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Abs t rac t .  Observational calculi were defined in relation to GUHA met- 
hod of mechanising hypotheses formation. Formulae of observational cal- 
culi correspond to statistical hypothesis tests and various further asser- 
tions verificated in the process of data analysis. An example of appli- 
cation of the GUHA procedure PC-ASSOC is described i n  the paper. 
Logical relation among formulae of observational calculi are discussed 
and some important results concerning deduction rules are shown. Pos- 
sibilities of applications of logical properties of formulae corresponding 
to hypotheses tests in the field of KDD are suggested. 

1 I n t r o d u c t i o n  

The goal of this paper is to introduce special logical calculi as a useful tool 
for Knowledge Discovery in Databases (KDD). We start with the following two 
facts: 

- Each database can be understood as a formally described data structure. 
We refer to a fact that  particular relations and fields have their own names. 
l~esults of methods of data mining are assertions dealing with these names. 
Assertions are in various form, e.g. association rules [1], results of statistical 
hypotheses tests or presentation graphs. Anyway, each such assertion can be 
understood as a formal expression concerning a formal data structure. 

- Mathematical logic studies formal languages and formal data  structures as 
their models. It is defined what does it mean that a sentence of formal lan- 
guage is true/false in a model. A very known example is first-order predicate 
calculus. There is lot of interesting results concerning universally valid for- 
mulas, deduction rules, an axiomatization, a decidability, etc. see e.g. [6]. 

We are going to argue that some of these logical concepts are or ,could be 
useful from the point of view of KDD. 

a) Observational calculi were defined and studied in relation to GUHA methods 
of mechanising hypotheses formation [2]. GUHA is a method of exploratory 
data analysis and it is also successfully used as a method of KDD [10]. 
The goal of GUHA method is to offer all interesting facts following from the 
analysed data to the given problem. GUHA is realised by GUHA-procedures. 
GUHA-procedure is a computer program, the input of which consists of the 
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analysed data and a few parameters defining a very large set of potentially 
interesting hypotheses (usually 104 - 106). GUHA procedure automatically 
generates each particular hypothesis from the given set and tests if it is 
supported by analysed data. The output  of the procedure consists of all 
hypotheses supported by the given data. GUHA deals with hypotheses based 
on statistical tests (e.g. Fisher's test or Chi-square test) as well as with 
hypotheses of a different nature (e. g. in the form of an association rule [1]). 
Logical aspects of GUHA procedures are discussed in Sect. 2. 

b)  Special deduction rules belong to important  features of observational cal- 
culi. Deduction rules concern hypotheses generated and verified by GUHA 
procedures. An example of such a hypothesis is 

AAB=:=~*CAD, 

where A, B, C and D are basic attributes, A A B and C A D are derived 
attributes and ==~* corresponds to an implicational relation of derived at- 
tributes. Informally speaking, such a deduction rule says that  if a hypothesis 

is supported by the analysed data  than also a hypothesis ~" is supported by 
these data, a relatively simple condition concerning ~ and ~" must however 
be satisfied. It is possible to show, that  this condition is the same both for 
simple association rule and for complicated statistical tests. More informa- 
tion is in Sect. 3. 

e) The above mentioned deduction rules are interesting not only from the point 
of view of GUHA procedures. They could be useful also in the process of 
interpretation of results of data  mining. One of trends in this area is to 
arrange results into an analytic-synthetical report structured both according 
to the analysed problem and to the reader's needs. Such a report is possible to 
understand as a chain of formal expressions concerning formal data  structure. 
In other words the report can be considered as a chain of formulas of an 
appropriate logical calculus. It opens further possibilities to applications of 
observational calculi and their logical properties. Some remarks are in the 
Sect. 4. 

