
Managing Overlapping Transactional Workflows *

Juha Puustj~irvi 1, Henry Tirri 1 and Jari Veijalainen 2

i Department of Computer Science
P. O. Box 26 (Teollisuuskatu 23)

FIN-00014 UNIVERSITY OF HELSINKI
Finland

e-mail: (puustjar, tirri}~cs.helsinki.fi
VTT Information Technology

Multimedia Systems
P.O. Box 1203

FIN-02044 VTT
Finland

e-mail: Jari.Veijalainen@vtt.fi

A b s t r a c t . Workflow management techniques have become an intens-
ive area of research in information systems. In large scale worldlow sys-
tems modularity and reusability of existing task structures with con-
text dependent (parametrized) task execution are essential components
of a successful application. In this paper we study the issues related to
management of overlapping transactional workflows, i.e., workflows that
share component tasks and thus avoid redundancy in design. The notion
of parametrized transactional properties of workflow tasks is introduced
and analyzed, and the underlying implementation mechanism based on
Event/Condition/Action (ECA) rules is discussed.

1 I n t r o d u c t i o n

Workflow management techniques have become one of the most exciting areas of
research in information systems. The underlying concepts have been around in
various forms for a long time, however, only recently the know how to implement
commercial systems has been available.

Modern business applications are usually composed of independently designed
components which are accessed concurrently by a large set of users. Workflow
management can be seen as central techniques to coordinate and streamline busi-
ness processes, which themselves are represented as workflows. On the other hand
current organizational investments into data processing equipment and software
are significant, and there is a growing interest to benefit as long as possible from
the existing "legacy systems". In large scale workflow systems with 10,000 users
linking together several thousand geographically distributed sites, modular i ty

* This work was done in ESPRIT LTR project TransCoop (EP8012), which is par-
tiaUy funded by the European Commission. The partners of TransCoop are GMD
(Germany), University of Twente (The Netherlands), and VTT (Finland).

346

of design, reusability of existing task structures and context dependent (para-
metrized) task execution are essential components of a successful application.
It is within this framework of efficient business process re-engineering that our
research is inscribed.

Mohan et el [21] listed several key aspects in large scale workflow manage-
ment design: failure handling, availability, navigational flexibility, replication and
distributed coordination. Such aspects are clearly in the realm of transactional
workflows where the application execution has to conform to a set of correctness
constraints derived from the application domain. Since workflow management
systems have become the top layer in the corporate information system architec-
ture, we would like to add to this list of issues modularity and task reusability
and focus here on mechanisms achieving these goals.

Workflow task reusability is an essential feature of real life workflow systems,
and should be taken into account also in the development of such systems. Re-
usability allows one to avoid redundant design, which is an important aspect as
large workflow applications are typically defined by combining existing applica-
tions. Consequently management of overlapping workflows, i.e., workflows that
share one or more tasks, is an important topic to be addressed in transactional
workflows.

Workflow management research is clearly related to the work done in devel-
oping advanced transaction models, especially for cooperative environments. Co-
operative transaction models have been discussed in [18, 19, 26, 24, 15, 23] in the
centralized case, and in order to better match the requirements of various mod-
ern database applications, more general transaction frameworks are developed in
[9, 22, 33]. The ASSET system [3] provides transaction primitives for the spe-
cification of extended and cooperative transaction models. Some of the recent
work also makes direct connections between workflow management systems and
advanced transaction processing: workflows are treated as extended transactions
in DOM systems [4, 13], and the Contract model [31, 32] provides task reusability
and application specific concurrency control.

In this paper we will study the design of workflow management systems that
support modular, overlapping workflows. In order to achieve this goal of increased
task reusability we introduce task execution modes and the notion of task integ-
ration, i.e., we rely on context-dependent, parametrized transactional properties
of the workflow tasks. By using different execution modes it is possible to com-
bine tasks located at different sites to compose appropriate transactional units.
In addition, by task integration we can bind together tasks executed at the same
site to comprise appropriate units of atomicity or isolation. In this way we in-
corporate workflow notions similar to multilevel atomicity [20], and increase task
reusability and workflow system throughput. As far as we are aware of, this
notion of parametrized transactional properties to increase reusability of tasks
has not been addressed before. The mechanisms to implement such properties
are based on Event/Condition/Action rules (ECA rules) [5] which are defined
on the global workflow schema (i.e., task parameters). The ECA rules are used
to specify which synchroniztion operations are needed. Such rules are given as

347 "

part of the workflow specification, and used by the global level workflow manager
module during the execution phase.

