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Abs t r ac t .  Similarity of objects is one of the crucial concepts in sev- 
eral applications, including data mining. For complex objects, similarity 
is nontrivial to define. In this paper we present an intuitive model for 
measuring the similarity between two time series. The model takes into 
account outliers, different scaling functions, and variable sampling rates. 
Using methods from computational geometry, we show that this notion 
of similarity can be computed in polynomial time. Using statistical ap- 
proximation techniques, the algorithms can be speeded up considerably. 
We give preliminary experimental results that show the naturalness of 
the notion. 

1 I n t r o d u c t i o n  

Being able to measure the similarity or dissimilarity between objects is a crucial 
point in many  da ta  retrieval and data  mining applications; see [9] for a general 
discussion on similarity queries. For complex objects, defining similarity is by no 
means trivial. In this paper  we consider the problem of defining the similarity 
between t ime series. 

Time series are an impor tant  class of complex da ta  objects. They arise in 
several financial and scientific applications; examples include stock price indices, 
the volume of product sales, telecommunications data, one-dimensional medical 
signals, audio data,  and environmental measurement  sequences. 

In many  cases it is necessary to search within a t ime series database for 
those series tha t  are similar to a given query sequence. This primitive is needed, 
for example,  for prediction and clustering purposes. While the statistical liter- 
ature on time-series is vast, it has not studied similarity notions that  would be 
appropriate  for, e.g., da ta  mining applications. 

Intuitively, we consider two sequences similar if they exhibit similar behavior 
for a large subset of their length. We assume that  the sequences to be compared 
can have 

- outliers, i.e., values tha t  are measurement  errors and should be omit ted  when 
comparing the sequence against others; 
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- different scaling factors and baselines: the sequences can, e.g., be measure- 
ments done using different devices, and the scaling and baseline values can 
be different. 

Our goal is to obtain a measure of similarity that would be resistant 4 with respect 
to such changes. That  is, if we have a sequence X and modify it to sequence X I 
by introducing outliers, by scaling and translation, and by adding or removing 
some observations, the sequences X and X ~ should still be considered reasonably 
similar. 

We give a definition of similarity that fulfills these conditions and study 
algorithms that  can be used to compute the similarity between sequences. We 
also discuss some generalizations and specializations of the similarity concept. 
In detail, the paper is organized as follows. In Section 2 we present the similarity 
model. In Sections 3 and 4 we give an exact algorithm that  finds the similarity 
of two time sequences, where similarity is defined as above. In Section 5 we 
give a faster approximation algorithm. This algorithm was implemented and in 
Section 6 we present some experimental results. Finally, Section 7 is a short 
conclusion. 

The results we present here represent preliminary work, to demonstrate the 
validity of the approach. A rigorous comparison with different methods will 
follow. In this extended abstract some of the proofs of lemmas and theorems 
appear in the Appendix. 

2 T h e  s i m i l a r i t y  m o d e l  

A time series is a finite sequence X of integers: (ml , . . . ,  m~). 
Fix a set U of transforraation functions for mapping integers to integers. The 

set 5 v could consist of, say, all linear functions m ~ am + b, all scaling functions 
m ~-~ am, all quadratic functions, all monotone functions, or just the identity 
function. 

Intuitively, we say that that  two sequences X = (ml, m2,. . . ,  m~) and Y = 
( y l , y 2 , . . . , y ~ )  are U-similar, if there is a function f E U such that  a long 
subsequence X ~ of X can be approximately mapped to a long subsequence Y~ 
of Y using f .  

It is important  to note here that  X ~ or y r  does not consist of consecutive 
points of X (respectively Y). Rather, the points of X '  (Y'), appear in the same 
relative order in X (Y). This means that  the matched subsequences allow for 
a number of holes (outliers) in the original sequences. Clearly, if X and Y are 
similar, the number of outliers will be small, and X ~ and Y~ will approximate 
them in length. 

