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(extended abstract) 

Abs t rac t ,  Hierarchical graphs and clustered graphs are useful nonclas- 
sical graph models for structured relational ioformation. Hierarchical 
graphs are graphs with layering structtLres; clustered graphs are graphs 
with recursive clustering structures. Both have appfications in CASE 
tools, software visualization, VLSI design, etc. Drawing algorithms for 
hierarchical graphs have been well investigated. However, the problem 
of straight-fine representation has not been addressed. In this paper, 
we answer the question: does every planar hierarchical graph admit a 
planar straight-line hierarchical drawing? We present ata algorithm that 
constructs such drawings in O(n 2) time. Also, we answer a basic ques- 
tion for clustered graphs, i.e. does every planar clustered graph admit a 
planar straight-line drawing with clusters drawn as convex polygons? A 
method for such drawings is provided in this p~:per. 

1 I n t r o d u c t i o n  

Graph drawing algorithms are widely used in graphical user interfaces of many 
software systems. Examples include CASE tools, reverse engineering systems 
and software design systems. A good picture is worth a thousand words, while 
a poor drawing can be misleading. 

As the information that  we want to visualize becomes more and more compli- 
cated, we need more structure on top of the classical graph model. Hierarchical 
graphs are directed graphs with layering structures (see Fig. 1). They appear 
in applications where hierarchical structures are involved e.g. PERT networks 
and organization charts [19, 10]. Clustered graphs are graphs with clustering 
structures (see Fig. 2) which appear in many structured diagrams [18, 11, 12]. 

A hierarchical graph is conventionally drawn with vertices of a layer on the 
same horizontal line, and arcs as curves monotonic in y direction (see Fig. 1). A 
hierarchical graph is hierarchical planar (h-planar) if it admits a drawing without 
edge crossings. For a clustered graph, the clustering structure is represented by 
a closed curve that  defines a region. The region contains the drawing of all the 
vertices which belong to that  cluster (see Fig. 2). A clustered graph is compound 
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Fig. 1. An Example of a Hierarchical Graph 
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Fig. 2. An Example of a Clustered Graph 

planar (c-planar) if it admits a drawing with no edge crossings or edge-region 
crossings. 

One of the basic graph drawing convention consists of representing edges as 
straight-line segments. For classical graphs, it has been shown independently by 
Fary [7], Stein [17], and Wagner [21] that every planar graph admits a straight- 
line drawing without edge crossings. Tutte [20] proved that every 3-connected 
planar graph admits a planar straight-line drawing where all the face boundaries 
are drawn as convex polygons. 

In this paper, we answer the question: does every planar hierarchical graph 
admit a planar straight-line hierarchical drawing? Although many results have 
been obtained on drawing hierarchical graphs [19, 10, 3], the basic problem of 
planar straight-line drawings has not been studied. It has been shown by Di 
Battista and Tamassia [1] that every planar st-graph admits an upward drawing 
i.e. a drawing where all arcs are drawn as straight-line segments pointing up- 
ward. However, the problem for hierarchical graphs is different. We have more 
constraints: vertices of the same layer should be drawn on the same horizontal 
line; layers should be equal distance apart. A method to construct straight-line 
drawings of hierarchical graphs has been presented by Eades, Lin and Tamas- 
sia [5]. However, it is restricted to a special class of hierarchical graphs known 
as collapsible free graphs. 

The second question answered in this paper is for clustered graphs: does every 
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planar clustered graph admit a planar straight-line drawing with clusters drawn 
as convex polygons? Although an algorithm for straight-line drawing of clustered 
graphs has been presented by Feng, Cohen and Eades [811 it does not apply to 
all clustered graphs. If the graph induced by a cluster is not bieonnected, then 
its external facial cycle is not a simple cycle. In this case, we cannot use the 
drawing of its external facial cycle as the region boundary, since it cannot form 
a simple region. This question that  we answer in this paper was posed as an 
open problem in [8]. 