The remainder of this paper is organized as follows. In Section 2 we will in-
troduce the components of workflow specification, and describe the underlying
workflow system architecture. In Section 3 we illustrate our concepts through
an extensive example by considering five workflows in a banking domain. These
workflows are used through the paper as an example to demostrate our approach.
Section 4 discusses the management of concurrent execution of interfering work-
flow tasks with ECA rules. The use of parametrized transactional properties for
task execution modes and task integration issues are introduced in Section 5.
Section 6 concludes the discussion.

2 T h e T r a n s C o o p W o r k f l o w a r c h i t e c t u r e

2.1 W o r k f l o w spec i f i ca t ion a nd task v a r i a t i o n s

Full specification of a workflow (scenario) is a complex task.For our purposes
only the following workflow specification components need to be described:

- The tasks 7~ involved in a particular workflow.
- The transactional requirements of the workflow.
- The data flow between the workflow tasks.
- The execution structure of the workflow.

In this paper we are focusing on the first two aspects since they are directly
related to task reusability. Data flow between tasks is determined by specifying
the input and output parameters of the tasks, and the execution structure specifies
the ordering constraints for the executions of the tasks, e.g., a task may not
begin before a particular previously started task commits. Such constraints can
be specified e.g., by triggers [7, 6] of which the ECA rules are a special case, by
Petri nets [16] or by finite state automaton [1]. In the following, we will make
no assumptions of the method the execution structure is specified with. For a
detailed discussion on inter-task dependency enforcement in workflow context
see [27].

In our terminology a task defines some unit of work to be done, which can also
be shared by several different workflows. A task may be specified in a number of
ways. However, we model only the aspects which are relevant from task's reusab-
ility point of view. In order to maximize task reusability a task is allowed to have
several task variations. Task reusability and task variations can be illustrated by
the component structure given in Figure 1.

The component structure consists of the two levels: workflow level and com-
ponent level. The overlapping tasks in the component set represent the variations
of tasks. The tasks of a workflow comprise a subset of the overall component set.

We make the distinction between a basic task and task variations. Basic tasks
can be used by the workflow designer to integrate tasks in order to compose
appropriate transactional units (e.g., for atomicity or isolation). This issue will

348

LEVEL

Fig. 1. Work/tow component structure.

be discussed more detail in Section 5.1. A task variation is a modification of a task
which matches better the requirements of a particular workflow. Task variation
can be seen as a logical concept in the sense that the variation is specified as a
parameter in the task call itself. In principle a task variation can be understood
as workflow's view of the basic task, and it is analogous to view definitions in
a traditional database setting. In addition task variations can also be used to
compose appropriate units of atomicity or isolation. As an example consider a
case where two tasks located at different sites will be integrated to compose
a unit of atomicity. In such situation one uses task variations that provide the
prepared state as an external state. We will return to these execution mode issues
in Section 5.2.

2.2 A r c h i t e c t u r a l considerations

Our architectural views for the workflow environment are influenced by the gen-
eral reference architecture under development in the TransCoop project [8]. The
TransCoop architecture is intended to provide a platform for transaction manage-
ment support for cooperative applications in general. The architecture consists
of both a specification environment (TSE) and a run-time environment (TRE)
which use the services of an object server (TOS). Since we are concerned with
a particular application domain, workflow management, the architecture presen-
ted is more specific than the original generic architecture. The overall modified
architecture is illustrated in Figure 2.

We assume that the workflow environment consists of a global and a local
level. The global level supports the overlapping workflows whereas the local level
supports existing legacy applications and databases. Here we focus on the global
level workflows only, and discuss briefly those architectural issues that are related
to the topic of the paper, specification and execution of concurrent overlapping
workflows. For more detailed discussion on architectural questions see [8].