D e f i n l t i o n l .  Given two time series X = (ml , . . . ,  m,~) and Y = ( y l , . . . ,  y,~), 
and numbers 0 < 7,6 _~ 1, the sequences X and Y are (U, 7 ,6 ) - s imi la r  if and 
only if there exist a function f E ~" and subsequences Xf  = (mq, . . .mi ,~)  and 

4 See [8], pages 1-6 for a discussion of resistance and robustness os statistical 
procedures. 
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Fig. 1. Two telecommunication sequences: Each sequence represents the number of 
connections on a given physical line over time. 

Y] = (yj~, . . .y j~, , ) ,  where ik < i~+1 and j~ < jk+z for all k = 1 , . . . , 7 n -  1, such 
that  Vk, 1 < k < 7n, 

The parameter 7 (0 < 3' < 1) is used to control the length of the subsequence 
of X that  can be mapped to Y. The parameter c controls how close we want the 
sequences to match. When yj~ and xi~ satisfy the above condition, we say that  
they are c-close. 

D e f i n i t i o n 2 .  For given X, Y, •, c, the similarity of X and Y is 

Sim~,~ (X, Y) = {max7 [ X, Y are (:T, 7, e)-similar} 

Sire:r,, (X, Y) is therefore a number between 0 and 1, with numbers closer 
to 1 signifying greater similarity. In this paper we mostly consider the collection 
of functions 3rli n consisting of linear functions: 

:Tli n : {x  ~-+ ax + b I a,b C ~} .  
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This set of functions is reasonably simple, but allows us to find similarities be- 
tween sequences with different scaling factors and base values. We call (~lin, 7, r 
similarity simply (7, r 

Next we very briefly mention some related work; for lack of space, this sec- 
tion is strongly abbreviated. The problem of searching for similar sequences was 
brought to the database community perhaps mostly by the papers [1, 6, 7, 4]. 
The idea of using longest common subsequence in measuring similarity between 
sequences of objects has been proposed in [13]. The similarity model presented 
here however does not account for different scaling factors and different baseline 
values. A similar model has been proposed by Agrawal et. al. [2]. The main dif- 
ference is that,  this model does not allow outliers within windows of a specified 
length W, and the linear function can vary slightly in the length of the matched 
common subsequence. See also [10] for a collection of material on sequence com- 
parisons. 

3 L o n g e s t  c o m m o n  s u b s e q u e n c e s  

If we know the function f C Y that is to be used, determining (2-, V, z)-similarity 
between X and Y is easy: we form the sequence f (X)  by applying f to each ele- 
ment of X, and then locate the longest common subsequence between f (X )  and 
Y. Two numbers are considered equal if they are e-close. The longest common 
subsequenee can be found by simple dynamic programming in O(n ~) time (The- 
orem 8, in the Appendix); time O(hn) can also be obtained, when the length of 
the longest common subsequence is at least n - h ([3], Theorem 8 in the Ap- 
pendix gives a sketch of the algorithm.) We refer to this algorithm as the less 
algorithm, and will use it as a subroutine in the next sections. 

The lcss algorithm is able to solve in a simple fashion a seemingly complex 
problem of determining which elements of two complex objects correspond to 
each other in the maximal pairing between the objects. Note that  the sequence 
aspect is crucial here: finding maximal pairing between two sets is NP-complete. 

4 A p o l y n o m i a l  a l g o r i t h m  f o r  ( %  s ) - s i m i l a r i t y  

In this section we present a correct algorithm that,  given a pair of sequences 
X and Y, finds the linear transformation f that  maximizes the length of the 
longest common subsequence of f(A),  B (within r The algorithm is based on 
the use of methods from computational geometry. 

The main idea of the algorithm is to locate all fundamentally different linear 
transformations and check each one. Given two linear transformations f l  and f2, 
specified by pairs (al, bl) and (a2, b2), we say that  they are equivalent, denoted 
f l  =li,~ f2, if for all 1 _< i, j < n we have: f l  maps zi e-close to yj if and only if 
f2 maps z~ r to yj. 