2 G U H A  M e t h o d  

There are several implementations of GUHA method see e.g. [4], [7]. The most 
frequently used GUHA procedure is the procedure ASSOC. Its last implementa- 
tion is the system PC-GUHA [3] for personal computers. The core of PC-GUHA 
is the procedure PC-ASSOC. First we show an example of its application and 
then we will discuss its logical aspects. We show an example concerning truck 
reliability. It is a modified version of the example given in [10]. It concerns a 
data  matr ix shown in Tab. 1. 

The data  matrix describes warranty failures. Each row corresponds to a fail- 
ure. Each column corresponds to an attribute describing the failure. The first 
row describes a failure of the PART 15 (starter), the T Y P E  of the truck was 
1 (lorry), the failure happened in January 1992 (MONTH = 9201). It was the 
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numb. 
1 15 
2 35 

950 24 

T a b l e l .  A n a l y s ~  da ta  m ~ r i x  

~ART TYPE MONTH COUNTRY GARAGE 
1 9201 191 19116 
5 9209 427 42701 

8 9203 663 66303 

fa i lure  of the  lorry  owned by a garage  in P rague  ( G A R A G E  = 19116) in the  

Czech Repub l i c  ( C O U N T R Y  = 191), see also Tab.  2. 

T a b l e  2. Number of distinct values for part icular at t r ibutes 

a t t r ibute  distinct values 

GARAGE 

examples of values 
PART 40 15 = s t a r t e r ,  35 = pump, . . .  
TYPE 8 1 = l o r r y ,  2 = TIR, . . .  
MONTH 9 9201, 9202, . . . ,  9209 
COUNTRY 17 191 = CZ, 427 = GE, . . .  

53 19116 = Prague,  42739 = B e r l i n , . . .  

The re  are 950 fai lures.  D a t a  m a t r i x  was ana lysed  in the  f r ame  of a p i lo t  
s tudy.  T h e  ana lysed  d a t a  m a t r i x  was only  a smal l  pa r t  of the  comple te  w a r r a n t y  
fai lures  set. The  goal  of  the  p i lo t  s t u d y  was to search for all ca l ami t i e s  h idden  in 
the  d a t a  ma t r i x .  Occurrence  of at  least  90% failures of one pa r t  under  specific 
c i r cums tances  was considered as a ca lami ty .  Occurrence  of 93% of fai lures  of all  
p u m p s  at  only  T I R  t rucks  f rom the  garage  in P rague  is an example  of such a 
c a l a m i t y  which mus t  be fu r the r  inves t iga ted .  However no t  each such s i t ua t ion  is 
a real  p rob lem.  If  a pa r t  is used only  in the  T I R  t ruck  then  100% of  fai lures  of  
th is  pa r t  concern T I R  truck.  Th is  is not  a crisis bu t  only  a well known fact.  

The  only  way to f ind all ca l ami t i e s  in the  above given sense is to f ind all  
occurrences  of  at  least  90% fai lures of one pa r t  under  specific c i rcumstances .  
Each found  case mus t  be then  j u d g e d  using exper t  knowledge.  In o ther  words  
we are searching for all  asser t ions  like 

P A R T ( p u m p )  ~ 9 o %  T Y P E ( T I R )  A G A R A G E ( P r a g u e )  

t rue  in ana lysed  d a t a  m a t r i x .  This  asser t ion  we can read  "At least 90~o of failures 
of pumps concern Tilt  trucks from the garage Prague" . There  is large n u m b e r  of  
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possible interesting assertions. Let us suppose we are searching only for assertions 
of the form 

PART(?) ::==::~9o% TYPE(?)  A MONTH(?) A GARAGE(?)  

where "?" could be substitute by a particular value. There is 152 640 of such 
possible assertions ( 40 x 8 x 9 x 53, see number of distinct values in Tab. 2). 
However we are interested in some other assertions too, thus the number of all 
interesting assertions is greater than 152 640. This is a typical situation when 
the GUHA procedure PC-ASSOC is useful. We shall formulate our problem as 
a task for it. 