A workflow designer specifies system supported workflows as well as the
consistency constraints of the system. The Workflow Specification Environment
(WSE) analyzes the specifications to determine whether such a workflow can be
implemented. For example, if the specification includes a reusable task but such

349

Workflo~ Designer Applic~ti0n users

Workflow
Specification
Environment
(WSE)

Transcoop
Runtime
Environment
ORE)

J TransCoop l Object Workftow Specification I! ECA
Dictionary (WSD) rule base Server (TOS) (ECARB)

u-tl t - ,
(UA) A~ent (REA) [

Execution]

I

Cooperation Manager (CM) [
I

TransCoop Transaction Management]
I Support System (TTMSS)

Object Storage I
Interface Mapper (OSIM)

I
Database
System (DB)

Fig. 2. Workflow system architecture.

a task is not found from the Workflow specification dictionary stored in the TOS
object server, then the mismatch is reported to the workflow designer. If there
are no mismatches the specification is stored in the Workflow Specification Dic-
tionary. In addition to the individual workflow specifications a workflow designer
can specify consistency constraints of the system. To enforce such a constraint
WSE compiles the necessary set of Event /Condit ion/Act ion (ECA) rules which
are stored in the ECA rule base in the object server. In a distributed case the
ECA rules (and the possible locking data structures) are stored at the sites where
the tasks in question are executed.

The User Agent (UA) module provides the interface between the users and
the system. A user may be a human, an application program or a remote work-
flow or task request. When it receives a workflow cMl, it generates a ~orkflow
specification based on the Workflow Specification Dictionary. Then it sends non-
local task requests to the UA's of the appropriate sites via the Remote Execu-
tion Agent ([lEA). Local workflow specifications are passed to the Cooperation
Manager (CM), which is responsible that the execution is compatible with its
specification. WM uses the services of the TransCoop Transaction Management
Support System (TTMSS). It can enforce correct sequencing of the tasks.

To ensure correct interleaving of concurrent workflows and that predefined
constraints are not violated, the Cooperation Manager uses the ECA-rule base
generated in the specification phase. If CM will not delay the operation or a task

the necessary operations will be performed by the TTMSS.

350

3 A n e x a m p l e o f a s e t o f o v e r l a p p i n g w o r k f l o w s

As an illustrative example we will consider the following five workflows in a bank-
ing environment: Client Credibility, Credit Account Request, Credit Card Request,
Loan Request and Bill request. In the figures describing these workflows we have
denoted subworkfiows (i.e., the tasks which may also be executed as an independ-
ent workfiow) by double outlines, and shared tasks by rounded rectangles (i.e.,
tasks that can be included as components in more than one workflow).

The workflow Client Credibility can be executed as an independent workflow
or as a subworkflow in other workflows. Its modular task structure and task
execution ordering constraints are presented in Figure 3.

~..~lEnmdient ~___~lClien,: s ~ / ~

Holding J
Fig. 3. Execution precedence graph for the workflow Client Credibility.

The task Enter client information accepts the information of the client. Based
on this information the task Client's data access retrieves from the bank's data-
base the relevant client information. This information includes the amount of the
loan the client has in the bank, the names of the subsidiaries and the holding com-
panies where the client has liabilities. If such liabilities exist the subsidiaries or

holding companies are contacted to get their assessment of the client. These are
performed by the tasks Subsidiaries contacts and Holding companies' contacts.
The task Client's credit evaluation decides the credibility of the client.

The workfiows Credit account request in Figure 4 and Credit card request in
Figure 5 have the subworkflow Client Credibility as a second task, and share the
last task Client data update which updates client's data by the given limit if
the request has been accepted. In practice, however, these workflows are quite
different in nature as the task Enter credit account decision is processed by
the bank while the task Enter credit card decision is processed by the credit
company. Hence, the former is typically a short duration activity, while the latter
tends to become a long lasting workflow.

The workflow Loan request processing is presented in Figure 6. The first task
Enter loan request accepts the amount and the information of the client. Based on
the client information the subworkflow Client Credibility is processed which gives
input for the task Risk evaluation. The risk evaluation task computes the interest

351

CREDIT ACCOUNT REQUEST

,,
request 1 credibility]

Eo,0,0., t _ _ . f c , - , , -
= account decision] - ~ulxlate

Fig. 4. Execution precedence graph for the workflow Credit account request.