L e m m a  3. There are at most O(n 4) equivalence classes of =tin. 
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A l g o r i t h m  1 Find i f  sequences A, B are (% E)-similar. 

1. For all equivalence classes of--tin, find a representative (a, b). 
2. For each pair of (a, b), run the Icss algorithm for the sequences a X  + b and 

Y ,  and test whether the length of the longest common subsequence is at least 
"yn. 

The following theorem is a corollary of the Algorithm 1 and Lemma 1. 

T h e o r e m 4 .  Given two time series X = (xl ,  . . . , xn) and Y : (Yl, . . . , Yn), and 
numbers 0 < 7, e < 1, we can compute if  X and Y are (7, ~)-similar in O(n 6) 
time. 

If we consider the smaller family of scaling functions :Tsc = {~ ~-~ ax [ a C N}, 
then we obtain the following result. 

T h e o r e m  5. Given two time series X -- (~1 , . . . ,  xn) and Y -~ ( Y l , . . . ,  Yn), and 
0 < %6 < 1, we can compute i f X  and Y are (3:sc,%e)-similar in O(n 4) time. 

5 An Approximate Algorithm 

The algorithm presented in the previous section shows that  the problem of de- 
ciding similarity is solvable in polynomial time, but it is of no practical use. In 
this section we show how to obtain a faster approximation algorithm. 

The main idea is to reduce the number of candidate pairs of (a, b). To do so 
we use some statistical arguments to compute bounds for possible values of a 
and b. 

Let X',Y~ be two matched subsequences of length 7n. Then y~/(1 + e) <_ 
ax~ + b < y~(1 + e), and after summing for all i we obtain: 

E ( Y ' ) / ( 1  +e)  <_ a E ( X ' )  §  <_ E(Y')(1  + e )  

Let X,~i,~, Y,~i,~ be the subsequences of X and Y of length 7n that  minimize 
the average, and Xmax, Ym~z be the subsequences that  maximize the average. 
These subsequences can be found easily, given the value of % after sorting the 
points in the input sequences. After we compute E ( i m ~ ) ,  E(Xmin) ,  E(Ymin),  
E ( Y , , ~ ) ,  we can bound the values of E ( Y ' )  an E ( X ' )  in the above inequality 
from above and below. Thus we obtain the following inequalities: 

1. b >_ - E ( X , ~ = )  a +  E ( Y m i , ) / ( 1 T r  
2. b < - E ( X m ~ )  a + E(Ymo~)(1 + ~) 

These two inequalities define an infinite wedge in (a, b) space (see Figure 
2). To get a finite convex area we need at least another inequality. In order 
to do that,  we use the deviation of the sequences. The deviation of a sequence 
X = ( x l , . . . , x , ~ )  is: 
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Fig. 2. These two fines represent the two inequalities that were obtained for a specific 
pair of sequences, using the subsequences that minimized or maximized the average. 

D ( X )  -~ E Ix' - E (X) I  
i 

Note that  D(a X -4- b) = a D(X) .  

L e m m a  6. Let X ~, Y~ be two matched subsequences of length "yn. Then: 

ID(Y') - D(aXt  + b)l <_ 2 7 n e l E ( Y ' ) [  

Let X d m i n  , Ydmin be the subsequences of length 7n that  minimize the devia- 
tion, and X d , ~ ,  Ya,~= be the subsequences that  maximize the deviation. Then, 
from the previous inequality, we have: 

2. a D ( X d ~ ) <  D(Yd~o=) + 2~neE(Y~,~) 

These two inequalities together with the other two ones define a bounded 
quadrilateral in (a, b) space. 

To use these two inequalities however we have to find the subsequences that  
minimize or maximize the deviation. 

L e m m a 7 .  Given a sequence X = (~z . . . .  ,~n) and 7 �9 [0, 1], assume that 
the subsequence of length ~n of X that minimizes the deviation is Xm~n -- 
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Fig .  3. This figure shows the same sequences shown in Figure 1. The linear transfor- 
mation 0.068 x - 0.865 maximizes the length of the longest common subsequence for 
these sequences. 