Procedure PC-ASSOC deals with r e l e v a n t  q u e s t i o n s  (potentially inter- 
esting hypotheses) of the form 

a n t e c e d e n t  ~ s u c c e d e n t  

where a n t e c e d e n t  and s u c c e d e n t  are conjunction of properties derived from 
attributes described by analysed data  matrix (e.g. TYPE(8) A PART(15). The 
symbol ~ is called a g e n e r a l i s e d  quan t i f i e r .  It defines a k i n d  o f  d e p e n d e n c y  
o f  a n t e c e d e n t  a n d  s u c c e d e n t  (e.g. =:==~90% used above or the dependency 
given by Fisher's test). The relevant question a n t e c e d e n t  ,-~ s u c c e d e n t  corre- 
sponds to a question if a n t e c e d e n t  and s u c c e d e n t  are in relation given by the 
generalised quantifier ,-< 

The PC-ASSOC procedure generates each of the relevant questions from the 
given set and verifies if the corresponding answer is "yes". In such a case the 
relevant question is a r e l e v a n t  a s s e r t i o n  (hypothesis supported by the given 
data). 

The set of the relevant questions is in the case of the procedure PC-ASSOC 
given by: 

- a set of antecedent attributes (attributes to be used in an antecedent) and 
by minimal and maximal number of attributes in an antecedent, 

- a set of succedent attributes (attributes to be used in a succedent) and by 
minimal and maximal number of attributes in a succedent, 

- a generalised quantifier, 
some further facultative possibilities (e.g. syntactical restrictions on an- 
tecedent or succedent or a mode of dealing with missing information). 

The generalised quantifier could be based on statistical tests (e.g. Fisher's 
test or Chi-square test) or on some simple numerical condition. The verification 
of a relevant question a n t e c e d e n t  ~, s u c c e d e n t  is based on frequencies from 
the contingency table Tab. 3. 

The frequency a means number of objects satisfying both a n t e c e d e n t  and 
s u c c e d e n t ,  b is number of objects satisfying a n t e c e d e n t  and non satisfying 
succedent, r is number of objects satisfying a n t e c e d e n t ,  etc. 

We shall use a generalised quantifier ~5 ;90% of founded implication. The 
relevant question 
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Table  3. Contingency table of antecedent and succedent 

-~ antecedent ] c ] 

I k I 

succedent 
b r 
d s 
l n 

a n t e c e d e n t  ==:=k5;90% s u c c e d e n t  

is t rue in analysed da t a  if the condit ion 

a 
- - < 0 . 9 A a > 5  
a + b  - 

is satisfied, a and v are frequencies f rom the cont ingency table. 
Our  task is to find all c ircumstances under which at least 90% of failures of 

a par t  are cumulated.  We can use the procedure P C - A S S O C  with the following 
parameters: 
antecedent: attributes: PART, 
minimal number of attributes: i, maximal number of attributes: 1, 
succedent: attributes: TYPE, MONTH, COUNTRY, GARAGE, 
minimal number of attributes: i, maximal number of attributes: 3, 
g e n e r a l i s e d  q u a n t i f i e r :  ~ 5 ; 9 0 %  
f u r t h e r  r e s t r i c t i o n :  C O U N T R Y  and G A R A G E  not  in one succedent.  

More than  200 000 of relevant questions are given in this way, e.g.: 

PART(25) ~5;90% MONTH(9201) A COUNTRY(427) , 

PART(35) ~s;90% TYPE(I) A MONTH(9201) A GARAGE(42739) . 

Solution of this task took less than i0 seconds (PC 486, 100 MHz). It was 
found 89 relevant assertions. Two examples of relevant assertions follow: 

PART(mirror) ~25;93% TYPE(lorry), 

it means that 93% of failures of mirror concern lorries and that there are 25 of 
failures of mirrors at lorries. 

PART(starter) ~ 3 3 ; l o o %  TYPE(lorry) A COUNTRY(Germany), 

it means that 100% of failures of starter concern lorries in Germany and that 
there are 33 of such failures. 

