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A b s t r a c t .  In this paper we present a method for induction of fuzzy 
characteristic rules from a fuzzy subset. We use a two step method where 
in the first step we search for candidate predicates which will make up the 
characteristic rules. For this purpose typical values are used to isolate 
characteristic intervals for attributes, these intervals will make up the 
candidate predicates. In the second step we use the candidate predicates 
to induce the fuzzy characteristic rules. 

1 I n t r o d u c t i o n  

One of the pr imary  goals of da ta  mining is to find human interpretable pat terns  
(rules, trees, t ime series pat terns etc.) describing the da ta  in a database.  The 
discovered pat terns can be valuable information for decision making and for 
people who want to understand a new data  domain. Rules are frequently used as 
pat terns  in da ta  mining and can be used to express different kinds of knowledge 
[1]. 

This paper  is concerned with fuzzy characteristic rules, which is a fuzzyfi- 
cation of the usual characteristic rules. For a characteristic rule (p --~ q), the 
consequence q summarize  one or more properties common to all instances of the 
subpopulat ion p, where q typically is a conjunction of attr ibute-value conditions. 
Generally if for a rule we allow the subpopulation p to be a fuzzy subset and the 
consequence q to be fuzzy conditions we have a fuzzy rule. 

For example in medicine a fuzzy characteristic rule may  be used to summarize  
tile symptoms  necessary for a given disease. I t  could be most people with flu have 
s~eezing and fever (f lu -+ sneezing A fever). Notice the fuzzy concept fever is 
used as a predicate in the consequent part  of the rule. In [4] we show how to 
evaluate these fuzzy rules. 

From an applications viewpoint, a good informative characteristic rule should 
contain a lot of conjuncted conditions in the consequence part  q to describe the 
subpopulat ion p. This observation leads us to the interestingness measure, the 
maximal  characteristic descriptions (the maximal  conjunctive generalization or 
MCG) [5], but other measure for rule interestingness ( I C + + )  can be found in 
[2]. 

Rules can be either categorical or hedged/quanti tat ive,  where quant i ta t ive 
rules are associated with statistical information about  the extent of the rule 
(p -~ q, (80%)), while categorical have no associated hedging information (p -+ 
q). Fuzzy rules are examples of hedged rules, because they always are associated 
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with a t ruth  degree. The t ruth degree is a value in the unit interval [0, 1], where 
1 means true and 0 false. 

In this paper  we will introduce a method for induction of fuzzy characteristic 
rules from a fuzzy subset. The method consist of two independent steps. In the 
first step we search for candidate predicates which will make up the characteristic 
rules. For this purpose we will use an algorithm which is restricted to at t r ibutes  
of interval domains.  In the second step we induce the characteristic rules f rom 
the candidate predicates. 

The rest of the paper is organized as follows, in Section 2 and 3 we present 
a method to isolate the candidate predicates. In Section 2 we talk about  typical 
values for an attribute,  the typical values defines characteristic intervals with 
high object density. In Section 3 we introduce a simple cluster algori thm to 
isolate the characteristic intervals, which will make up the candidate predicates. 
The induction algorithm for the fuzzy characteristic rules will be introduced 
in Section 4. In Section 5 we present some experimental  results from the rule 
induction and at last in Section 6 the conclusion. 

2 T y p i c a l  V a l u e s  

We will now show how typical values can be used to define characteristic intervals 
for the attributes.  As we earlier have mentioned the characteristic intervals will 
be used as candidate predicates for the characteristic rules. A typical value for 
an at tr ibute,  can be defined as a value which is close to most  of the values found 
in the population for that  attribute.  In the paper  [6] Yager discusses how we can 
use fuzzy subsets to represent the typical values and in [7] Yager and Rasmussen 
introduce a relational fuzzy query language called SummarySQL in which it is 
possible to query for typical values. 