The rest of the paper is organized as follows. In section 2, we present some 
terminology for hierarchical graphs. In section 3, we prove that  every planar 
hierarchical graph admit a planar straight-line drawing. An O (n 2) t ime algorithm 
that  produces such drawings is presented. We introduce the model of clustered 
graphs in section 4. In section 5, we show that  every planar clustered graph 
admits a planar straight-line convex cluster drawing. This is accomplished by 
transforming clustered graphs into hierarchical graphs. Section 6 concludes with 
some remarks and discussion. 

2 Hierarchical Graphs 

Hierarchical graphs are directed graphs where vertices are assigned to layers. As 
described in [5], a hierarchical graph H = (V, A, )~, k) consists of a directed graph 
(V, A), a positive integer k, and, for each vertex u, an integer ~(u) C 1, 2, ..., k, 
with the property that  if (u, v) E A, then ~(u) < ~(v). For 1 < i < k, the set 
{u : ),(u) = i} is the ith layer of H and is denoted by Li. The span of an arc 
(u, v) is ),(v) - $(u). An arc of span greater than one is long, and a hierarchical 
graph with no long arcs is proper. 

A hierarchical graph is conventionally drawn with layer Li on the horizontal 
line y = i, and arcs as curves monotonic in y direction. If no pair of nonincident 
arcs intersect in the drawing, we say it is a hierarchical planar (h-planar) drawing. 
Note that  a nonproper hierarchical graph can be transformed into a proper 
hierarchical graph by adding dummy vertices on long arcs. It can be shown 
that a nonproper hierarchical graph is h-planar if and only if the corresponding 
proper hierarchical graph is h-planar. A hievarchicalplanar embedding of a proper 
hierarchical graph is defined by the ordering of vertices on each layer of the graph. 
Note that  every such embedding has an unique external face. It is easily shown 
that  every proper h-planar graph admits a straight-line hierarchical drawing, 
that  is, a drawing where arcs are drawn as straight-line segments. However, for 
nonproper hierarchical graphs, the problem is not trivial, since no bends are 
allowed on long arcs. 

We call a planar embedded graph a plane graph. If a hierarchical plane graph 
has only one source s and one sink t, we call it a hierarchical-st plane graph. We 
will show that  every hierarchical plane graph can be extended to a hierarchical-st 
plane graph. The following lemma gives some basic properties which are useful 
to our algorithm. 
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L e m m a  1. Let H be a hierarchical-st plane graph, then: (a) Every biconnected 
component of H is also a hierarchical-st plane graph. (b) If B1 and B2 are two 
biconnected components of H, and u is a vertex of B1 and u is not a cut vertex, 
then either for  all vertices v of  < or for  all vertices v of  
A(u) > A(v). (c) H has a planar straight-line hierarchical drawing if and only if  
each of its biconneeted component has a planar straight-line hierarchical drawing. 

With the above lemma, we can assume that we are given a hierarchical-st 
plane graph that  is bieonnected, which implies its external face is bounded by 
a simple cycle if the graph is not just a single edge. Since hierarchical graphs 
are directed graphs, the terms "cycle" and '"path" that  we use in the rest of the 
paper are all for the underlying undirected graphs. To denote a cycle of a plane 
graph, we use the sequence of vertices on the cycle in clockwise order. We say a 
path is monotonic if the directions of the edges (arcs) do not change along the 
path. 

The following lemma is also very useful for to algorithm. 

L e m m a  2. Let H be a hierarchical-st plane graph which is biconnected, and has 
external facial cycle C = ( v l , . . . ,  vk, vl).  Suppose that P = (vi, X l , . . .  , Xl, Vj) i8 
a monotonic path from vi to vj in H,  and the vertices of P are not on C except 
vi and vj. Let H1 and H2 be the two subgraphs bounded inside by cycles C1 = 
( v l , . . . ,  vi, x l , . . . ,  xt, v j , . . . ,  vk, vl) and C2 = (vi, . . . ,  vj, X h . . . ,  Xl, Vi) inclusive. 
Then H~ and H2 are hierarchicaI-st plane graphs and are biconnected (see Fig.3). 

vj 

V 1 

Fig. 3. Illustration of Lemma 2 

3 Straight-Line Hierarchical Drawings 

In this section, we show that  given an n-vertex hierarchical plane graph, we can 
compute a planar straight-line hierarchical drawing in O(n 2) time. 
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We apply a divide and conquer approach: divide the hierarchical graph into 
subgraphs, compute the drawings of the subgraphs, and obtain a drawing of 
the graph by combining the drawings of the subgraphs. The key part of this 
approach is to find a suitable partition. 