CREDIT CARD REQUEST

[Eotorcro ,c.r I if' Client
 q.t i -II crodibil,,y

~ [Enter credit card ~..._.~ fClient's data~_~
I decision l ~updale

Fig. 5. Execution precedence graph for the workflow Credit card request.

for the loan request based on the amount of the loan and client credibility. The
task Enter loan decision makes the decision to either grant or refuse the loan
request. Before the loan can be granted the task Bank's liability update checks
that the bank does not exceed its liability limit, and if the limit will not be
exceeded, bank's total liability will be increased by the amount of the loan. If
the loan is granted the task Client's data update adds the information of the
granted loan to client's data, and if the loan request is refused the task Bank's
liability decrement compensates the increment of bank's total liability.

LOAN REQUEST ~ [Bank's [
~" [liability I ~ / ~ liability [

~ ~ [,_update) ~ - - ~ . ~ ~ [decrement]

[[credibility_ I] - evaluation F [~=l~te y

Fig. 6. Execution precedence graph for the workflow Loan request processing.

A bill is a special type of loan which differs from other loans in that the capital
involved is usually smaller, and no pledges are used. The task Bank's liability
update is shared by both the workflow Bill request (Figure 7) and the workfiow
Loan request. In these workfl0ws, however, the task has different execution re-
quirements: in the former it is executed as a traditional ACID transaction and

352

in the latter as a semantically atomic transaction, i.e., it can be compensated by
the task Bank's liability decrement if necessary.

BILL REQUEST [Bank's
/ I liability I

..~ ~ ~ [,update J

rc .o . . , , 1
L,.t.o,,.,o J "

Fig. 7. Execution precedence graph for the worMtow Bill request processing.

The simplified example above was chosen only for illustrative purposes. In
our analysis of real workflow processes, one example being Telecom Finland [28],
we have encountered numerous examples of overlapping workflows. From these
studies it is evident that there are tasks which can be used as part of different
workflows. For example the customer credibility check can be used in several
different service workflows, whenever a new customer is added into the set of
serviced customers (a new mobile unit, a new "101-service" etc.). In principle
the same task can be used, but the credibility requirements might differ due to
the differences in tariffs. The same holds for the customer billing base creation.
In such a case different type of tasks or task variation is needed, because mobile
customer records and practices differ from those of a 101 customer. Otherwise, the
overall process specifications of customer insertion into these service processes
are different and non-overlapping (in fact they are handled by separate units).

The reusability of the tasks is naturally closely linked to their definition. It is
evident that the processes supported by workflows are changing. Consequently
the tasks and their signatures change according to the changing functions of
the organization. Methodically, whenever a new workflow specification is being
developed, the existing tasks are checked and compared against the emerging
needs, and the new workflow is based on a modification of existing ones, assuming
that close enough match can be found. This way the best fitting set of tasks for
the organizational needs will be adopted.

4 Managing overlapping concurrent workflows

4.1 Event/Condition/Action rules and markers
When several related workflows are executed concurrently, the interference of
their tasks has to be controlled. The problem is naturally related to traditional
transaction concurrency control [2]. A trivial approach to this problem (as well
as to all concurrency control problems) would be to treat each workflow as a
single monolithic transaction and require the execution of workflows to be seri-
alizable. The problem is that the workflows are prime examples of long lasting

353

activities which cannot be handled using traditional concurrency control meth-
ods without heavy penalties to the overall system performance. For example, if
straight-forward locking is used for concurrency control, the task Client credibil-
ity would lock client's data until the end of the workflow. Such a lock would then
hold for many days preventing client's data to be updated, which clearly is not
an acceptable alternative. In the other extreme are the s-transaction model [30]
and the Sagas [12], where the local subtransactions (including the compensation
transactions) are run in a serializable manner together with other subtransac-
tions and local transactions, without global level restrictions on the order of the
subtransactions (for more discussion on the topic see [29]).

We use ECA rules [17] and markers as mechanisms to control the interference
caused by several tasks (from different workflows) executing concurrently. ECA
rules with the related marker conditions are defined at the global schema level,
since in the general case it is not possible to control the data modification at
the underlying "legacy system level". In this respect our ECA rule mechanism
is similar to, but more general than predicate locking [10] or escrow locking
[25]. Unlike these locking methods our ECA rules are based on a predefined set
of markers. In principle, the more marker types we have, the more application
semantics we can utilize in our workflow concurrency control. An additional
benefit in using ECA rules is that they conform nicely to the work done in active
database area, and can reuse (at least part of) the implementation mechanisms
available [5].