A fuzzy subset is a object set 0 = { # 1 / o l  + ... + # i / o i  + ... + #n /On} ,  where 
each object oi has a degree of membership #i E [0, 1], this is different from an 
ordinary set where each object either belongs to the set or not, #i E {0, 1}. 
It  has been shown that  fuzzy subsets are useful tools to modeling vague or 
fuzzy concepts like tall, small  and about 10 in a very intuitive manner  [8]. For 
example to represent the fuzzy concept the smal l  numbers  from No we will write 
#small = {1/0-]- .9/1 "4-.8/2...-4-.1/9-4-0/10...}. Often we will use a membership  
function to represent a fuzzy subset #o  : O ~ [0, 1], where the argument  is an 
object oi and the result the membership degree #i. For example the degree to 
which the number  1 belongs to the fuzzy subset smal l  is ~ s m a l l ( l )  = 0.9. In this 
paper  we will used fuzzy subsets and membership functions to define typical 
values and fuzzy predicates. 

Let O be a fuzzy subset of objects oi and let A be an at tr ibute from O. Further 
let oi.a denote the value object oi takes for the at tr ibute A. Then a typical value 
for an at t r ibute A is a fuzzy subset of the elements oi.a, where the membership  
degree #i indicates the degree of typicality or how close oi.a is to all the values 
oj .a in O. We will use the notation #typical[A] = { # 1 / o l . a  + ... + #n/o,~.a} for the 
typical value of A. To calculate the fuzzy subset #typical[A] we  have to define a 
similarity relation ~:  A x A  -+ I.  For example x ~ y could be max(O,  1 - 1 x - y l / 5 ) ,  
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where 5 is a constant.  Fig. 1 shows how to construct a typical value for an 
a t t r ibute  A in a fuzzy subset O. 

inpu t :  fuzzy object set: O, attribute: A 
o u t p u t :  typical value: #typica l [A]  

1) p roc  findTypicalVal 
2) forall  object oi E O do 
3) ri = F , ,  mi,~(o,.a ~ oj.a, , o  (oj) ), ~h~r~ oj ~ 0 
4) . ,  = ~ i . ( r ~  : f ~ a r d ( 0 1 ) , . o ( o O )  
5) ex tend  Ptypical[d] wi th  pi/oi.a 
6) end  
7) r e t u rn  gtypic~l[A] 
8) end  

Fig. 1. Find the typical value for an attribute A of the fuzzy objet set O. 

The description of the algorithm is as follows: Find the object mass r~ in a 
local area around the value oi.a for each object oi E O by summarizing over 
min(o i .a  ~ o j . a , # o ( o j ) )  for all the objects oj E 0 (line 3). The similarity 
function ensure tha t  the closer the values oj.a are to oi.a the more mass they 
will contribute and because an object oj should not contribute with more mass 
than it belongs to the fuzzy subset O we use min(o~.a ~ oj.a, #o (o j ) ) .  Next 
find the degree of typicality #i as the mass r~ divided by the fuzzy cardinalitye 
f ca rd (O)  of the total  object set O (line 4), where f card (O)  = ~ j  # o ( o j )  [8]. We 
can look at pi as the proportion of the objects oj E 0 that  satisfies the relation 
oi.a ~ oj.a. In this case the degree of typicality Pi cannot by greater than the 
membership  degree of the object itself Po (o~) (line 4), but it is possible to argue 
that  the degree of typicality should be independent of #o  (oi). Then the degree of 
typicali ty is founded for a value oi.a then extend the fuzzy subset #typical[A] with 
# i /o i .a  (line 5). If there exist one or more values #~l /a i l , . . . ,  # ik /aik  where  ai = 
all = ... = aik then g i /a i  will be defined as max(p i ,  #i l ,  ..., p~k)/ai. 

If we plot the typical value for an at t r ibute and compare it with a frequency 
plot, we will notice tha t  the typical value is a t ransformation or a smoothing 
of the frequency plot, also known as smoothing of the empirical densities. In 
Fig. 2.a we show a frequency plot of the Na - concentration related to samples 
from headlamp glass, the samples come from UCI, 1997. In Fig. 2.b we show the 
typical value plot for the same attr ibute,  in this case the similarity relation 
was defined as max(O, 1 - [x - yl /5) ,  where 5 is 10% of the Na range. 