Our method works on triangular hierarchical-st plane graphs. In a triangular 
hierarchical-st plane graph, the boundary of every nonexternal face consists of 
exactly three edges. We prove that  every hierarchical plane graph can be ex- 
tended to a triangular hierarchical-st plane graph which admits a straight-line 
drawing with a prescribed polygon as its external face. We provide a straight-line 
drawing algorithm based on our proof. 

In our method, we are given a prescribed polygon as the external face of the 
drawing. Note that  there can be vertices of the external facial cycle which are 
not drawn as apexes of the polygon. This can give some problems if the external 
facial cycle has a chord (i.e. an edge between two nonconsecutive vertices). To 
deal with this problem, we need some terminology. Let H be a hierarchical-st 
plane graph with source s and sink t; let cycle C be the boundary of its external 
face; let polygon P be a straight-line hierarchical drawing of cycle C. We say 
that  P is feasible for H if the following conditions hold: 

- P is a convex polygon. 
- If cycle C has a chord (x, y), then on each of the two paths of cycle C between 

x and y, there exists a vertex v which is drawn as an apex of polygon P.  

In our divide and conquer approach, we distinguish two situations. If the 
external facial cycle has a chord, we simply divide the graph into two parts with 
the chord. Otherwise, we find a vertex not on the external facial cycle, such 
that  there are three monotonic paths that  connect the vertex with the external 
facial cycle. Therefore, by using Lemma 2 twice, we divide the graph into three 
parts. The following lemma is useful in finding such vertex in the graph. We 
need some more terminology. For a hierarchical graph H with vertices u and v, 
an st-component for (u, v) is the union of all subgraphs of H for which u is the 
unique source, and v is the unique sink. In other words, the st-component for 
(u, v) is the maximal subgraph with a single source u and a single sink v. 

L e m m a  3. Let H be a triangular hierarchical-st plane graph with single source 
s and single sink t. Suppose that the external facial cycle C of H has no chords. 
Let v be a vertex on cycle C other than s or t. Suppose that Hst(v) is the st- 
component of the hierarchical graph H -  v for vertex pair (s, t). Then there exists 
a vertex w incident to v in H and not on cycle C, such that w C Hst(v) and 
w has the following properties: (1) Vertex w is on the external face of H . ( v ) .  
(2) vertex w is not a cut vertex of Hst(v). (3) Suppose that Hrnai,(v) denotes 
the biconnected component of Hat(v) that contains w. Then the external facial 
cycle of Hrnaln(v) consists of two paths: path ( x , . . . ,  y) which belongs to C, and 
path ( y , . . . , w , . . . , x )  which does not belong to C; and path ( x , . . . , w , . . . , y )  is 
monotonic (see Fig.i). 
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Fig. 4. Possible Partitions of H 

S k e t c h  o f  Proof." Fig 5(a)-(d) shows all possible situations of the path formed 
by the vertices incident to v. We show in each situation there exists such vertex 
w incident to v in H and not on cycle C , such that  w E Hst(v). We show that  
the situation illustrated in Fig. 5(e) would not occur. The proofs for Property I 
and Property 2 of such vertex w are immediate. For Property 3, Fig. 4 illustrates 
all possible situations of the external face of H~i~(v) ,  and we show that  the 
property holds for all these situations. [] 

T h e o r e m 4 .  Suppose that H is a triangular hierarchical-st plane graph, and 
polygon P is a straight-line hierarchical drawing of its external facial cycle C. If 
P is feasible for H, then there exists a planar straight-line hierarchical drawing 
of H with external face P. 

