
Straight-Line Drawing Algorithms for
Hierarchical Graphs and Clustered Graphs

Peter Eades 1 Qiug-Wen Feng 1 Xuemin Lin z

1 Department of Computer Science and Software Engineering, University of
Newcastle, NSW 2308, Australia. Email: {eades,qwfeng}@cs.newcastle.edu.au

2 Department of Computer Science, University of Western Australia, Nedlands,
WA 6009, Australia. Email: lxue@cs.uwa.edu.au

(extended abstract)

Abs t rac t , Hierarchical graphs and clustered graphs are useful nonclas-
sical graph models for structured relational ioformation. Hierarchical
graphs are graphs with layering structtLres; clustered graphs are graphs
with recursive clustering structures. Both have appfications in CASE
tools, software visualization, VLSI design, etc. Drawing algorithms for
hierarchical graphs have been well investigated. However, the problem
of straight-fine representation has not been addressed. In this paper,
we answer the question: does every planar hierarchical graph admit a
planar straight-line hierarchical drawing? We present ata algorithm that
constructs such drawings in O(n 2) time. Also, we answer a basic ques-
tion for clustered graphs, i.e. does every planar clustered graph admit a
planar straight-line drawing with clusters drawn as convex polygons? A
method for such drawings is provided in this p~:per.

1 I n t r o d u c t i o n

Graph drawing algorithms are widely used in graphical user interfaces of many
software systems. Examples include CASE tools, reverse engineering systems
and software design systems. A good picture is worth a thousand words, while
a poor drawing can be misleading.

As the information that we want to visualize becomes more and more compli-
cated, we need more structure on top of the classical graph model. Hierarchical
graphs are directed graphs with layering structures (see Fig. 1). They appear
in applications where hierarchical structures are involved e.g. PERT networks
and organization charts [19, 10]. Clustered graphs are graphs with clustering
structures (see Fig. 2) which appear in many structured diagrams [18, 11, 12].

A hierarchical graph is conventionally drawn with vertices of a layer on the
same horizontal line, and arcs as curves monotonic in y direction (see Fig. 1). A
hierarchical graph is hierarchical planar (h-planar) if it admits a drawing without
edge crossings. For a clustered graph, the clustering structure is represented by
a closed curve that defines a region. The region contains the drawing of all the
vertices which belong to that cluster (see Fig. 2). A clustered graph is compound

114

Fig. 1. An Example of a Hierarchical Graph

ROOT

k
E

D

Fig. 2. An Example of a Clustered Graph

planar (c-planar) if it admits a drawing with no edge crossings or edge-region
crossings.

One of the basic graph drawing convention consists of representing edges as
straight-line segments. For classical graphs, it has been shown independently by
Fary [7], Stein [17], and Wagner [21] that every planar graph admits a straight-
line drawing without edge crossings. Tutte [20] proved that every 3-connected
planar graph admits a planar straight-line drawing where all the face boundaries
are drawn as convex polygons.

In this paper, we answer the question: does every planar hierarchical graph
admit a planar straight-line hierarchical drawing? Although many results have
been obtained on drawing hierarchical graphs [19, 10, 3], the basic problem of
planar straight-line drawings has not been studied. It has been shown by Di
Battista and Tamassia [1] that every planar st-graph admits an upward drawing
i.e. a drawing where all arcs are drawn as straight-line segments pointing up-
ward. However, the problem for hierarchical graphs is different. We have more
constraints: vertices of the same layer should be drawn on the same horizontal
line; layers should be equal distance apart. A method to construct straight-line
drawings of hierarchical graphs has been presented by Eades, Lin and Tamas-
sia [5]. However, it is restricted to a special class of hierarchical graphs known
as collapsible free graphs.

The second question answered in this paper is for clustered graphs: does every

115

planar clustered graph admit a planar straight-line drawing with clusters drawn
as convex polygons? Although an algorithm for straight-line drawing of clustered
graphs has been presented by Feng, Cohen and Eades [811 it does not apply to
all clustered graphs. If the graph induced by a cluster is not bieonnected, then
its external facial cycle is not a simple cycle. In this case, we cannot use the
drawing of its external facial cycle as the region boundary, since it cannot form
a simple region. This question that we answer in this paper was posed as an
open problem in [8].