Notice, the typical value indicates a coherent area with a high frequency den- 
sity, this area will be used to define the characteristic interval or in other words, 
a characteristic interval for an at t r ibute A is an interval Ic where the object 
density is high. This area can easily be isolated with a simple cluster algori thm 
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Fig. 2. a. Frequency plot, b. typical value plot and c. approximated typical value plot 
of the Na-attribute from the glass type headlamp. 
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(Fig. 4) and will constitute the candidate predicates for the characteristic rules. 

A p p r o x i m a t e d  A l g o r i t h m  The complexity of the algorithm (Fig. 1) is o(IOl ), 
where IOI are the size of the object set O, this is not acceptable if we are talking 
about several Giga-bytes of data. For this reason we will introduce an approxi- 
mation for how we can find the typical value by a linear search in the size of the 
object set. 

input :  fuzzy object set: O, attribute: A, interval set: L = {Lt, ..., Ln} 
ou tpu t :  typical value: ~typical[A] 

1) proc findTypicalValapprox 
2) cardArray[n] = [0, ..., 0] 
3) forall object oi E O do 
4) j = findlntervallndex(o~.A, L) 
5) cardArray[j] = cardArray[j] + po(o 0 
6) end 
7) forall intervals L s E L do 
8) rj = ~k(mean(Lj) ~ mean(Lk)) * cardArray[k], wherek E [1, n] 
9) tt~ = rs : fcard(O) 
10) ex tend  Ptypic~l[A] with pj/mean(Ls) 
11) end 
12) r e tu rn  ~ttypical[A] 
13)end 

Fig. 3. Find the approximated typical value for an attribute A of a fuzzy objet set O 

The algorithm (Fig. 3) takes as arguments a fuzzy object set O, an at tr ibute 
A from which we want to generate the typical value and L = {L1, ..., L~} is a 
parti t ion of the rang(A), where LjNLk = 0 i f j  r k and L1U...UL,~ = rang(A). 

First define an array cardArray (line 2) which represents the fuzzy cardinal- 
ity of the objects belonging to the interval Lj where j is the index of the array 
(cardArray[j]). Next find the fuzzy cardinality for each interval Lj (line 3). For 
each interval Lj, calculate the mass rj in a local area around Lj as the sum 
of the similarity between the mean values for the interval Lj and Lk times the 
cardinality of the interval Lk (line 8). Then find the degree of typicality #j as 
rj  divided by the cardinality fcard(O) of the object set O (line 9). Then extend 
the fuzzy subset #typical[A] with the fuzzy value #i/mean(Lj) (line 10). 

The function calculates the degree of typicality for each mean value mean(Lj) 
also the intervals which does not contain any object values oi.a, this is differ- 
ent from the first function. This approximation will define the typical value as 
smooth coherent curve for all values, see Fig. 2.e. The complexity of the approxi- 
mation are O(lOl+n2), where IO[ is the size of the object set 0 and n the number 
of intervals {L1, ..., L~}. We can further reduce the complexity to 0(101 + n .  6) 
if we only calculate rj for the index k where mean(Ik) E [mean(Lj) - 6, 
mean(Lj) + 5] and 5 is the distance where the similarity relation is different 
from 0. 
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input :  typical value: #typical = { . , / e ,  + ... + . - / e , d ,  
relative minimal typicality: or, element weights: [a0...*m], 
relative maximum distance/3, maximal succeed fault: m a x S u c F a u l t  

o u t p u t :  right index of I~: eright 

1) p roc  findRightOfCharacteristicInterval 
ernode ~- f i n d M a x E l e m e n t ( p t ~ p , ~ l )  
r i g h t  = m o d e  

r = m o d e  + 1 

f a u l t  = 0 
m i n H e i g h t  = a �9 Pmode 
m a x  D e l t a  = / 3  �9 Pmod~ 