Pro@ We prove by induction on the number n of vertices of H.  The basis of the 
induction, n = 3 is immediate. Now, assume that  the theorem holds for graphs 
with less than n vertices. We distinguish two cases: 

Case i: The external facial cycle C of H has a chord (x, y). By Lemma 2, 
chord (x, y) divides H into two subgraphs H1 and H~. We draw a straight line 
segment between x and y , which divides P into two polygons P1 and P2. It 
can be verified that  P1 and P2 are feasible for H1 and H2. Since both H1 and 
//2 have less than n vertices, by induction, there exist straight-line hierarchical 
drawings of H1 and H2 with external faces P1 and P2. Hence, by combining the 
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Fig. 5. Illustration of the Proof of Lemma 3 

two drawings, we obtain a straight-line hierarchical drawing of H with external 
face P.  

Case 2: The external facial cycle C of H has no chords. There exists a vertex 
v other than the source s or sink t on the external face, such that v is drawn as 
an apex of P.  Otherwise P would not be a convex polygon. By Lemma 3, there 
exists a vertex w incident to v but not on cycle 6 such that  w E Hat(v) and 
w has those properties stated in the l emma.  Hence, we have a monotonic path 
( x , . . . ,  w , . . . ,  y) inside H,  and also an edge (w, v) inside H (see Fig. 4). Using 
Lemma 2 twice, they divide H into three parts: 

- Hmai,~(v) bounded by cycle ( z , . . . ,  y , . . . ,  w , . . . x ) ;  
- Ha~8ol(V) bounded by cycle ( x , . . . ,  w, v , . . . x ) ;  
- Has,o2(v) bounded by cycle ( y , . . . ,  v, w , . . .  y). 

Now we need to adjust this partit ion such that  a feasible polygon can be 
computed for each part. Note that  path ( x , . . . ,  w) has no chords in Ha,~ol(V), 
otherwise it would not belong to the external face of Hmai~ (v). Similarly, path 
( w , . . . ,  y) has no chords in Has,o2(V). 

Now consider chords in H ,~r  (v). We reduce Hm~i~ (v) and accordingly, ex- 
tend H~,,ol(V) or H~,8o2(V) to eliminate such chords. If path 
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( x , . . . ,  u , , . . . ,  u2 , . . . ,  w) has a chord (Ul ,  U2) , we modify the path to 
( x , . . . ,  Ul, u2 , . . . ,  w). Also, we modify path (w , . . . ,  y) in similar way if it has a 
chord. Graphs H,~,~,~(v), H~,~ot(V) and H~s.,o~(v) change accordingly when we 
modify the paths. After the modification, paths (x,..., w) and ( w , . . . ,  y) have 
no chords in H,~i,~(v), Has~ol(v) and Ha~o2(v). 

It can be verified that  H,~i,~(v), H~ol(V) and Ha~o2(v) are triangular 
hierarchical-st plane graphs. 

Let Hjra,~e (v) be the graph that  consists of only the external faces of 
Now is h erarchical-st 

graph with the same external face as H. Hence polygon P is also a hierarchical 
planar drawing of the external face of Hfr~,~e (v). We need to find a position for 
w such that  the drawing of the three internal faces of Hf~m~ (v) are convex poly- 
gons, and therefore feasible for H,~.~,~(v), Ha~soa(v) and Ha~oz(v). We compute 
the x coordinate of vertex w using the following equation derived from [5]: 

a ~(b) 

= 
1 1 1 

Here, x(a) and x(b) denote the x coordinates of vertices a and b respectively; d + 
denotes the indegree of a; d~ denotes the outdegree of a; a~d l = t~(a) - ),(b)l. 