The rest of the paper is organized as follows. In section 2, we present some
terminology for hierarchical graphs. In section 3, we prove that every planar
hierarchical graph admit a planar straight-line drawing. An O (n 2) t ime algorithm
that produces such drawings is presented. We introduce the model of clustered
graphs in section 4. In section 5, we show that every planar clustered graph
admits a planar straight-line convex cluster drawing. This is accomplished by
transforming clustered graphs into hierarchical graphs. Section 6 concludes with
some remarks and discussion.

2 Hierarchical Graphs

Hierarchical graphs are directed graphs where vertices are assigned to layers. As
described in [5], a hierarchical graph H = (V, A,)~, k) consists of a directed graph
(V, A), a positive integer k, and, for each vertex u, an integer ~(u) C 1, 2, ..., k,
with the property that if (u, v) E A, then ~(u) < ~(v). For 1 < i < k, the set
{u :),(u) = i} is the ith layer of H and is denoted by Li. The span of an arc
(u, v) is),(v) - $(u). An arc of span greater than one is long, and a hierarchical
graph with no long arcs is proper.

A hierarchical graph is conventionally drawn with layer Li on the horizontal
line y = i, and arcs as curves monotonic in y direction. If no pair of nonincident
arcs intersect in the drawing, we say it is a hierarchical planar (h-planar) drawing.
Note that a nonproper hierarchical graph can be transformed into a proper
hierarchical graph by adding dummy vertices on long arcs. It can be shown
that a nonproper hierarchical graph is h-planar if and only if the corresponding
proper hierarchical graph is h-planar. A hievarchicalplanar embedding of a proper
hierarchical graph is defined by the ordering of vertices on each layer of the graph.
Note that every such embedding has an unique external face. It is easily shown
that every proper h-planar graph admits a straight-line hierarchical drawing,
that is, a drawing where arcs are drawn as straight-line segments. However, for
nonproper hierarchical graphs, the problem is not trivial, since no bends are
allowed on long arcs.

We call a planar embedded graph a plane graph. If a hierarchical plane graph
has only one source s and one sink t, we call it a hierarchical-st plane graph. We
will show that every hierarchical plane graph can be extended to a hierarchical-st
plane graph. The following lemma gives some basic properties which are useful
to our algorithm.

116

L e m m a 1. Let H be a hierarchical-st plane graph, then: (a) Every biconnected
component of H is also a hierarchical-st plane graph. (b) If B1 and B2 are two
biconnected components of H, and u is a vertex of B1 and u is not a cut vertex,
then either for all vertices v of < or for all vertices v of
A(u) > A(v). (c) H has a planar straight-line hierarchical drawing if and only if
each of its biconneeted component has a planar straight-line hierarchical drawing.

With the above lemma, we can assume that we are given a hierarchical-st
plane graph that is bieonnected, which implies its external face is bounded by
a simple cycle if the graph is not just a single edge. Since hierarchical graphs
are directed graphs, the terms "cycle" and '"path" that we use in the rest of the
paper are all for the underlying undirected graphs. To denote a cycle of a plane
graph, we use the sequence of vertices on the cycle in clockwise order. We say a
path is monotonic if the directions of the edges (arcs) do not change along the
path.

The following lemma is also very useful for to algorithm.

L e m m a 2. Let H be a hierarchical-st plane graph which is biconnected, and has
external facial cycle C = (v l , . . . , vk, vl). Suppose that P = (vi, X l , . . . , Xl, Vj) i8
a monotonic path from vi to vj in H, and the vertices of P are not on C except
vi and vj. Let H1 and H2 be the two subgraphs bounded inside by cycles C1 =
(v l , . . . , vi, x l , . . . , xt, v j , . . . , vk, vl) and C2 = (vi, . . . , vj, X h . . . , Xl, Vi) inclusive.
Then H~ and H2 are hierarchicaI-st plane graphs and are biconnected (see Fig.3).

vj

V 1

Fig. 3. Illustration of Lemma 2

3 Straight-Line Hierarchical Drawings

In this section, we show that given an n-vertex hierarchical plane graph, we can
compute a planar straight-line hierarchical drawing in O(n 2) time.