~) 
a) 
4) 
~) 
6) 
7) 
8) 
~) 
10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
is) 
19) 

whi l e  ( f a u l t  > m a x S u c F a u l t  or r > n) do 
= [~0 . . .~ ] -  [,,gh, ...~rig~ -- m] -- ~, 

i f  ( m i n H e i g h t  > p~ or 5 > m a x D e l t a )  

f a u l t  = f a u l t  + 1 
else  

r i g h t  = r 

f a u l t  = 0 
end  
r = r + l  

end 
r e t u r n  eright 

20) end 

Fig. 4. Search for the right edge of a characteristic interval I~. 

3 I s o l a t i n g  t h e  C h a r a c t e r i s t i c  I n t e r v a l s  

We will now show how to isolate the characteristic intervals from the typical 
values by a simple cluster method,  The purpose of the cluster algorithm is to 
isolate the hills which define the typical intervals. Basically the algorithm will 
work as follows: 1. First find the index for the maximal  value of typicality (the 
mode).  2. Then go right from the mode until the typicality is too different 
from the previous values or the typicality is too small and save the index. 3. 
Repeat  step 2 but this t ime go left. The interval defined by the right walk 
and left walk is then the characteristic interval Ic. More precisely let Ittypical 

{ # t / e l + . . . + # ~ / e ~ }  be a fuzzy subset where the elements e,...e~ are in increasing 
order. We then search for the interval I~ = [el~jt ,  eright]. 

Let a define the threshold for the minimal typicality we can accept in I~ rel- 
ative to the mode, the minimal  typicality is shown as vertical lines in Fig. 5.a,b. 
Let /3 be the relative accepted m a x i m u m  distance between the typicality from 
the previous accepted elements {e0...el} and a new element el + 1. Further 
let [cr0...c%] be weights for the previous m closest elements {e~...e~_m}, where 
~ i  ~ri = 1, [cr0...~m]. [#i...#~-m] = C'0 "/ti + ... + Crm" # i -m is the dot product  of 
the vectors and [c%...~,~] �9 [#i . . .pi-~]  - pi+~ is the distance between the m pre- 
vious accepted elements e i . . . e i - m  and the new element e i+ l .  Then the following 
algori thm Fig. 4 will return the right element of the characteristic interval I~. 
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The parameter  m a x S u c F a u l t  makes the algorithm flexible for errors or miss- 
ing values in ~ttypica I. For example to isolate the cluster in Fig. 2.b we have to 
ignore the missing value for ei = 14 and the parameter  m a x S u c F a u l t  indicate 
the maximal  succeed fault we will accept in Ic. To find the left edge we only 
have to change the direction of the function so it searches from emode to Cleft 
and the pair cleft and eright defines the cluster for the characteristic interval 
Ic -~ [ele/t, eright]. Fig. 5.a,b shows two characteristic interval founded width the 
cluster algorithm, where c~ = .2, ~ = .5, [c~0 (rl] = [.8 .2] and m a x S u c F a u l t  is 
set to 5% of the range. If  we not are interested in characteristic intervals which 
are too broad, we just  have to raise the a parameter  and by modifying/3 and 
the weights [~0-.-~-~] it is possible to make the cluster algorithm more sensitive 
to separate double hills. Further an array with lot of weights will make a high 
dependence between the previous accepted elements in I~ and a new element, so 
only new elements with similar typicality will be accepted. 

Freq ~ p 

0.1 0.2 0.2 
0,1 0.1 

o.0 . . . .  ~ ..... .... ' " ,  . . . .  , . . . .  ' , N a  o . o ~ -  ..! . . . . .  . I " " ' " '  i , N a  0.0 -- ? . . . .  , , N a  
11.0 12.0 13.0 14.0 15.0 16.0 11.0 12.0 13.0 14.0 15.0 16.0 11.0 12.0 13.0 14.0 15.0 1G.O 

l i i I a. b, c. -o  Ic +o 

Fig. 5. a. A founded cluster in a frequency plot, b. a founded cluster in a typical value 
plot and c. a fuzzyfied characteristic interval Ic. 