This formula computes the x coordinate of vertex w as a weighted barycenter 
of its neighbors x, y and v. (Vertices with degree 2 are not considered here.) 
We place other internal vertices of Hy~a,~(v) (those with degree 2) onto the 
line segments from ~ to w and from w to y at appropriate horizontal lines. 
It can be shown that the drawings P0, P1 and P2 of the three internal faces of 
Hyram~ (v) are convex polygons [5]. Note that  edges on path (x, . . . ,  w) are drawn 
on the same line, so are the edges on path (w , . . . ,  y). However, since there are 
no chords on these paths, P0, Px and P2 are feasible for H,~ai~(v), H~ol(v) 
and H~o2(v) respectively. As each of H,~ai,(v), H~ol(v) and H~so2 has less 
than n vertices, by induction, there exist straight-line hierarchical drawings of 
H,~i,~(v), Ha~ol(v) and H~o2 with external faces Po, P1 and P~. Hence, by 
combining these drawings, we obtain a straight-line hierarchical drawing of H 
with external face P. 

The algorithm to compute a planar straight-line hierarchical drawing is based 
on the proof of Theorem 4. The input of the algorithm is a hierarchical plane 
graph H; the output is a planar straight-line hierarchical drawing of H. The al- 
gorithm consists of two phases: Preprocessin9 and Drawing. In the preprocessing 
phase, we extend the hierarchical plane graph to a triangular-st plane graph. 
The drawing phase is a recursive procedure that  actually constructs the drawing 
of the graph. Now we describe them in more detail. 

P r e p r o e e s s l n g .  We extend the hierarchical plane graph to a triangular 
hierarchical-st plane graph in th~'ee steps. (1) Extend the h~erarchical plane graph 
such that  all the sources and sinks lie on the bottom layer and top layer. We 
can use a method similar to those in [1, 15] which performs two sweeps from 
bottom to top and from top to bottom to eliminate the sources and sinks in 
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Fig. 6. Triangulating the Hierarchical Graph 

between. (2) Add one more vertex s below the bottom layer and connect it to all 
the sources; then add one more vertex t above the top layer and connect all the 
sinks to it. Therefore, a hierarchical-st plane graph is obtained. (3) Extend the 
hierarchical-st plane graph to a triangular one as follows: insert a layer between 
every two consecutive layers (This ensures that  original layers still to be evenly 
distributed.); add a "star" structure inside each face (see Fig. 6(a)), and place 
the center of the each star on an inserted layer. After this, every internal face is 
bounded by exactly three edges. Note that  this operation does not increase the 
size of the graph by more than a constant. This triangulation method is a little 
unusual, but necessary. Fig. 6(b) shows that  if we do not add new vertices, mul- 
tiple arcs can be produced. Further, we cannot allow dummy nodes on the arcs 
because this may introduce bends. Also note that  no arcs are allowed between 
two vertices of the same layer. 

D r a w i n g .  The drawing phase is realized with a recursive procedure which is 
based on the proof of Theorem 4. Firstly, it is easy to find a feasible polygon P 
for an input graph H. Then we call the procedure and obtain a drawing of H. 

P r o c e d u r e  Straight-line_Hierarchical_Draw(H, ~, P, F) 
{H is a triangular hierarchical-st plane graph with planar embedding E; P is 
a polygon feasible for H. F is a planar straight-line hierarchical drawing of H 
returned by the procedure.} 

(1) If H has three vertices, then draw H as P. Let F = P, exit. 
(2) Check H for possible chords of the external facial cycle C. 
(3) If C has a chord (x, y), then: 

(3.1) divide H into H1 and H2 with chord (x, y); draw straight-line segment 
between x and y in P; divide P into P1 and P2; 

(3.2) call Straight-line_Hierarchical_Draw(Hi, P1,/"1); 
call Straight-line_Hierarchical_Draw(H2, P2, F2); 

(3.3) Let F = F1 U F2, exit. 
(4) If C has no chords, then: 
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(4.1) choose vertex v on C; find the st-component Hst(v) of H - v for the 
source and sink pair (s, t); choose vertex w that  is incident to v but not 
on C, and on the external face of Hst(v). 