In general, an ECA rule is of the following form:

DEFINE RULE <rule_name>

CALLED BY <ctask_id>
IF <marker_condition> THEN

EXECUTE <control_operat ion>
ACTIVATED FOR <.orkflow_id,task_id>

For our purposes the ECA rules can be viewed as predicates that should be
satisfied by the system in order to guarantee that the workflows work correctly.
It should be pointed out that ECA rules (unlike 2-phase locking) do not aim at
ensuring that the execution history will be serializable. In managing concurrent
workflows ECA rules are activated by tasks. Therefore the workflow designer
determines the constraints that the tasks have to follow in order to ensure that
the workflow behaves correctly.

In our example bank application case the following ECA rules are introduced:

DEFINE RULE upperlimit(x,1)
CALLED BY <r
IF value(x) > 1 THEN

EXECUTE suspend(ctask_id)

ACTIVATED FOR <workflow_id,task_id>

354

DEFINE RULE bottomlimit(x,l)
CALLED BY <ctask_id>
IF value(x) < 1 THEN
EXECUTE suspend(ctask_id)

ACTIVATED FOR <workflow_id,task_id>

DEFINE RULE value(x,S)
CALLED BY <r :
IF value(x) NOT IN S THEN
EXECUTE suspend(ctask_id)

ACTIVATED FOR <workflow_id,task_id>

DEFINE RULE variation(x,S)
CALLED BY <ctask_id>
IF value(x) NOT IN [x-s,x+s], s IN S
EXECUTE suspend(ctask_id)

ACTIVATED FOR <workflow_id,task_id>

THEN

The ECA rule upperlimit(x,1) prevents other workflows from updating a
data object x such that the new value would be greater than 1. Respectively
bo t t o r a l im i t (x ,1) prevents other workflows of updating x in such a way that
the new value would be smaller than 1.

A v a l u e (x , s) prevents other workflows from updating the data object x
in such a way that the new value would not be included in the value set S.
The value set may be an interval or a finite set of values. Setting a value lock
does not require that the current value of x is included in the value set. This is
necessary if value rules are used as dynamic consistency constraints. A related
rule type is v a r i a t i o n (x , S) , which allows other workflows to update x only if
the new value of x deviates from its old value by the value which is an item of
the set S. In all these ECA rules the execution condition "suspend" implies that
the task attempting to violate the constraint is suspended to wait the removal
of the activation of the rule. This corresponds to traditional locking. ECA rules
offer also other possibilities, for example the execution of the calling task can be
continued with a notification that the attempted modification of the data object
was not allowed.

As an example of the use of an ECA rule consider the workflow Client credib-
ility of Figure 3. The correctness of the workflow requires that data on which the
evaluation is based on should be valid at the end of the execution of the work-
flow. For example, the loans the client has should not have essential increments
during the process. Minor increments could be allowed as they may be resulted
from interest additions. Such a constraint can be forced by activating in the task
Client's data access the rule uppe r l imi t (c l i en t_ loan , 1), where the value of 1
is e.g., five percent greater than the value of client's current loan: The rule may
be deactivated at the end of the workflow or at the end of the workflow which

355

called Client credibility as a subworkflow. In general, the moment when the rules
are deactivated may be a parameter of the task or a workflow call.

4.2 Managing static consistency constraints

As an example of the use of the u p p e r l i m i t ECA rule to maintain a consistency
constraint assume that there is a Consistency constraint stating that a fixed limit
m a x l i a b i l i t y exists for the bank's liability. To ensure this consistency constraint
the workflow designer defines the ECA rule u p p e r l i m i t (bank "s l i a b i l i t y ,
m a x l i a b i l i t y), after which workflows can be processed concurrently as long
as the validity of the constraint is not challenged. Evidently this is a more liberal
approach than testing the validity of the consistency constraint in each transac-
tion program updating bank's liability and setting a traditional "data lock" on
bank's liability. It should be observed that activating an upperlimit rule does not
require reading the state of the object x itself. This is important as the workflow
management system is a global system constructed on top of possibly autonom-
ous applications, and thus has no way of controlling the modification of the data
objects used by the applications.