F u z z y f i c a t i o n  o f  C h a r a c t e r i s t i c  I n t e r v a l s  We consider each characteristic 
interval Ic = [a, b] as a possible predicate for the characteristic rules, where I t ( x )  
is true if x E [a, b]. In this crisp framework, objects which are very close to the 
interval Ic will always make the predicate false. This approach is very logical, 
but as human beings we would say that  the predicate was true to some degree 
and it could be valuable information for decisions. In the logical approach the 
information would be lost. 

If  we on the other hand use a fuzzy framework, we can express the vague 
information by fuzzifying the characteristic interval so objects which are close to 
the interval I~ are true to some degree. For this purpose we will use a member-  
function I~ : x ~ [0, 1] which represent the fuzzyfied characteristic interval. For 
example the characteristic interval Ir = [a, b] can be fuzzyfied by the trapezoidal 
function Ic (Equation 1 and Fig. 5.c.): 

x -  a / 6 i f  x e [ a -  6 ,  a ]  

1 if x E [a, b] 
I~(x) = 5/x  - b if x E [b, b + 5] (1) 

0 else 

where 5 is a constant and define the fuzzy part  of the fuzzyfied interval Ic. 
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4 Induct ion  of Fuzzy Characterist ic  Rules  

Once the candidate predicates (the selectors) are found, we are ready to induce 
the characteristic rules. The rules are induced from the selectors, in our case 
the fuzzyfied characteristic intervals. The reason why we find the characteristic 
intervals useful is because each of them characterizes the domains from which 
we want to induce the rules. But other selectors could also have been used, they 
could come from other preprocessing methods or from domain experts and are 
not restricted to interval domains.  We could for example use the fuzzy concepts 
low, medium and high to define the selectors for the Na-concentration or for the 
color of a car we could use the fuzzy concepts reddish and bluish. 

The characteristic rules we will search for have the form p --4 q where the 
subpopulat ion p is a (fuzzy) subset of a population O and the consequence q 
is a conjunction of the selectors. Also associated with a characteristic rule is 
a confidence value r E [0, 1] and we write p --+ q(r) if the rule is satisfied to 
degree r .  The subpopulat ion p from which the characteristic rules are induced 
have to be defined by the user, for this purpose a fuzzy query language could be 
useful [4]. The consequence q is a conjunction of fuzzy predicates, the fuzzyfied 
characteristic intervals Ii, q = I1 A ... A In. In traditional fuzzy logic, the t ruth  of 
conjuncted predicates (Pl A ... A p~) is defined as minimum of there t ru th  values 
rain(p1,..., Pn). The same definition will be used for the aggregated consequence, 
so the t ruth  of q is equal to #q = I1 A ... A I,~ = min(I1,. . . ,  I~). The confidence 
r of a fuzzy rule p --+ q in a population O is defined as the proportion of objects 
in p tha t  satisfy q and should be calculated as follows: 

f card(p A q) 
~--  feard(p) (2) 

where fcard(p A q) = ~o~eo min(#p (ol), pq(Oi)) and fcard(p) = ~ o ~ O  #p(oi). 
Notice, if both  the subpopulat ion p and the consequence q are crisp, #p(Oi) E 
{ 0, 1 }, then the confidence ~- is equal to the original definition [3]. The complexity 
of finding the confidence is O(]O]) or O(]p]) if the subpopulation p is known, 
where IO] is the size of the population O and IPl is the size of the subpopulat ion 
p. A nice thing about  a fuzzy rule is, that  the objects which nearly match  the 
rule also contribute to the confidence of the rule in some degree. Further it is 
possible to rank the outlier objects regarding how much they break the rule. 