(x~, ' ' ' ' max(z~ ,  ' . . . ,  x~n ). I f  xrn~n = min(z~,  . . .  , x.m) and Xrna= = .. ., ~.y,~), then 
for all zi  E X \ Xmin,  either xi __< Train/ o r  T i ~ ~rnazt . 

The  previous  l e m m a  shows t ha t  the  fol lowing O(n log n)  runn ing  t ime  algo-  
r i t h m  compu te s  the  subsequence of length  7 n  t h a t  min imizes  the  dev ia t ion .  

A l g o r i t h m  2 Find the subsequence that minimizes the deviation. 

1. Sort the points. 
2. Slide a window of size 7n, 

inside the window. 
and compute the deviation of the subsequence 

The  dev i a t i on  of  the  new sequences can be c o m p u t e d  incrementa l ly ,  so s tep  
two of  th is  a l g o r i t h m  can be pe r fo rmed  in l inear  t ime.  To find the  subsequence  
t ha t  max imizes  the  dev ia t ion  we use a s imi la r  a rgumen t .  In  th is  case we slide a 
window of length  ( 1 -  7 )n .  Now it  is the  po in t s  outs ide  th is  window t h a t  are  the  
po in t s  in the  subsequence.  

We can now give the  out l ine  of the  a p p r o x i m a t i o n  a lgo r i t hm.  
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A l g o r i t h m  3 Find if sequences X, Y are (7, e)-similar. 

1. Compute bounds for a, b. 
These define a convex area in (a, b) space. 

2. Use a grid to sample the area defined by the bounds. 
3. For each grid point (a, b), apply the linear transformation z~ = a ~  + b and 

run the Icss algorithm for Y, X ' .  

The running time of the algorithm is O ( M ( 1 - 7 ) n 2 ) ,  where M is the number 
of sampling points. We are trying to find a longest common subsequence of length 
at least ~/n, so the running time of the lcss algorithm is 0(1- -y)n2) .  The accuracy 
of the algorithm depends on the size of the sampling grid. In our experiments, 
we use a sampling interval of (e/2)aj for a, and a constant value for b. 

6 E x p e r i m e n t a l  R e s u l t s  

The approximate algorithm was implemented in C, and we used this implementa- 
tion to find similar sequences among a set of telecommunication sequences. Each 
sequence represented the number of telephone connections that  went through a 
given physical telephone line over time. The measurements were obtained by 
sampling the line every 15 minutes. Some sequences represented the number of 
connections that  were established during this time, and some represented the 
number of connections that  were on (but might have been established earlier). 
Each sequence was 480 points long (5 days.) 

We used a set of 34 sequences, and ran the algorithm for each pair. We 
used large values for e, between 0.2 and 0.3, but we observed little variation on 
the final results for different values of e. For each pair, 480 minus the length 
of longest common subsequence found was used as the distance between two 
sequences. Thus we obtained a 34 x 34 distance matrix, which was fed to the 
SAS clustering software package. 

The results of the clustering were compared to the results of visual classi- 
fication of the sequences. The two different kinds of sequences were in differ- 
ent clusters. Office phone lines, which present a distinct pattern were clustered 
together. Pairs of sequences that  appeared similar to a human observer were 
clustered together. In addition, similarities that  we didn't  notice before, mainly 
due to different scale, were brought forward. For example Figure 3 shows the 
best match for the two sequences of Figure 1. Figure 4 gives an example of the 
matchings obtained. 
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Fig. 4. Of the sequences shown, Y809051 and Y802291 were clustered together, and so 
were Y801130 and Y801191, but the two pairs were in different clusters (e = 0.2.) 