Some of relevant assertions were found very interesting from the point of view 
of quality management. Very important fact is that GUHA gives all relevant 
assertions of the given type. If no relevant assertion is found we can conclude 
that nothing interesting in a given sense is hidden in the analysed data. 
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Let us remark that  the solution time is approximately linearly dependent 
on number  of rows in analysed data  matrix.  It  means that  the solution t ime of 
the same task in the da ta  matr ix  of 1900 rows is about 18 seconds, in the da ta  
mat r ix  of 6650 rows is solution t ime about  61 seconds etc. 

We shall now discuss some logical aspects of GUHA procedures. We use the 
following facts: 

1. The relevant questions manipulated by GUHA procedure are formal expres- 
sions concerning formal da ta  structures. 

2. The output  of GUHA procedure can be in some cases unsuitable large. In 
the above used example this situation can occur when we use the level 80% 
instead of 90%. In such a case it is reasonable to search a way how to express 
the output  set of relevant assertion in a more comprehensive way. 

3. GUHA procedure has to generate and to verify a large number  of relevant 
questions. It  is reasonable to search methods how to decrease number  of 
actually generated and verificated relevant questions. 

According to point 1 it is not difficult to define a logical calculus such that  
relevant questions correspond to formulae of these calculus, analysed da ta  ma-  
trices correspond to models of calculi, a relevant assertion is a formula true in 
model etc. Such calculi were defined and further studied in [2]. They are called 
observational calculi. The above mentioned generalised quantifiers are used both  
as a formalisation of simple relations like ~ 5 ; 9 0 %  and as a formalisation of com- 
plex statistical hypotheses test. An informal definition of a simple observational 
calculus is given in the next paragraph.  

One of ways how to decrease number of output  relevant assertions (see 
point 2) is to study logical dependencies among formulae of corresponding logi- 
cal calculus. It  is possible that  the output  assertion ~ logically follows from the 
output  assertion ~. I t  means that  if the formula @ is true than we know tha t  
kh is true too without testing k~ in the analysed da ta  matrix.  In some cases it is 
easy to recognise that  the formula ~ logically follows from the formula @. Thus, 
if ~ is a part  of the output  and g~ logically follows from r it is possible to omit  
~P from the output.  

More sophisticated logical dependencies of this kind are described in [2]. Some 
special logical dependencies can be used to decrease the number of actually 
generated and verificated relevant questions, see above given point 3. Useful 
logical dependencies often are in the form of relatively simple deduction rules. 
Such deduction rules were studied also in [8]. Several related results are briefly 
described in the next paragraph.  We focus on deduction rules because of they 
can be used not only in GUHA method but also in interpretation of results of 
da ta  mining, see paragraph 4. 

3 O b s e r v a t i o n a l  C a l c u l i  a n d  D e d u c t i o n  R u l e s  

At first, we indicate a definition of an observational calculus. We will proceed in a 
very informal way, the formal one is in [2]. Relevant questions have to correspond 
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to formulae of this calculus. Models of a defined calculus have to correspond to 
analysed da ta  matrices. Thus it is reasonable to define calculi of different types, 
each type corresponding to a da ta  matr ix  type. We will focus on da ta  matrices 
like that  in Tab. 1. Their type we will denote M-FAILURES and we will define 
a part icular  observational calculus F A I L U R E S  of the type M-FAILURES. 

Da ta  mat r ix  type M-FAILURES is given by five columns: PART, TYPE,  
MONTH,  COUNTRY, G A R A G E  and its possible values. Naturally, there is a 
finite number  of possible values for PART, TYPE,  COUNTRY and GARAGE.  
If we consider only the period of years 1990 - 2000 than MONTH has also a finite 
number of values. Let us suppose that  possible values for the column PART are 
1, 2, . . . ,  p, values for T Y P E  are 1, 2, . . . ,  t, values for MONTH are 1, 2, . . . ,  m, 
etc. We say that  the type M-FAILURES is < p , t ,m ,c ,g  >. 