T h e  I n d u c t i o n  A l g o r i t h m  The algorithm we use for induction of the charac- 
teristic rules can be viewed as a specialization of the general STAR algorithm [5]. 
To find the consequence q (the descriptions) of a characteristic rule p -+ q the 
STAR use a function called the reduced star RG(ol~p, m), where o is an object 
from the subpopulat ion p and -~p is the negative objects from the population O. 
The function is flexible regarding to different search criteria on p, -~p and q. An 
example is a search for maximal  characteristic descriptions MCG q, which cover 
all positive objects in p and is found by specialize selectors derived from o. The 
possible number  of descriptions can be very large and to restrict the search a 
parameter  m is given to ensure, that  the reduced star contains no more than a 
fixed number,  m, of descriptions at time. 
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We use a function fuzzyS tar (S ,  7) similar to the reduced star, where the in- 
put  is a set of selectors S and a confidence threshold 7- The fuzzyStar search for 
maximal characteristic descriptions q, where the confidence r of the rule p --+ q 
is greater than or equal to the confidence threshold 7. Because we systemati- 
cally compound the descriptions q of selectors from S, we can efficiently use the 
confidence threshold 7 to restrict the search space. The algorithm guarantees 
that  all maximal characteristic descriptions q with r _> 7 are found. If necessary 
other interestingness criteria of the rules can be added as a post process. 

Let Iij be a selector of an attribute Ai and let the selector group Gi = 
{Iil, ..., I i~)  be the set of all selectors belonging to the same attr ibute Ai. Further 
let S = {G1, ..., Gk) be a set of selector groups from a subpopulation p. We then 
search for descriptions of the form q = Ikljl A... A Ik,j~ which constitute the head 
of the characteristic rule p --+ q, where the indexes ki = kj only if i = j .  The 
condition of the descriptions q avoid more than one selector for each attribute. 

As input the algorithm (Fig. 6) takes a set of selector groups S and a con- 
fidence threshold 7. Output  is a set of descriptions Star = {ql, ..., qr). To find 
the Star we use a beamsearch which successive add new descriptions to the 
Star constraint by the threshold 7- Basically the beam search uses old accepted 
descriptions to find new candidates. Then the star is found the rules will be 
made human comprehensible by removing descriptions which are subsumptions 
of other descriptions and agrees with the MCG. A subsumptions si of q is a 
subset of conjuncted selectors from q. 

The search algorithm for the characteristic rules works as follows: Find the 
Star by iteration over the interval group Gi in S (line 3). For each iteration 
specialize the current accepted descriptions q in the Star with the selectors from 
Gi and add the specialized descriptions to the Star if they satisfy the confidence 
threshold 7 (line 6 ~ 10). In this way the Star constitute the seeds for the new 
descriptions (line 7 ~: 11) and non fruitful paths will be pruned. The prune is 
correct because a descriptions can only be valid, 7- > 7, if all the subsumptions of 
the descriptions also are valid. The function confidence(q) return the confidence 
of the rule p --+ q (line 6 & 10). To avoid two predicates for the same at tr ibute 
we temporarily define Starnew (line 4). After each iteration (line 3) S t a r ~  
contain the new extensions of the Star and will then be added to the Star (line 
16). Notice, the structure of the algorithm ensure we do not find permutations 
of already found descriptions. 

Once the valid descriptions q are found the subsumptions should be removed. 
The test for subsumption can be clone efficiently as long we keep the order of 
the added selectors in q and keep the order of the added descriptions q in the 
Star. Do as follows: 1. Remove a selector q from the Star in reverse order and 
keep it, 2. then delete all the subsumptions of q from the Star 3. repeat from 
1 until the Star is empty. The reverse extraction order ensure we never keep a 
subsumption and waist time by test it. 