4.3 Managing dynamic consistency constraints

By activating more than one ECA rule on a single data object it is possible
to utilize more application semantics in the synchronization. For example, by
activating rules u p p e r l i m i t (x , t 0) and v a r i a t i o n (x , i) we can enforce that
data item x can only grow in increments of one from it's current value up to
value 10.

By allowing ECA rules to invoke other ECA rules we can also support dy-
namic consistency constraints. To illustrate this assume that the workflow sys-
tem supports the states (h a n d - i n , i n - p r o c e s s i n g , g r a n t e d , r e j e c t e d) of
the"request" workflows such that the state transitions have dynamic consistency
constraints (Figure 8).

Fig. 8. A graphical presentation of a dynamic consistency constraint.

For example assume that the marker object is l o a n - r e q u e s t - s t a t u s having
the value hand-in. Then the ECA rule va lue with the value set S = {in-processing}

356

would only allow the modification hand-in ---> in-process ing . If such a modi-
fication activates a value rule with the value set consisting of the items granted
and r e j ec t ed , the dynamic consistency constraint stating the intended legal state
transitions is enforced.

4.4 Ensuring compensations

The use of the traditional transaction models would require that a whole workflow
or a workflow task constitutes an atomic unit. In fact we argue that atomicity,
i,e., a workflow being always run into a successful or a non-successful comple-
tion, is in many cases a useful transactional property for users. Unfortunately,
if "too much" autonomy is left for the local legacy systems, atomicity cannot
be fully guaranteed. Some tasks do not, even in principle, have a compensating
task, and even if they had, the compensating task cannot always be completed
without violating the local database consistency. This can easily be illustrated by
a simple example. Let us assume that a task transferring an amount consists of
an action which performs a withdraw on bank account account_9 and an action
which deposits into account account_l the same amount. Assume now that the
withdrawal fails and the deposit succeeds, and immediately after the successful
deposit an action succeeds to withdraw the whole account accoun t J . As a result
the compensation, i.e., the withdrawal from account account_l will not succeed
anymore.

To prevent the above described situations from happening, we can use previ-
ously described ECA rules. For example, one only needs to activate a rule which
prevents withdrawals in the above example case. However, this is overly conser-
vative as withdrawals have to be prevented only if the balance of the account is
less than the amount to be withdrawn. This can be enforced by activating a rule
bot tomlimi t (accoun~a_:t, amount) in the withdrawing task.

5 Task reusability

We have already argued above that workflow task reusability is an essential
feature of real life workflow systems. However, task reusability introduces the
problem that the task variations appearing in different workflows may require
different transactional properties (e.g., isolation or atomicity requirements). This
leads us to consider parametrized transactional properties which reflect the ap-
plication dependent variations in the workflow tasks. We will address the reuse
issues by introducing the concepts of task integration and task execution modes,
implemented by the ECA rule mechanism.

5.1 Task integration

ECA rule based mechanisms are very suitable for providing less restrictive prop-
erties than the traditional ACID-properties. For example, the traditionally used
consistency degrees [14] from degree 0 to degree 3 provide various atomicity and

357

isolation levels, and for each of the levels there is a corresponding ECA rule 3.
Such rules differ in their execution policies described in their action parts. In
particular the "degree 3 consistency" provides traditional serializable and recov-
erable executions, while other levels weaken these criteria.

It should be noted, that theoretically task integration with ECA rules is akin
to multilevel atomicity [20], which weakens the usual notion of serializability
by permitting controlled interleaving among transactions. Multilevel atomicity
in the general transactional context, analogously to our workflow task integra-
tion, is based on the observation that there are different purposes for grouping
the steps into transactions (transaction forms a unit of atomicity, or a unit of
serializability).

A simple example illustrates the notion of task integration. Let us assume
that the basic tasks TI and T2 are units of serializability, while their compound
execution T ~ = T1T~ should only be a unit of atomicity. In our example domain,
banking environment, transfer of money (i.e., withdrawing an account followed
by the deposit of another account) can be seen as a compound transaction T ~.