117

We apply a divide and conquer approach: divide the hierarchical graph into
subgraphs, compute the drawings of the subgraphs, and obtain a drawing of
the graph by combining the drawings of the subgraphs. The key part of this
approach is to find a suitable partition.

Our method works on triangular hierarchical-st plane graphs. In a triangular
hierarchical-st plane graph, the boundary of every nonexternal face consists of
exactly three edges. We prove that every hierarchical plane graph can be ex-
tended to a triangular hierarchical-st plane graph which admits a straight-line
drawing with a prescribed polygon as its external face. We provide a straight-line
drawing algorithm based on our proof.

In our method, we are given a prescribed polygon as the external face of the
drawing. Note that there can be vertices of the external facial cycle which are
not drawn as apexes of the polygon. This can give some problems if the external
facial cycle has a chord (i.e. an edge between two nonconsecutive vertices). To
deal with this problem, we need some terminology. Let H be a hierarchical-st
plane graph with source s and sink t; let cycle C be the boundary of its external
face; let polygon P be a straight-line hierarchical drawing of cycle C. We say
that P is feasible for H if the following conditions hold:

- P is a convex polygon.
- If cycle C has a chord (x, y), then on each of the two paths of cycle C between

x and y, there exists a vertex v which is drawn as an apex of polygon P.

In our divide and conquer approach, we distinguish two situations. If the
external facial cycle has a chord, we simply divide the graph into two parts with
the chord. Otherwise, we find a vertex not on the external facial cycle, such
that there are three monotonic paths that connect the vertex with the external
facial cycle. Therefore, by using Lemma 2 twice, we divide the graph into three
parts. The following lemma is useful in finding such vertex in the graph. We
need some more terminology. For a hierarchical graph H with vertices u and v,
an st-component for (u, v) is the union of all subgraphs of H for which u is the
unique source, and v is the unique sink. In other words, the st-component for
(u, v) is the maximal subgraph with a single source u and a single sink v.

L e m m a 3. Let H be a triangular hierarchical-st plane graph with single source
s and single sink t. Suppose that the external facial cycle C of H has no chords.
Let v be a vertex on cycle C other than s or t. Suppose that Hst(v) is the st-
component of the hierarchical graph H - v for vertex pair (s, t). Then there exists
a vertex w incident to v in H and not on cycle C, such that w C Hst(v) and
w has the following properties: (1) Vertex w is on the external face of H . (v) .
(2) vertex w is not a cut vertex of Hst(v). (3) Suppose that Hrnai,(v) denotes
the biconnected component of Hat(v) that contains w. Then the external facial
cycle of Hrnaln(v) consists of two paths: path (x , . . . , y) which belongs to C, and
path (y , . . . , w , . . . , x) which does not belong to C; and path (x , . . . , w , . . . , y) is
monotonic (see Fig.i).

118

t t

v

s s

(a) (b)

t t

�9 Y

w

v

s $

(c) (d)

Fig. 4. Possible Partitions of H

S k e t c h o f Proof." Fig 5(a)-(d) shows all possible situations of the path formed
by the vertices incident to v. We show in each situation there exists such vertex
w incident to v in H and not on cycle C , such that w E Hst(v). We show that
the situation illustrated in Fig. 5(e) would not occur. The proofs for Property I
and Property 2 of such vertex w are immediate. For Property 3, Fig. 4 illustrates
all possible situations of the external face of H~i~(v) , and we show that the
property holds for all these situations. []

T h e o r e m 4 . Suppose that H is a triangular hierarchical-st plane graph, and
polygon P is a straight-line hierarchical drawing of its external facial cycle C. If
P is feasible for H, then there exists a planar straight-line hierarchical drawing
of H with external face P.

Pro@ We prove by induction on the number n of vertices of H. The basis of the
induction, n = 3 is immediate. Now, assume that the theorem holds for graphs
with less than n vertices. We distinguish two cases:

Case i: The external facial cycle C of H has a chord (x, y). By Lemma 2,
chord (x, y) divides H into two subgraphs H1 and H~. We draw a straight line
segment between x and y , which divides P into two polygons P1 and P2. It
can be verified that P1 and P2 are feasible for H1 and H2. Since both H1 and
//2 have less than n vertices, by induction, there exist straight-line hierarchical
drawings of H1 and H2 with external faces P1 and P2. Hence, by combining the

119

t t t

s 8 s

(a) 00) (c)

t t

v

s s

(d) (e)

Fig. 5. Illustration of the Proof of Lemma 3

two drawings, we obtain a straight-line hierarchical drawing of H with external
face P.