Language of the calculus F A I L U R E S  is defined in this way: 
B a s i c  s y m b o l s :  
Basic attributes: P A R T [ l ] , . . . ,  P A R T [ p ] , . . . ,  G A R A G E [ I ] , . . . ,  GARAGE[g] 
Propositional connectives: A , V, -1 
Generalised quantifier: ==a5;90% 
D e r i v e d  a t t r i b u t e s :  
- Each basic a t t r ibute  is an attribute.  

- If ~b and ~p are at tr ibutes than also ~ A ~p , r V ~ and -~r are attributes.  
Usual conventions concerning parenthesis are valid. 

F o r m u l a e :  
If r and ~p are at tr ibutes than ~ ==a~;90% ~P is a formula. The at t r ibute  ~b is here 
called the antecedent and the at tr ibute ~p is called the succedent. 

Models of the calculus F A I L U R E S  are all data  matrices of the type 
M - FAILURES. We consider each such da ta  matr ix  M with n rows to be a 
result of observation of n objects (failures). We say that  i-th object has the ba- 
sic a t t r ibute  PART[l]  if in i-th row of M is the value 1 in the column PART. 
We say that  i-th object has the derived at tr ibute PART[l] A TYPE[2] if in 
i-th row of M is both the value 1 in the column PART and the value 2 in the 
column TYPE.  Similarly for other basic and derived attributes.  We define a 
function Fr(~, M) where r is an at tr ibute and M is a da ta  mat r ix  of the type 
M-FAILURES as a number  of objects having at t r ibute 4. 

Values of formulae are defined using associated function F ~ ; g o ~  " of a gen- 
eralised quantifier ==a~;90%. It  is a {0, 1} - valued function and it is defined 
for all quadruples < a , b , c , d  > of non-negative integer numbers such tha t  
a + b + c + d > 0 .  Usually we write only ~ 5 ; 9 0 %  (a ,b ,c ,d)  instead of 
F ~ 9 o ~  . (a, b, c, d). We define: 
~ 5 ; 9 0 %  (a, b, c, d) = 1 if a/(a + b)(0.9 and a >_ 5, 
~ 5 ; 9 0 %  (a, b, c, d) = 0 otherwise. 

A value Val(r ==V~;90% ~, M) of a formula r ==a5;90% ~b in the da ta  mat r ix  
M is defined as the value 

~ ; 9 0 u  (F~(~ A ~, M), Fr(~ A -~ ,  M), F~(-~ A ~, M), F~(-~ A -~,  M)) 

Let us emphasise that  the frequencies Fr(r A ~, M), Fr(r  A ~ ,  M),  
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F r ( ~ r  A ~b, M), Fr(~r A -,~b, M) correspond to frequencies a, b, c, d, see con- 
tingency table Tab. 3. 

The above indicated definition is very informal. The formal definition of 
observational predicates calculi using predicates, free and bound variables etc. 
is given in [2]. The main goal of this paragraph is to briefly describe results 
concerning logical dependencies among formulae of observational calculi like 
F A I L U R E S  calculus. We will focus not only on the generalised quantifier 

===~5;90%. 
Let C be an observational calculus of the type < p l , . . . , p , ~  > with basic 

attributes 
P I [ 1 ] , . . . , P I [ P t ] , . . , P m [ 1 ] , . . . , P m [ P m ]  

and a generalised quantifier ~. Thus, 

Pi l l ]  A P213] N P317] V P614] and (P4[1] V P713]) A ~P317] ~ P914] V P614] 

are examples of formulae. Models of the calculus C are data  matrices with 
columns P1,. . . ,  P,~. Possible values for the column P1 are 1, . . . ,  Pl, possible 
values for the column Pm are 1, . . . ,  p,~ etc. 