If the workflow tasks T1 and T2 are units of seriMizability and they are to be
integrated into one unit of serializability, we have to address three things:

- First, as the integrated task T' is a unit of serializability the operations of
the basic tasks T1 and T2 should not cause any conflicts.

- Second, there must be a moment during the execution of T r when both T1
and T2 have an exclusive access to all the data objects they need. Such a
moment corresponds to the traditional serialization point [2] and thus guar-
antees serializable behavior.

- Third, either both T1 and T2 commit or neither of them will.

The first of the above aspects can be enforced by creating an equivalence class
for the task identifiers task_id(T1) and task_id(T2) used in the "ACTIVATED
FOR" component in the ECA rule. For ECA rules it is assumed that the rule
conditions are not checked for equivalent t a skAd identifiers. The second aspect
can be enforced by using markers tel_an_object(T1) and rel_an_object(T2)
which test the signal that the corresponding basic task has acquired access to all
necessary data objects, and is ready to share an object value with others. These
markers are tested in a single ECA-rule a l l_accesses -acqui red(T I) and the
access decision in the action part for other tasks will then depend on the result of
this conjunctive condition. The third condition, commit is handled analogously.

The three most straight-forward task integration choices can be specified e.g.,
by the following specification primitives, which the specification environment then
tranlates into a set of ECA rules:

3 In the most degenerate case ECA rules can be used to implement traditional locking
policies to achieve the various degrees of consistency defined by Gray. However, in
the general case the flexibility of the action part in an ECA rule allows us a more
fine-grained scaJe of consistency degrees.

358

- DEFINE task-atomicity(T1, ..., T,)

- DEFINE taskCserializabili~y(T1, ..., T,)

- DEFINE task- t r ansac ' c ion(T1 , ...,Tn) (corresponding to degree 3 consist-
ency)

Naturally this set of task integration primitives is open in the sense that new
primitives can be introduced if needed, e.g., the integration primitives corres-
ponding degree 1 and degree 2 consistency could be introduced.

5.2 Task e x e c u t i o n m o d e s

Coming back to our example, we have seen that the task Bank's liability update
is included in the workflows Loan request and Bill request. In the former it can
be compensated by the task Bank's liability decrement if necessary. In the latter
it is not executed until the bill is granted, and thus its execution requirement
matches more to that of the traditional transaction without any requirement for
compensation. This example suggests that analogously to the different isolation
modes discussed in the context of basic task integration, a variation task may
also require different modes for atomicity. This situation is analogous with nested
transactions [22, 11, 12] where typically subtransactions have to satisfy ACID
properties when executed alone, but the nested transaction does not necessary
have to be fully isolated.

To capture the facility of varying execution requirements of a task we intro-
duce the following execution modes:

- DEFINE serialization-mode(T)

- DEFINE prepare-mode(T)

- DEFINE compensation-mode(T)

- D E F I N E i n d e p e n d e n t - m o d e (T)

The serialization mode is the strictest way to execute a task. A task is
in a serialization mode if it is in a prepared mode [14] and it has not released
access to any data object it requires. If several tasks T1, T2, ...Tn are executed
in serialization mode then the commit protocol (e.g., the 2PC-protocol [2]) im-
plies that this set of tasks can be combined into one transaction. Executing the
transactions T1, T2,...Tn in the p repare mode ensures only the atomicity of the
combined task. In many workflow application domains even prepare mode is too
strict or cannot be used as no commit protocol is available (e.g., due to local
autonomy). In such cases a more liberal way to execute a task is to use ap-
plication semantics and execute a task in compensat ion mode , i.e., to enforce
semantic atomicity. Compensation mode is particularly useful in the execution of
distributed workflows as it allows one to preserve the autonomy of local systems.
Executing a task in a independent mode means that no assurance of ACID prop-
erties of a task execution is needed. In such cases it is assumed that the workflow
itself restarts the failed task.

359

6 Conclusions

Modern business applications are usually composed of independently designed
components which are accessed concurrently by a large set of users. Workflow
techniques can be seen as techniques to coordinate and streamline such business
processes. We have discussed here several key aspects in the development of
large scale workflow management systems based on the notion of transactional
workflows, where the application execution has to conform to a set of correctness
constraints derived from the application domain.