Case 2: The external facial cycle C of H has no chords. There exists a vertex
v other than the source s or sink t on the external face, such that v is drawn as
an apex of P. Otherwise P would not be a convex polygon. By Lemma 3, there
exists a vertex w incident to v but not on cycle 6 such that w E Hat(v) and
w has those properties stated in the l emma. Hence, we have a monotonic path
(x , . . . , w , . . . , y) inside H, and also an edge (w, v) inside H (see Fig. 4). Using
Lemma 2 twice, they divide H into three parts:

- Hmai,~(v) bounded by cycle (z , . . . , y , . . . , w , . . . x) ;
- Ha~8ol(V) bounded by cycle (x , . . . , w, v , . . . x) ;
- Has,o2(v) bounded by cycle (y , . . . , v, w , . . . y).

Now we need to adjust this partit ion such that a feasible polygon can be
computed for each part. Note that path (x , . . . , w) has no chords in Ha,~ol(V),
otherwise it would not belong to the external face of Hmai~ (v). Similarly, path
(w , . . . , y) has no chords in Has,o2(V).

Now consider chords in H ,~r (v). We reduce Hm~i~ (v) and accordingly, ex-
tend H~,,ol(V) or H~,8o2(V) to eliminate such chords. If path

120

(x , . . . , u , , . . . , u2 , . . . , w) has a chord (Ul , U2) , we modify the path to
(x , . . . , Ul, u2 , . . . , w). Also, we modify path (w , . . . , y) in similar way if it has a
chord. Graphs H,~,~,~(v), H~,~ot(V) and H~s.,o~(v) change accordingly when we
modify the paths. After the modification, paths (x,..., w) and (w , . . . , y) have
no chords in H,~i,~(v), Has~ol(v) and Ha~o2(v).

It can be verified that H,~i,~(v), H~ol(V) and Ha~o2(v) are triangular
hierarchical-st plane graphs.

Let Hjra,~e (v) be the graph that consists of only the external faces of
Now is h erarchical-st

graph with the same external face as H. Hence polygon P is also a hierarchical
planar drawing of the external face of Hfr~,~e (v). We need to find a position for
w such that the drawing of the three internal faces of Hf~m~ (v) are convex poly-
gons, and therefore feasible for H,~.~,~(v), Ha~soa(v) and Ha~oz(v). We compute
the x coordinate of vertex w using the following equation derived from [5]:

a ~(b)

=
1 1 1

Here, x(a) and x(b) denote the x coordinates of vertices a and b respectively; d +
denotes the indegree of a; d~ denotes the outdegree of a; a~d l = t~(a) -),(b)l.

This formula computes the x coordinate of vertex w as a weighted barycenter
of its neighbors x, y and v. (Vertices with degree 2 are not considered here.)
We place other internal vertices of Hy~a,~(v) (those with degree 2) onto the
line segments from ~ to w and from w to y at appropriate horizontal lines.
It can be shown that the drawings P0, P1 and P2 of the three internal faces of
Hyram~ (v) are convex polygons [5]. Note that edges on path (x, . . . , w) are drawn
on the same line, so are the edges on path (w , . . . , y). However, since there are
no chords on these paths, P0, Px and P2 are feasible for H,~ai~(v), H~ol(v)
and H~o2(v) respectively. As each of H,~ai,(v), H~ol(v) and H~so2 has less
than n vertices, by induction, there exist straight-line hierarchical drawings of
H,~i,~(v), Ha~ol(v) and H~o2 with external faces Po, P1 and P~. Hence, by
combining these drawings, we obtain a straight-line hierarchical drawing of H
with external face P.

The algorithm to compute a planar straight-line hierarchical drawing is based
on the proof of Theorem 4. The input of the algorithm is a hierarchical plane
graph H; the output is a planar straight-line hierarchical drawing of H. The al-
gorithm consists of two phases: Preprocessin9 and Drawing. In the preprocessing
phase, we extend the hierarchical plane graph to a triangular-st plane graph.
The drawing phase is a recursive procedure that actually constructs the drawing
of the graph. Now we describe them in more detail.