We are interesting in logical dependencies among formulae of the calculus 
C. We focus on the problem when the formula 7 ~ 5 logically follows from the 
formula r ~ r By the general definition 7 ~ 5 logically follows from ~ ~ • if for 
each model M of the calculus C holds: If r ~ r is true in M than also 3' ~ 5 is 
true in M (symbolically: if Val(r ,-~ r M) = 1, than also Val(7 -~ 5, M)) = 1). 
Let us remember that Val(r ~ r M) = F~(a, b, c, d), where a = F r ( r  A r M), 
b = Fr(r A- , r  M), c = Fr(-~r A r M), d = F r ( - , r  A - ~ ,  M).  A function 
F~(a ,  b, c, d)) is the associated function of a generalised quantifier ~.  Usually 
we write only ~ (a, b, c, d) instead of F~ (a, b, c, d)). 

It is obvious that  the behaviour of formulae r .-, r and 7 ,.o 5 depends on 
the properties of the function ~ (a, b, c, d). There are several interesting classes 
of generalised quantifiers. We shall deal with i m p l i c a t i o n a l  q u a n t i f i e r s  [2]. 
A generalised quantifier ::=** is implicational if it satisfies the following condi- 
tion: 

Let a, b, c, d, a', b ~, c', d' be non-negative integers such that  a + b + e + d > 0 
and a' + b' + c' + d' > 0. Than 
~ *  (a, b, c, d) = 1 and a' >_ a and b' < b implies ~ *  (a', b', e', d') = 1. 

The above used generalised quantifier ~a ;90%  is implicational. In [2] is de- 
fined a generalised quantifier ==@,~,~ of lower critical implication for 0 < p < 1, 
0 < c ~ <  1 a n d s > 0 :  

, V,~+b ~! i _ p ) ~ - i  ~ p , ~ , ~  (a, b, c, d) = 1 if ,--,i=a i ! ( ~ P  (1 _< a and a > s, 

~ , ~ , ~  (a, b, c, d) = 0 otherwise. 
Let us remark that  the formula r ~ , ~ , ~  ~b corresponds to a test (on the 

level a) of the null hypothesis H0 : P(r162 < p against the alternative one 
H1 ' P(r162 > P" Here P(r162 is the conditional probability of the validity of 
under the condition r 

tt is proved in [2] that ~"p,~,~ is also implicational. An associational rule 
is also possible to understand as an implicational generalised quantifier. It is 
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easy to prove for an implicational quantifier ~ *  that the value ~ *  (a, b, c, d) 
does not depend neither on c nor on d. Thus in such a case we shall write only 
~ *  (a, b) instead of ~ *  (a, b, c, d). 

A theorem concerning the problem when 7 "" 5 logically follows from r ~, r 
is proved in [8]. It deals with the class of all i n t e r e s t i n g  i m p l i e a t i o n a l  q u a n -  
t i f iers .  We say that  the implicational quantifier ~ *  is interesting if ~ *  is 
both a-dependent and b-dependent and if ~ *  (0, 0) = 0. A generalised quan- 
tifier ~ is a-dependent if there are non-negative integers a, a', b, e, d such 
that  ~ (a, b, c, d) • ~ (a', b, c, d). Similarly for the b-dependent generalised 
quantifier. 

The theorem deals with the notion of a s s o c i a t e d  p r o p o s i t i o n a l  f o r m u l a  
to a given attribute. If r is an attribute than associated propositional formula 
7c(r is the same string of symbols but the particular basic attributes are un- 
derstood as the propositional variables. For example: P411] A P713] is a derived 
at tr ibute and ~r(P4[1] A P713]) is a propositional formula P411] A P713] with propo- 
sitional variables P4[1] and P713]. Further we shall use the symbol -+ for the 
propositional connective of implication. 

The mentioned theorem says: 
If ~ *  is an interesting impticationaI quantifier than 7 ~ *  5 logically follows 
from r ~ *  r if and only if at least one of the following conditions a), b) is 
satisfied: 

a) 7r(r A 7r(~) --+ 7r(7 ) A 7c(5) and 7r(7 ) A ~7r(5) --+ 7r(r A-~Tr(r are tautologies, 
b)  7c(r --+ ~ r ( r  is a tautology. 

