(6))'={3,5 } and ~}~x=-o.
~s' is a completion o f 3 ~

aAr(6,3)={S,X}, ~tA(6,5)={.V}, SO A~(x)=(SvX)A(X)=X. Hence we receive one
possible rule: (X, Iow)--',(d,good).

Let ~ be an extension of g in which object 6 has full complete descriptor as in the
case 2 and ~ differs from ~ only for object 6.
�9 SAf(6)={5,6} is not a subset of I{a~(6), so no certain rules may be generated from

the descriptor of object 6 (see Proposition 5.1.3).
�9 We will apply Proposition 5.4.1 to compute possible reducts:

(AT1~(6))x=-{1,2,4,5,6}, ~(AT1a(6))'={1,2,4.6} (see Property 3.2.2), so
~5' is a completion ofr *

YvX=-�9 Y=�9 ~(ATIa(6))'={3,5} and F~ypx={5}.
~ ' is a completion of~5 ~

[SAr(6,5)={P,A4}, am(6,3)={S}, so Ap~(X)=(PvM)A(S)=PSvMS. Hence we receive
two possible rules: (P, Iow)^(Sfull)--,(d, good) and (M, low)A(Sfull)--~(d, good).

[]
C o n c l u s i o n

In the paper we defined the notions of a certain and a possible rule in an incomplete
information system. According to our definitions a rule is certain/possible in the
incomplete information system if it is certain/possible in every completion of the
initial systems. We showed how to determine such rules directly from the incomplete

166

1S by applying e.g. Boolean reasoning. Rules may be generated as prime implicants
of some Boolean functions. Hence, the problem is NP-hard. Nevertheless, efficient
heuristics like Johnson's approximation strategy or genetic algorithms may be
applied if we do not wish to generate all rules, but suboptimal ones with minimal
condition parts. It is proved in [9] that suboptimal rules supported by an object may
be generated in O(kn 2) or O(~nlogn) time, where n is the number of objects and k is
the number of attributes. Space complexity of our method of rules' generation is
linear with regard to the number of objects in the initial incomplete system. Rules
supported by different objects' descriptors may be generated in parallel. The method
allows to generate all certain rttles. Our method of possible rules' generation is valid
also in the case of any object-generator such that all objects similar to it are
contained in the upper approximation of the same decision class for each completion
of an incomplete 1S.

References

[1] Kononenko I., Bratko I., Roskar E., Experiments in Automatic Learning of
Medical Diagnostic Rules, Technical Report, Jozef Stefan Institute, Ljubljana,
Yngoslavia, 1984.

[2] Quinlan J.R., Induction of Decision Trees, in Readings in Machine Learning,
Shavlik J.W., Dietterich T.G. (ed.), 1990, Morgan Kaufmann Publishers, pp.
57-69.

[3] Chmidewski M.R., Grzymala-Busse J.W., Peterson N.W, Than S., The Rule
Induction System LERS - A Version for Personal Computers, Foundations of
Computing and Decision Sciences, Vol. 18 No. 3-4, 1993, pp. 181-212.

[4] Kryszkiewicz M., Rules in Incomplete Information Systems, submitted to
blformation Sciences.

[5] Kryszkiewicz M., Rules in Incomplete hfformation Systems, submitted to
Information SciencesProceedings from the Third Joint Conference on
Information Sciences, North Carolina, USA, March 2-5, 1997, to appear.
Kryszkiewicz M., Rough Set Approach to Incomplete Information Systems,
Proceedings of Second Annual Joint Conference on Information Sciences,
Wrightsville Beach, North Carolina, USA, 28 September - 1 October 1995, pp.
194-197.

[6] Sloxx~finski R., Stefanowski J.0 Rough-Set Reasoning about Uncertain Data, in
Fundamenta Infon,aticae, Vol. 27, No. 2-3, 1996, pp. 229-244.

[7] Skoxwon A., Rauszer C., The Discernibility Matrices and Functions in
Information Systems, in Intelligent Decision Support: Handbook of Applications
and Advances of Rough Sets TheotT, Slowinski R. (ed.), 1992, Kluwer
Academic Publisher, pp.331-362.

[8] Lipski W.J., On Semantic Issues Connected with Incomplete Information
Databases, ACM Transaction on Databases Systems, 4, 1979, pp. 262-296.

[9] Nguyen S.H., Nguyen H.S., Some Efficient Algorithms for Rough Set Methods,
in Proceedings of Sixth Intl. Conference IPMU '96, July 1-5, Granada, Espana,
Vol. 3, 1996, pp. 1451-1456.