P r e p r o e e s s l n g . We extend the hierarchical plane graph to a triangular
hierarchical-st plane graph in th~'ee steps. (1) Extend the h~erarchical plane graph
such that all the sources and sinks lie on the bottom layer and top layer. We
can use a method similar to those in [1, 15] which performs two sweeps from
bottom to top and from top to bottom to eliminate the sources and sinks in

ii.i'i 'ii.ii �84
(a)

121

. p J t . r o s

(b)

Fig. 6. Triangulating the Hierarchical Graph

between. (2) Add one more vertex s below the bottom layer and connect it to all
the sources; then add one more vertex t above the top layer and connect all the
sinks to it. Therefore, a hierarchical-st plane graph is obtained. (3) Extend the
hierarchical-st plane graph to a triangular one as follows: insert a layer between
every two consecutive layers (This ensures that original layers still to be evenly
distributed.); add a "star" structure inside each face (see Fig. 6(a)), and place
the center of the each star on an inserted layer. After this, every internal face is
bounded by exactly three edges. Note that this operation does not increase the
size of the graph by more than a constant. This triangulation method is a little
unusual, but necessary. Fig. 6(b) shows that if we do not add new vertices, mul-
tiple arcs can be produced. Further, we cannot allow dummy nodes on the arcs
because this may introduce bends. Also note that no arcs are allowed between
two vertices of the same layer.

D r a w i n g . The drawing phase is realized with a recursive procedure which is
based on the proof of Theorem 4. Firstly, it is easy to find a feasible polygon P
for an input graph H. Then we call the procedure and obtain a drawing of H.

P r o c e d u r e Straight-line_Hierarchical_Draw(H, ~, P, F)
{H is a triangular hierarchical-st plane graph with planar embedding E; P is
a polygon feasible for H. F is a planar straight-line hierarchical drawing of H
returned by the procedure.}

(1) If H has three vertices, then draw H as P. Let F = P, exit.
(2) Check H for possible chords of the external facial cycle C.
(3) If C has a chord (x, y), then:

(3.1) divide H into H1 and H2 with chord (x, y); draw straight-line segment
between x and y in P; divide P into P1 and P2;

(3.2) call Straight-line_Hierarchical_Draw(Hi, P1,/"1);
call Straight-line_Hierarchical_Draw(H2, P2, F2);

(3.3) Let F = F1 U F2, exit.
(4) If C has no chords, then:

122

(4.1) choose vertex v on C; find the st-component Hst(v) of H - v for the
source and sink pair (s, t); choose vertex w that is incident to v but not
on C, and on the external face of Hst(v).

(4.2) find the biconneeted component Hm~i~(v) of H~t(v) that contains w;
modify the two paths (w , . . . , x) and (y , . . . , w) on the external face of
H~t(v) to avoid chords;

(4.3) construct Hfr~,~(v) and compute its drawing using equation 1; hence
obtain polygons P0, P1 and P2 of the three internal faces of Hfram~(v);

(4.4) divide H into Hmair~(V), ttassol(V) and Ha~ao~(v) with paths (w , . . . , x),
(y,. . . , ~) and edge (w, v);

(4.5) call Straight-line_l-Iierarchical-Draw(Hra~in (v), Po, Fo);
call Straight-line-Hierarchical-Draw(Ha**ol (V), P1, F1);
call Straight-line_Hierarchical_Draw(H~** 02 (v), P2, F2);

(4.6) Let F = Fo U s U F~, exit.

In the preprocessing phase, each of the three steps takes linear time.
In the drawing phase, we maintain an edge list and a face list for each

hierarchical-st plane snbgraph through the procedure
Straight-line_Hierarchical-Draw. With this data structure, we can check for chords
of a cycle C (or path) of a graph in linear time; we can divide graph H with
a chord of its external facial cycle or a path inside it in linear time. An st-
component for vertex pair (u,v) can be found in linear time by performing
depth-first search from u in one direction, and from v in the opposite direction.
Also, the hiconnected components of a graph can be found in linear time [2].
In the procedure call of the drawing phase, every vertex is processed at most
O(n) times by step (2) or step (4.2). Every vertex is processed also at most O(n)
times by step (3.1) or steps (4.2) and (4.4). Every vertex is processed once by
step (4.3) for computing its x coordinate. Consequentially, the drawing phase
costs O(n 2) time.