(4.2) find the biconneeted component Hm~i~(v) of H~t(v) that  contains w; 
modify the two paths (w , . . . ,  x) and (y , . . . ,  w) on the external face of 
H~t(v) to avoid chords; 

(4.3) construct Hfr~,~(v) and compute its drawing using equation 1; hence 
obtain polygons P0, P1 and P2 of the three internal faces of Hfram~(v); 

(4.4) divide H into Hmair~(V), ttassol(V) and Ha~ao~(v) with paths ( w , . . . ,  x), 
(y,. . . ,  ~) and edge (w, v); 

(4.5) call Straight-line_l-Iierarchical-Draw(Hra~in (v), Po, Fo); 
call Straight-line-Hierarchical-Draw( Ha**ol ( V), P1, F1); 
call Straight-line_Hierarchical_Draw(H~** 02 (v), P2, F2); 

(4.6) Let F = Fo U s U F~, exit. 

In the preprocessing phase, each of the three steps takes linear time. 
In the drawing phase, we maintain an edge list and a face list for each 

hierarchical-st plane snbgraph through the procedure 
Straight-line_Hierarchical-Draw. With this data  structure, we can check for chords 
of a cycle C (or path) of a graph in linear time; we can divide graph H with 
a chord of its external facial cycle or a path inside it in linear time. An st- 
component for vertex pair (u,v) can be found in linear time by performing 
depth-first search from u in one direction, and from v in the opposite direction. 
Also, the hiconnected components of a graph can be found in linear time [2]. 
In the procedure call of the drawing phase, every vertex is processed at most 
O(n) times by step (2) or step (4.2). Every vertex is processed also at most O(n) 
times by step (3.1) or steps (4.2) and (4.4). Every vertex is processed once by 
step (4.3) for computing its x coordinate. Consequentially, the drawing phase 
costs O(n 2) time. 

Note that  each edge appears in at most two subgraphs through the procedure. 
Therefore, our algorithm requires linear space. 

The following theorem summarizes the performance of the algorithm. 

T h e o r e m 5 .  Let H be a hierarchical plane graph with n vertices. The above 
algorithm constructs a planar straight-line hierarchical drawing for H in O(n 2) 
time and O(n) space. 

Based on our results for hierarchical graphs, we consider the straight-line 
drawing problem for clustered graphs in the following sections. 

4 C l u s t e r e d  G r a p h s  

A clustered graph C = (G, T) consists of an undirected graph G and a rooted 
tree T such that  the leaves of T are exactly the vertices of G. Each node u of 
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T represents a cluster V(u) of the vertices of G that  are leaves of the subtree 
rooted at u. Note that  tree T describes an inclusion relation between clusters. 

In a drawing of a clustered graph C = (G, T), graph G is drawn as points 
and curves as usual. For each node u of T, the cluster is drawn as a simple closed 
region R that  contains the drawing of G(u), such that: 

- the regions for all sub-clusters of R are completely contained in the interior 
of R; 

- the regions for all other clusters are completely contained in the exterior of 
R; 

- if there is an edge e between two vertices of V(u), then the drawing of e is 
completely contained in R. 

We say that the drawing of edge e and region R have an edge-region crossing 
if the drawing of e crosses the boundary of R more than once. A drawing of a 
clustered graph is e-planar if there are no edge crossings or edge-region crossings. 
If a clustered graph C has a c-planar drawing then we say" that  it is c-planar 
(see Fig. 2). 

An edge is said to be incident to a cluster V(@ if one end of the edge is 
a vertex of that cluster but the other end is not in V(u). An embedding of a 
clustered graph consists of the circular ordering of edges around each cluster 
which are incident to that  cluster. A clustered graph C = (G, T) is a connected 
clustered graph if each cluster induces a connected subgraph of G. The following 
results from [9] characterize c-planarity in a way which can be exploited by our 
drawing algorithm. 

T h e o r e m  6. A clustered graph C = (G, T) is c-planar if and only if it is a 
sub-clustered graph of a connected and c-planar clustered graph. 