Let us remark that  this theorem gives an easy way how to decide if 3' ~ 5 
logically follows from r ,-~ r 

There are two useful deduction rules: R d  - dereducing deduction rule and 
S p -  despecifying deduction rule [2]. They concern any attributes r r and ~( 
and an interesting implicational quantifier ~ * .  We shall write them in the 
form: 

R d  - r ~ *  r and Sp = r A -'X =::=~* 
r 1 6 2  r 1 6 2  

These deduction rules are direct consequences of the above given theorem. It 
is proved in [8] that the generalised quantifier ==@,~,8 of lower critical impli- 
cation is an interesting implicational quantifier for 0 < p < 1, 0 < c~ < 1 
and s > 0 . For example, according to despecifying deduction rule we know 
that if P4[1] A -~P317] :::::~;,~,s P215] is true in a data  matr ix M, than also 

1~ ~ . . . .  P215] V P317] is true in the data matrix M. 
The above indicated logical dependencies among formulae of observational 

calculi are used in the GUHA method. These dependencies could also be used 
in the way indicated in the next paragraph. 

4 A n a l y t i c - s y n t h e t i c a l  R e p o r t s  

One of trends in interpretation of results of data  mining is to arrange results 
into an analytic-synthetical report structured both according to the analysed 
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problem and to the readers needs, see e.g. [5] or [9]. An example of a structure 
of such a report concerning calamities hidden in the above mentioned reliability 
data  (see Sect. 2) follows: 

I. Introduction 

~ �9 ~ 

2. The 10 worst parts 

. . . 

3. Critical situations in particular countries 

PART(star ter  ~a3,100% T Y P E ( T I R )  A COUNTRY(Germany)  

PART(wheel) ~23,90% TYPE(lorry)  A COUNTRY(Poland)  

. . �9 

4. Critical situations in particular garages 

PART(packing) ~ s , 9 0 %  GARAGE(Prague)  

5. Critical situations in particular mouths 

6, Conclusions 

It is very impor tant  that  the core of such a report is a set of various relevant 
assertions concerning analysed data  (not necessary in the form of r ~ s , ; %  r 
Thus, we can understand the whole report as a finite ordered set of formulas 
of an appropriate  observational calculus. It means that  we can deal the whole 
report as a formal object. 

For example, we can ask about  what is a logically minimal skeleton of such 
a report. Knowledge of logical dependencies among formulae of corresponding 
observational calculus is necessary to solve this task. 

We can use logically minimal skeleton of a report to index content of a report  
in a similar way as index terms are used in information retrieval to represent 
the content of a textual document.  Unlike index terms in information retrieval, 
the logically minimal skeleton will describe the content of the report in the 
very precise way. Let us suppose we have a large set of analytical reports,  each 
of them characterised by logically minimal skeleton. Thus we can formalise and 
automatical ly solve e. g. the task to find all reports dealing with a given problem 
in the same way as a given report. Such a task is not possible to solve using usual 
index terms. 
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It  is impor t an t  in relat ion to this idea tha t  some formulae of observat ional  
calculi could be in relatively simple way t ransla ted to a sentence of  a na tura l  
language.  Let us have a formula  

PART(s ta r t e r )  ~ 9 0 %  T Y P E ( T I R )  A C O U N T R Y ( G e r m a n y )  . 

I t  can be expressed for example as the following natura l  language sentences: "At 
least 90~ of the starter failures happen to the TIR trucks in Germany." or "If 
a starter failure occurs, then at 90Uo it concerns a TIR truck in Germany.". We 
can also ask if there is a way how to convert  the natura l  language sentences to 
formulae of  some observat ional  calculus. 

There  are some research activities in the field of analyt ic-synthet ical  reports  
and their logical properties.  More detailed description is out  of the scope of this 
paper.  

This paper is supported by grant 47160008 of Ministry of Education, Youth 
and Sports and by grant 201/96/1445 of the Grant Agency of the Czech Republic. 
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