The complexity of algorithm (Fig. 6) is bounded by O([N l * [Pt + ]OI), where 
[O[ is the size of the population O, [p[ the size of the subpopulation p and IN[ the 
sum of possible descriptions q given the selectors/ i j .  The factor O( [N[ ,  [P I) is the 
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inpu t :  set of selector groups: S, confidence threshold: 3' 
ou tpu t :  a descriptions set: Star 

1) p r o c e d u r e  fuzzyStar 
2) Star = {} 

3) forall  selector group G 6 S do 
4) Starnew : {} 
5) forall  selector I E G do 
6) if  (conf idence(I )  >_ 7) t h e n  
7) Starn~ = S t a r ~  u {I} 
8) forall  descriptions q E Star do 
9) q~w = q A I 
10) if  ( e o n f i d e n c e ( q ~ )  >_ 3') then  
11) S t a r ~  : S t a r n ~  U {qne~} 
12) e n d  
13) end 
14) e n d  
15) e n d  
16) Star = Star U S t a r ~  
17) e n d  
18) r e t u rn  Star 
19) e n d  

Fig. 6. Search for characteristic ntles in a subpopulation p. 
possible numbers of confidence tests and it takes 0(IOI)  to find subpopulat ion 
p. The quant i ty  INI can be exponential in the numbers of at tr ibutes Ai, where 
i E { 1,.., k}. Let IG~[ be the numbers of selectors belonging to the selector group 
i then we can calculate INI as: k 

INI = ~-~N~. (3) 
i=1 

where N~ = la~l ,  (1 + N,_~) and No = 0. As we told O(INI ,  Ipl + IOl) is 
a upper bound and the actual numbers of confidence test depends of the da ta  
distribution and the threshold 7. 

5 E x p e r i m e n t s  a n d  R e s u l t s  

A prototype of the system was developed and implemented, algori thm (Fig. 1) 
is used to find the typical values. The prototype was tested on a database,  which 
can be found at UCI-1997, containing different types of glass. 

The first example (Table 5.1) show different characteristics of window glass 
(class 2) where the confidence threshold is set to 0.9. The tuples in the table 
represent the descriptions q of a classification rule p ~ q and there confidence 
r.  The confidence r of a rule can be found in the right most  field, the remaining 
fields contain values which represent the conjuncted characteristic intervals and 
if no value is presented it means the total  range (any value). For example the 
first tuple represent the rule C l a s s  = 2 -+ A l  G [0.65; 2.15] A K E [0; 0.9] A K a  E 
[0; 0.15], (0.95). We can consider the rules as different characteristic views qi on 
the same subpopulat ion p and they can be ranked regarding to an interestingness 
measure [2]. 
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ITa A1 Si K ]3a 

[0.65; 2.1S] [0; 0.9] [0; 0.15] 0.95 
[12.2~ 14.S) [0; 0.g] 0.91 

[0,SS~ 2.iS] [ZI.?~ ?~.S] ~ 0.~t 
[12.2; 14.~] [0.6S; 2,15] 0.91 
[12.2; 14.3] [0;0.15] 0.91 

Fig. 7. Induced characteristic ndcs from glass type 2. 

Notice, it can be difficult to find the optimal confidence threshold for a data  
set. If we raise the confidence threshold we also expect a lower complexity of the 
rules and if the complexity of the rules are too low we maybe lose interesting 
knowledge. At the same time if we chose the confidence threshold too low then 
the rules only characterize small parts of the data  and the numbers of rules will 
raise and make it less human comprehensible. 

By repeating the induction process we can find a set of characteristic rules 
which together cover the subpopulation p. The rules will constitute generalized 
view of p and we have used the following procedure to the generalization: 1. 
Find the different characteristic views qi of the subpopulation p, then we get 
a table like Table 7. 2. Chose and save an appropriate view and then find the 
outliers, the objects which do not belong to the view. 3. Repeat the induction 
process 1. but this time on the outliers and stop if the size of the outliers have 
reached a minimal boundary. Then the process stop, the saved characteristic 
rules constitute a generalized table over the objects in the original table. 