From Theorem 6, we can assume that we are given a connected clustered graph 
when drawing a c-planar clustered graph. According to [13], a c-planar embed- 
ding of a connected clustered graph can be found in linear time. In the rest of 
the paper, we assume there are no degenerated clusters, that  is, every nonleaf 
node of T has at least two children. 

5 S t r a i g h t - L i n e  C o n v e x  C l u s t e r  D r a w i n g s  

One of the fundamental questions in planar clustered graph drawing is: does 
every c-planar clustered graph admit a planar drawing such that  edges are drawn 
as straight-line segments and clusters are drawn as convex polygons? In this 
section, we answer this question based on our results for hierarchical graphs. We 
transform a clustered graph into a hierarchical graph, and construct a straight- 
line convex cluster drawing on top of the straight-line hierarchical drawing. 

By Theorem 6, we assume that we are given a c-planar connected clustered 
graph C = (G, T) with a c-planar embedding. Roughly speaking, our algorithm 
works as follows. First, we triangulate G (including triangulating the external 
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Fig. 7. Clustered Graph -+ Hierarchical Graph 

face) [16]; then compute an st numbering 3 of the vertices of G such that  the 
vertices that  belong to the same cluster are numbered consecutively. We call this 
numbering c-st numberin 9. This numbering gives us a layer assignment of the 
vertices of G. Hence, the clustered graph is t ransformed to a hierarchical graph 
(see Fig. 7), and each cluster has consecutive layers. Because of this property, 
we show that  a straight-line convex cluster drawing can be constructed from the 
straight-line hierarchical drawing. 

The critical part  of this method is the construction of the e-st numbering. 
To ensure that  the vertices of the same cluster are numbered consecutively, we 
need to compute an ordering of the child clusters for every parent cluster u. To 
do this, we construct a graph F ( u )  from G(u) by shrinking each child cluster 
of u to a vertex while preserving the embedding. First of all, we add a d u m m y  
node on every edge of G; this prevents edges from collapsing into one edge when 
shrinking. We use a top down approach ,  ordering the children of the root first. 

For the root node "y of T, the graph F(3 ~) is constructed as follows. We choose 
an edge e of G tha t  does not belong to any other cluster except the root cluster. 
Since we are given a connected clustered graph, such an edge exists. We choose 
s and t to be the two ends of this edge. Then shrink every child cluster of the 
root into a single vertex and preserve the planar embedding in the meantime.  
The resulting graph is F(7).  Every vertex of F('~) represents a child cluster of 
the root cluster. Since st numberings are constructed on bieonnected graphs, we 

need the following lemma: 

Given any edge (s, t) in a biconnected graph G with n vertices, a st numbering for 
G is defined as follows. The vertices of G are numbered from 1 to n so that vertex 
s receives number 1, vertex b receives number n, and any vertex except s and t is 
adjacent both to a lower-numbered and a higher-numbered vertex. Vertices s and t 
are called the source and the sink respectively. Such a numbering is an st numbering 
for G. An st numbering of a biconneeted graph can be computed in linear time [6]. 
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Fig. 8. Illustration of Computing c-st Numbering 

L e m m a  7. Suppose that C = (G, T) is a c-planar clustered graph, 7 is the root 
o fT ,  and G is triangulated. Then the graph F(7  ) is biconnected. 

S k e t c h  o f  P r o o f :  Since G has been triangulated and we preserve the embedding 
in the shrinking operation~ it can be shown that  every face in the resulting graph 
F (7  ) is bounded by a simple cycle. Therefore F(7)  is biconnected. [] 

Since F(7)  is biconnected, we can order the children of the root F by com- 
puting an st numbering, choosing the vertex that  represents the cluster where s 
belongs as the source, and the vertex that  represents the cluster where t belongs 
as the sink. 