7 Discussion 

We present an intuitive model to capture the similarity of two t ime series, and 
a practical approximate  algorithm to measure the similarity under this model. 
The algori thm has been implemented, and has been applied to a set of telecom- 
municat ion da ta  with encouraging results. 

These results represent preliminary work. More experimental  work has to 
be done to properly evaluate the behavior of the model and to compare this 
approach with existing different ones. 

The model can be modified in several ways. One of the most  interesting 
possible changes is the bounded-offset restriction, which means tha t  each element 
mi may  only be mapped  to an element yj of sequence Y such that  [i - j] < K ,  
where K is a constant ([5].) This restriction has the role of forbidding very large 
t iming differences between the sequences, and it seems to be quite reasonable 
in several application domains. In the bounded offset model, the complexities of 
the algori thms are typically a factor of n lower than in the general model, as the 
longest common subsequence computat ion can be speeded up. 

The approximat ion techniques presented in Section 5 can be sharpened by 
noting tha t  the linear transformations preserve the distributional properties of 
the sequences very well. For example, if there are m of repeated values in se- 
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quence X,  then in order for Y to be (?,E)-similar there must  be in Y approxi- 
mate ly  m - 7n values that  are within a factor of 6 f rom each other. 

An impor tant  future research direction is to consider the database problem: 
Given a set of t ime series and a query sequence, find the ones that  are similar to 
the query. In order to avoid comparing the query sequence with each sequence 
in the database,  we have to use some approximation (fingerprint) scheme tha t  
reduces the dimension of the sequences, such as the wavelet t ransformation,  
or the deviation of subsequences. To compute fingerprints of small dimension 
Agrawal et al [1] use the Discrete Fourier Transform, Shatkay et al [11] use 
feature extraction, and other methods have been suggested; see [12] for some 
general discussions on fingerprinting. 
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A Proof s  

T h e o r e m  8. Given two t ime series X = ( ~ 1 , . . . ,  x,~) and Y =- (Yl , .  . ., Yn), and 
0 < e < 1, we can compute the longest subsequences Xab = ( x l , . . . x s )  and 
Yab = ( y l , . . . y s )  such thatVi ,  l < i < s, y i / ( l  +e)  < xi < y i ( l + e ) , i n O ( n  2) 
time. 

P r o o f :  A dynamic programming algorithm is used. Let D[i, j] be the length 
of the longest common subsequence of sequences X = (xl ,  z2, �9 . . ,  xi) and Y = 
(Yl,  Y 2 , . . . ,  Yj). Then Din,  n] is the length of the longest common subsequence of 
X and Y. Is easy to see that  if Iz~-  Yjl > ~, then D[i, j] = m a x ( D [ i -  1, j], D[i, j -  
1]). Otherwise D[i, j] = m a x ( D [ / -  1, if, D[i, j - 1], D[i - 1, j - 1] + 1). [] 

P r o o f  o f  L e m m a  3: Let us assume that  for a given pair of (a, b), the points 
xi and Yd are in the longest common subsequence, and in fact are mapped  to 
each other. Since the t ransformation a X  + b has been applied to X,  the following 
inequality must  hold: y~/( t  + r < a m~ + b < y~(1 + r 

Ysn 

Ysn- 1 

L 
. 

s S h ~ 

r "  

l i  

Xsl Xs2 Xsi Xsn 

Fig. 5. The two lines intersect the same number of line segments, and therefore belong 
in the same equivalence class. 
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Consider the plane where X is mapped  to the horizontal axis and Y to the 
vertical (Figure 5). We will refer to this as the (x, y) plane. (xi, yj) represents 
a point on this plane. The linear t ransformation a X  § b represents the line y - 
ax+b. Notice that  xi and yj can be mapped  to each other after the linear function 
a~ § b has been applied to X if and only if yi / (1  § ~) < a xi § b <_ yi(1 § E) 

As a result, the line y -- a x § b must  intersect the line segment [(x~, y j / (1  § 
~)), (xi, yj(1 -~ e))]. Conversely, every line y = a lx  -{- bl in the (x, y) plane corre- 
sponds to a linear t ransformation on X.  If such a line intersects a line segment 
[ (x i ,y j / (1  § e ) ) , (x i ,y j (1  + c))], then x, can be matched to yj in the longest 
common subsequence of sequences a l X  ~- bl and Y. 