Table 8 is an example of such a table where the confidence threshold was set 
to 0.8 for each repetition. It is also possible to adjust the confidence threshold in 
progress to control the quantity of each rule. Note the second tuple t2 in Table 8 
is a generalization of the first tuple tl  and the confidence r should be read as 
the part  of objects which satisfy t2 and not t l .  The total part of objects which 
satisfy t2 are equal to 0.8 + 0.17 = 0.97. The structure of the generalized table 
are in some ways similar to the table induced from attribute oriented induction 
[3] the big different are our tables usually contain empty fields (any) and the 
tuples can be generalizations of other tuples like t~. 

l~i N~ A1 ~i K B~ Fe r 

[1.515; 1.52211112.2; 14.3] [0.65; 2.15] [71,?; 73.6] [0; 0.9; [0; 0.15] 0.80 
[0.65; 2.151 [0; 0.9] 0.17 

[12.2~ 14.3] [0~ 0.1S] [0; 0.01] 0.03 

Fig. 8. The generalized table of the objects glass type 2. 

The last example show how a fuzzy subpopulation can be compressed to a 
generalized table where the characteristic intervals are fuzzyfied (table 9). In this 
case we defned  the subpopulation p as "the objects which belong to class 2 and 
have a refractive index less or similar 1.52" ( R I  <,,m 1.52). The characteristic 
interval ~ [a; b] should be read as about [a; b], and ~ [a; b] is defined as Equa- 
tion 1, where ~ is 10% of the range. Note the generalized table contains two main 
groups, the objects with low iron concentration Fe E ~  [0; 0.01] and the objects 
with a high iron concentration Fe C~  [0.08; 0.36]. The last tuple in Table 9 is a 
generalization of the two others. 

Table 5.5 represent the outliers from the rules in the generalized table 10. 
Notice, the outliers satisfy the fuzzyfied rules to some degree of this reason we 
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I~I ~, H s  A1 ;gi K Ba 2',E 1: 

~[1.515.;1,522] d[12.2,;14.3] s~[2.7;4] ~[0.65;2.15] ~[?1.?;73.6] d[0;0.c.J] ~[0;0.15]1 :s[0;0.01] 0.48 
~[1.515.; 1.522] ~['12.2; 14.3] ~[2.7; 4] ~[0.85; 2.15] ss[71.7;73.6] ~[0; 0.r ~[0; 0.15] ~s[0.0~;0.38] 0.30 

~[0.6S; 2.15] ~[0.; 0.9] ~[0; 0.15] 0.20 

Fig. 9. The generalized table for the subpopulation C l a s s  = 2 and  R I  < ~  1.52. 

consider the outliers as a fuzzy subset. For example the object with the I d  = 110 
are only a week outlier (# = 0.28) meanwhile object 107 are a strong outlier 
(it = 0.93) cause the high B a  concentration. 

~1 ~I  lqa H~ ~1 Si K ]~J ~e p 

I07 I.~:~ 10.7 0 2.s 69.8 0.6 ~.15 0.28 0.0~ 

!29 1.52 13.6 2.1 1.67 72.2 0.5 0.27 0.17 0.3~ 
85 1.51 14.3 3.1 2.08 72.3 1.1 0 0 0.32 
110 1.52 13.7 0 0.56 74.5 0 0 0 0.2~ 

Fig. 10. Outliers from Table 9 represented as a fuzzy subset. 

6 Conclusion 

In this paper  we have presented a method to induce fuzzy characteristic rules 
from a fuzzy subset. We used a two step method,  where we in the first step 
sought for candidate predicates and in the second step the candidate predicates 
were used to induce the fuzzy characteristic rules. 

The candidate predicates were isolated from typical values by . simple cluster 
method  and we showed how a confidence threshold could be use to reduce the 
search space for the induction of fuzzy characteristic rules. 

The discovered fuzzy characteristic rules defined different x ~ws on a sub- 
populat ion and it was possible to isolate outliers as a fuzzy sub ~t. Further we 
showed how to compress the information in a subpopulation ant represent it as 
generalized table. 
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