Note that each edge appears in at most two subgraphs through the procedure.
Therefore, our algorithm requires linear space.

The following theorem summarizes the performance of the algorithm.

T h e o r e m 5 . Let H be a hierarchical plane graph with n vertices. The above
algorithm constructs a planar straight-line hierarchical drawing for H in O(n 2)
time and O(n) space.

Based on our results for hierarchical graphs, we consider the straight-line
drawing problem for clustered graphs in the following sections.

4 C l u s t e r e d G r a p h s

A clustered graph C = (G, T) consists of an undirected graph G and a rooted
tree T such that the leaves of T are exactly the vertices of G. Each node u of

123

T represents a cluster V(u) of the vertices of G that are leaves of the subtree
rooted at u. Note that tree T describes an inclusion relation between clusters.

In a drawing of a clustered graph C = (G, T), graph G is drawn as points
and curves as usual. For each node u of T, the cluster is drawn as a simple closed
region R that contains the drawing of G(u), such that:

- the regions for all sub-clusters of R are completely contained in the interior
of R;

- the regions for all other clusters are completely contained in the exterior of
R;

- if there is an edge e between two vertices of V(u), then the drawing of e is
completely contained in R.

We say that the drawing of edge e and region R have an edge-region crossing
if the drawing of e crosses the boundary of R more than once. A drawing of a
clustered graph is e-planar if there are no edge crossings or edge-region crossings.
If a clustered graph C has a c-planar drawing then we say" that it is c-planar
(see Fig. 2).

An edge is said to be incident to a cluster V(@ if one end of the edge is
a vertex of that cluster but the other end is not in V(u). An embedding of a
clustered graph consists of the circular ordering of edges around each cluster
which are incident to that cluster. A clustered graph C = (G, T) is a connected
clustered graph if each cluster induces a connected subgraph of G. The following
results from [9] characterize c-planarity in a way which can be exploited by our
drawing algorithm.

T h e o r e m 6. A clustered graph C = (G, T) is c-planar if and only if it is a
sub-clustered graph of a connected and c-planar clustered graph.

From Theorem 6, we can assume that we are given a connected clustered graph
when drawing a c-planar clustered graph. According to [13], a c-planar embed-
ding of a connected clustered graph can be found in linear time. In the rest of
the paper, we assume there are no degenerated clusters, that is, every nonleaf
node of T has at least two children.

5 S t r a i g h t - L i n e C o n v e x C l u s t e r D r a w i n g s

One of the fundamental questions in planar clustered graph drawing is: does
every c-planar clustered graph admit a planar drawing such that edges are drawn
as straight-line segments and clusters are drawn as convex polygons? In this
section, we answer this question based on our results for hierarchical graphs. We
transform a clustered graph into a hierarchical graph, and construct a straight-
line convex cluster drawing on top of the straight-line hierarchical drawing.

By Theorem 6, we assume that we are given a c-planar connected clustered
graph C = (G, T) with a c-planar embedding. Roughly speaking, our algorithm
works as follows. First, we triangulate G (including triangulating the external

124

Fig. 7. Clustered Graph -+ Hierarchical Graph

face) [16]; then compute an st numbering 3 of the vertices of G such that the
vertices that belong to the same cluster are numbered consecutively. We call this
numbering c-st numberin 9. This numbering gives us a layer assignment of the
vertices of G. Hence, the clustered graph is t ransformed to a hierarchical graph
(see Fig. 7), and each cluster has consecutive layers. Because of this property,
we show that a straight-line convex cluster drawing can be constructed from the
straight-line hierarchical drawing.

The critical part of this method is the construction of the e-st numbering.
To ensure that the vertices of the same cluster are numbered consecutively, we
need to compute an ordering of the child clusters for every parent cluster u. To
do this, we construct a graph F (u) from G(u) by shrinking each child cluster
of u to a vertex while preserving the embedding. First of all, we add a d u m m y
node on every edge of G; this prevents edges from collapsing into one edge when
shrinking. We use a top down approach , ordering the children of the root first.