There is a total  of n 2 such line segments, one for each pair (xi, yj),  1 < i < 
n, 1 ~ j ~ n. If  two different lines intersect the same set of line segments, then 
the longest common subsequences obtained for the corresponding two linear 
functions are the same; the two linear functions are indistinguishable within ~. 

Consider a line l : y -- ax + b. Let S be the set of line segments tha t  1 
intersects. If  I does not pass through two line segment endpoints, then we can 
first slide l vertically until the first endpoint is encountered, and then rotate  l 
around this endpoint until it touches a second endpoint. Let l' be the new line. 
l ~ also intersects the line segments in S, and no additional one. Since we can 
use this procedure to reduce any line to an equivalent line that  passes through 
endpoints, we only have to consider the lines that  pass through two endpoints. 
There are 2n 2 endpoints, and these define O(n 4) lines. [] 

P r o o f  o f  T h e o r e m  4: Lemma 3 shows that  we can find O(n 4) lines that  
represent all the equivalence classes of --~i,~ simply by pairing all line segment 
endpoints. However not all of these lines are significant. If  a line intersects less 
than vn  line segments then the resulting longest common subsequence will have 
length less than ~,n. To enumerate the lines that  intersect at least ~n line seg- 
ments,  for each endpoint we sort all other end points in counter-clock-wise order 
around it, and then we sweep a line around the point. At each new endpoint we 
update  the number  of line segments crossed by the line, and this is a constant 
t ime operation since at each new endpoint this number either increases or de- 
creases by one. Whenever this number  is at least ~n we run the lcss algori thm for 
this linear t ransformation.  The running t ime is then O(n4(n2§  log n)) = O(n6). 
[ ]  

P r o o f  o f  L e m m a  6: Let 's  assume that  xi ,yi  > 0. 

ID(Y ' )  - D ( a X '  + b)l = I E l y i  - E (Y ' ) I  - E laxi + b -  a E ( X ' )  - bll 
i i 

: I E ( ] y ~  - E(Y ' ) I  - la:ri -'t- b - a E ( X ' )  - bl) ] 
i 
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But we have that  lY~ - ax~ - b I < elY~l and ]E(Y ' )  - a E ( X ' )  - b I < e E ( Y ' ) .  
Taking all cases we have that  lY~ - E ( Y ' ) I -  laz~ - aE(X ' ) ]  < z E ( Y ' )  +eye,  and 
therefore 

] Z ( ] y ~  - E (Y ' ) ]  - tax, + b - a E ( X ' )  - bl) ] <_ 2? n ~  E ( Y ' )  
i 

[3 

P r o o f  o f  L e m m a  7: Let us assume there is an xi E X \ X m i n ,  such that  i X m i  n 

l Let us also assume zi < E(Xmin) ;  the other case is symmetric .  By Xi < Xrnax. 
replacing Xmin with zi in the subsequence Xmin we get a new subsequence X '  

of length 7n. 
Since xm, n '  < x{, E ( X m i n )  + (x{ - x~m,,~)/(?n) = E ( X ' ) .  Since z{ is smaller 

than E(X,~{,~), it is also smaller than E ( X ' ) .  Then the deviation of X '  compared 
to Xmin decreases by (xi-X~min)(Tn-l)/(Tn) because of the replacement of xmin 
with x~. The m a x i m u m  increase of the deviation is ( T n - 3 ) ( x / - x ' ~ n ) / ( ? n ) .  This 
occurs if the average is larger than all points except one (the average cannot be 
larger than the largest point) and after the replacement the new average moves 
away from ? n  - 2 points and closer to one point. So X ~ has a smaller deviation 
than Xmin,  a contradiction. [] 