We proceed top down fl'om the root. For a nonroot node u, we construct a 
graph F(u) in a similar but slightly more complex way; F(u) depends on the 
place of u in the ordering of u and its siblings. For each child cluster # of u, we 
shrink graph G(tt) into one vertex while preserving the planar embedding. For 
those edges that  connect cluster u with clusters which are ordered before u (note 
that  this order is computed recursively as mentioned above), we connect them 
to a single vertex S. For those edges that  connect cluster u with clusters which 
are ordered after u, we connect them to a single vertex T (see Fig. 8). Finally, 
we connect S and T in the external face of G(u), hence forming F(u). Here, if 
vertex s(t) belongs to cluster u, we simply choose the vertex which represents 
the child cluster that  contains s(t) as S(T). We need the following lemma; its 
proof is similar to that  of Lemma 7. 

L e m m a 8 .  Suppose that C = (G,T) is a c-planar clustered graph, and G is 
triangulated. For every node u o fT ,  the graph F(~) is biconnected. 

[] 
With the lemma, we order every vertex of F(y)  by computing an st number- 

ing, choosing vertex S as the source, and vertex T as the sink. 
Now, each cluster u is assigned a number of order within its parent. Therefore, 

a recursive hierarchy of orders is formed. We expand it lexicographically into a 
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linear order and hence form an ordering of the all vertices of G. It can be verified 
that this order gives us an st numbering on the vertices of G such that  the vertices 
that  belong to the same cluster are numbered consecutively. 

With this c-st numbering, we transform a clustered graph into hierarchical 
graph by assigning the layer of each vertex with its c-st number. Then, apply the 
straight-line hierarchical drawing algorithm described in section 3, hence, obtain 
a planar straight-line hierarchical drawing of G. The c-st numbering ensures 
that each cluster occupies consecutive layers in the drawing. For every cluster, 
we draw a convex hull of the vertices of the cluster. In this drawing, there are 
no edge crossings; there are no edges that  cross the region (the convex hull) of 
a cluster where they do not belong. Since we are given a connected clustered 
graph, each cluster forms a connected subgraph of G. If the drawing of an edge 
crosses the convex hull of a cluster where it does not belong, then there would 
be an edge crossing. This forms a contradiction. Note that  if we draw regions as 
rectangles instead of convex hulls, edge-region crossings are still possible. 

Since an st numbering can be constructed in linear time [6], the computation 
of c-st numbering takes linear time in terms of the size of the graph. An algorithm 
to compute a convex hull of a set of m points requires O(mlog m) time [15]. By 
Theorem 5, our method takes O(n 2) time. 

The following theorem summarizes our result on planar straight-line convex 
cluster drawings. 

T h e o r e m  9. Let C = (G,T) be a c-planar clustered graph with n vertices. A 
planar straight-line convex cluster drawing of C can be constructed in O(n 2) 
time. 

6 Conclusion and Remarks 

In this paper, we answer one of the basic questions for hierarchical graphs that 
has not be investigated before. We show that  every hierarchical planar graph 
admits a planar straight-line hierarchical drawing, and present an algorithm that  
produces such drawings in O(n 2) time. With this result, we answer a similar basic 
question for clustered graphs that  has been posed as an open problem in [8]. We 
show that  every e-planar clustered graph admits a planar straight-line convex 
cluster drawing. A method to construct such drawings is provided. 

The algorithms that we present in this paper take quadratic time. From 
the computational point of view, it is interesting to know whether the time 
complexity can be improved, say, to O(n log n); and whether O(n log n) is optimal 
for this type of problems. 

The drawings produced by our algorithms may require exponential area. This 
is justified by the area lower bounds for these drawing conventions presented 
in [14, 8]. Relaxing the straight-line constraints can give us polynomial area 
bounds [4]. 

For future work on clustered graphs, other drawing conventions such as poly- 
line rectangular cluster drawings, and also nonplanar drawings will be studied. 
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For clustered graphs,  we only ensure tha t  clusters are drawn as convex polygons,  
while it is desirable to represent clusters as more regular bodies such as circles 
and rectangles. This also forms an interesting topic for our future research. 
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