For the root node "y of T, the graph F(3 ~) is constructed as follows. We choose
an edge e of G tha t does not belong to any other cluster except the root cluster.
Since we are given a connected clustered graph, such an edge exists. We choose
s and t to be the two ends of this edge. Then shrink every child cluster of the
root into a single vertex and preserve the planar embedding in the meantime.
The resulting graph is F(7). Every vertex of F('~) represents a child cluster of
the root cluster. Since st numberings are constructed on bieonnected graphs, we

need the following lemma:

Given any edge (s, t) in a biconnected graph G with n vertices, a st numbering for
G is defined as follows. The vertices of G are numbered from 1 to n so that vertex
s receives number 1, vertex b receives number n, and any vertex except s and t is
adjacent both to a lower-numbered and a higher-numbered vertex. Vertices s and t
are called the source and the sink respectively. Such a numbering is an st numbering
for G. An st numbering of a biconneeted graph can be computed in linear time [6].

!25

T

s

Fig. 8. Illustration of Computing c-st Numbering

L e m m a 7. Suppose that C = (G, T) is a c-planar clustered graph, 7 is the root
o fT , and G is triangulated. Then the graph F(7) is biconnected.

S k e t c h o f P r o o f : Since G has been triangulated and we preserve the embedding
in the shrinking operation~ it can be shown that every face in the resulting graph
F (7) is bounded by a simple cycle. Therefore F(7) is biconnected. []

Since F(7) is biconnected, we can order the children of the root F by com-
puting an st numbering, choosing the vertex that represents the cluster where s
belongs as the source, and the vertex that represents the cluster where t belongs
as the sink.

We proceed top down fl'om the root. For a nonroot node u, we construct a
graph F(u) in a similar but slightly more complex way; F(u) depends on the
place of u in the ordering of u and its siblings. For each child cluster # of u, we
shrink graph G(tt) into one vertex while preserving the planar embedding. For
those edges that connect cluster u with clusters which are ordered before u (note
that this order is computed recursively as mentioned above), we connect them
to a single vertex S. For those edges that connect cluster u with clusters which
are ordered after u, we connect them to a single vertex T (see Fig. 8). Finally,
we connect S and T in the external face of G(u), hence forming F(u). Here, if
vertex s(t) belongs to cluster u, we simply choose the vertex which represents
the child cluster that contains s(t) as S(T). We need the following lemma; its
proof is similar to that of Lemma 7.

L e m m a 8 . Suppose that C = (G,T) is a c-planar clustered graph, and G is
triangulated. For every node u o fT , the graph F(~) is biconnected.

[]
With the lemma, we order every vertex of F(y) by computing an st number-

ing, choosing vertex S as the source, and vertex T as the sink.
Now, each cluster u is assigned a number of order within its parent. Therefore,

a recursive hierarchy of orders is formed. We expand it lexicographically into a

126

linear order and hence form an ordering of the all vertices of G. It can be verified
that this order gives us an st numbering on the vertices of G such that the vertices
that belong to the same cluster are numbered consecutively.

With this c-st numbering, we transform a clustered graph into hierarchical
graph by assigning the layer of each vertex with its c-st number. Then, apply the
straight-line hierarchical drawing algorithm described in section 3, hence, obtain
a planar straight-line hierarchical drawing of G. The c-st numbering ensures
that each cluster occupies consecutive layers in the drawing. For every cluster,
we draw a convex hull of the vertices of the cluster. In this drawing, there are
no edge crossings; there are no edges that cross the region (the convex hull) of
a cluster where they do not belong. Since we are given a connected clustered
graph, each cluster forms a connected subgraph of G. If the drawing of an edge
crosses the convex hull of a cluster where it does not belong, then there would
be an edge crossing. This forms a contradiction. Note that if we draw regions as
rectangles instead of convex hulls, edge-region crossings are still possible.

Since an st numbering can be constructed in linear time [6], the computation
of c-st numbering takes linear time in terms of the size of the graph. An algorithm
to compute a convex hull of a set of m points requires O(mlog m) time [15]. By
Theorem 5, our method takes O(n 2) time.

The following theorem summarizes our result on planar straight-line convex
cluster drawings.

T h e o r e m 9. Let C = (G,T) be a c-planar clustered graph with n vertices. A
planar straight-line convex cluster drawing of C can be constructed in O(n 2)
time.

6 Conclusion and Remarks

In this paper, we answer one of the basic questions for hierarchical graphs that
has not be investigated before. We show that every hierarchical planar graph
admits a planar straight-line hierarchical drawing, and present an algorithm that
produces such drawings in O(n 2) time. With this result, we answer a similar basic
question for clustered graphs that has been posed as an open problem in [8]. We
show that every e-planar clustered graph admits a planar straight-line convex
cluster drawing. A method to construct such drawings is provided.

The algorithms that we present in this paper take quadratic time. From
the computational point of view, it is interesting to know whether the time
complexity can be improved, say, to O(n log n); and whether O(n log n) is optimal
for this type of problems.

The drawings produced by our algorithms may require exponential area. This
is justified by the area lower bounds for these drawing conventions presented
in [14, 8]. Relaxing the straight-line constraints can give us polynomial area
bounds [4].

For future work on clustered graphs, other drawing conventions such as poly-
line rectangular cluster drawings, and also nonplanar drawings will be studied.

127

For clustered graphs, we only ensure tha t clusters are drawn as convex polygons,
while it is desirable to represent clusters as more regular bodies such as circles
and rectangles. This also forms an interesting topic for our future research.

R e f e r e n c e s

1. O. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic
digraphs. Theoretical Computer Science, 61:175-198, 1988.

2. J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. North-Holland,
New York, N.Y., 1976.

3. P. Eades and K. Sugiyama. How to draw a directed graph. Journal of Information
Processing, 424-437, 1991.

4. Peter Eades and Qing-Wen Feng. Orthogonal grid drawing of clustered graphs.
Technical Report 96-04, Department of Computer Science, The University of New-
castle, Australia, 1996.

5. Peter D. Eades, Xuemin Lin, and Roberto Tamassia. An algorithm for drawing a
hierarchical graph. International Journal of Computational Geometry and Appli-
cations, 1995.

6. S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2:339-344, 1976.

7. I. Fary. On straight fines representation of planar graphs. Acta Sci. Math. Szeged.,
11:229-233, 1948.

8. Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a planar clus-
tered graph. In COC00N'95, volume 959 of Lecture Notes in Computer Science,
pages 21-31. Springer-Verlag, 1995.

9. Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs.
In ESA'95, volume 979 of Lecture Notes in Computer Science, pages 213-226.
Springer-Verlag, 1995.

10. E.R. Gansner, S.C. North, and K.P. Vo. Dug - a program that draws directed
graphs. Software - Practice and Experience, 18(11):1047-1062, 1988.

11. D. Harel. On visual formalisms. Communications of the ACM, 31(5):514-530,
1988.

12. Wei Lai. Building Interactive Digram Applications. PhD thesis, Department of
Computer Science, University of Newcastle, Callaghan, New South Wales, Aus-
tralia, 2308, June 1993.

13. Thomas Lengauer. Hierarchical planarity testing algorithms. Journal of A CM,
36:474-509, 1989.

14. Xuemin Lin. Analysis of Algorithms for Drawing Graphs. PhD thesis, Department
of Computer Science, University of Queensland, Australia, 1992.

15. Franco P. Preparata and Michael I. Shamos. Computational geometry: an intro-
duction. Springer-Verlag, New York, 1985.

16. R. Read. Methods for computer display and manipulation of graphs and the cor-
responding algorithms. Technical Report 86-12, Faculty of Mathematics, Univ. of
Waterloo, July 1986.

17. S.K. Stein. Convex maps. Proceedings American Mathematical Society, 2:464-466,
1951.

18. K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man and Cyber-
netics, 21(4):876-892, 1991.

128

19. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hi-
erarchical systems. IEEE Transactions on Systems~ Man and Cybernetics, SMC-
11(2):109-125, 1981.

20. W.T. Tutte. How to draw a graph. Proceedings London Mathematical Society,
3(13):743-768, 1963.

21. K. Wagner. Bemerkungen zum vierfarbenprobtem. Jber. Deutsch. Math.-Verein,
46:26-32, 1936.