One salient feature of a real workflow system is its dynamicity. New work-
flow definitions and the modifications of existing workflow specifications occur
frequently. We argue that to avoid redundant design and maintenance it should
be possible to produce new specifications by using existing specifications, i.e.,
workflow task reusability should be possible. Consequently management of over-
lapping workflows, i.e., workflows that share one or more tasks, is an impor tant
issue in transactional workflows. Our work presented relies on the observation
that there is no reason to bind the specification of a task to any particular set
of transactional properties (atomicity and isolation requirements) since these re-
quirements may vary in different workflows. Consequently in our approach trans-
actional properties are not fixed until a specification is linked to a workflow.

Our goal has been to address issues related to concurrent execution of over-
lapping workflows and to provide concepts for managing tasks with transactional
properties in such contexts. In particular we have introduced the novel idea of
parametrized transactional properties of task specifications with the related no-
tions of task integration and task execution modes. Our approach is based on
the use of the ECA rule mechanism at the global schema level in the Trans-
Coop architectural framework described in Section 2. Evident topics for future
work are twofold: formalization of the parametrization concepts introduced, and
application of the techniques in the real life cases available in the TransCoop
project.

References

1. M. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and enforcing in-
tertask dependencies. In The 19th International Conference on VLDB, 1993.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

3. A. Biliris, S. Dar, N. Gehani, H. Jagadish, and K. Ramamritham. Asset: A system
for supporting extended transactions. SIGMOD Record, 23(2), June 1994.

4. Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, and G. Weikum. Merging
application-centric and data-centric approaches to support transaction-oriented
multi-system work_flows. Sigmod Record, 22(3), September 1993.

5. C. Bussler and S. Jablonski. Implementing agent coordination for workflow man-
agement systems using active database systems. In S. Chakravarthy and S. Urban,
editors, IEEE Proceedings Research Interests in Data Engineering: Active Database
Systems (RIDE'94), 1994.

360

6. U. Dayal, M. Hsu, and R. Ladin. A transaction model for long-running activities.
In The 17th International Conference on VLDB, 1991.

7. U. Dayl, M. Hsu, and R. Ladin. Organizing long-running activities with triggers
and transactions: In ACM SIGMOD International Conference on Management of
Data, 1990.

8. R. de By, A. Lehtola, O. Pihlajamaa, J. Veijalainen, and J. W~ch. A reference
architecture for cooperative transaction processing systems. Technical Report 1694,
Technical Research Centre of Finland, 1995.

9. A. Elmagarmid, Y. Leu, W, Litwin, and M. Rusinkiewicz. A multibase transaction
model for interbase. In The 16th International International Conference on VLDB,
1990.

10. K.P. Eswaran, J.N. Gray, P.A. Lorie, and I.L. Traiger. The notions of consistency
and predicate locks in a database system. Communications of the ACM, 19(11),
November 1976.

11. H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Modefing
long-running activities as nested sagas. IEEE Data Engineering Bulletin, 14(1),
March 1991.

12. H. Garcia-Molina and K. Salem. Sagas. In ACM SIGMOD International Confer-
ence on Management of Data, 1987.

13. D. Georgakopoulos and M. Hornick. A framework for enforceable specification of
extended transaction models and transactional workflows. Journal of Intelligent
and Cooperative Information Systems, September 1994.

14. J. Gray and A. Relater. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

15. W. Harrison, H. Ossher, and P. Sweeney. Coordinating concurrent development.
In Proceedings of the Conference on Computer-Supported Cooperative Work, 1990.

16. K. Jensen. Colored Petri Nets. Springer-Verlag, 1991.
17. S. Joosten. Trigger modefing for workflow analysis. In Proceedings of CON'94:

Workflow Management, Challenges, Paradigms and Products, 1994.
18. G. Kaiser. Flexible transaction model for software engineering. In Proceedings of

Sixth International Conference on Data Engineering, 1990.
19. G. Kaiser and C. Pu. Dynamic restructuring of transactions. In A.K. Elmagarmid,

editor, Database Transaction Models for Advanced Applications, chapter 8. Morgan
Kaufmarm Publishers, 1992.

20. N.A. Lynch. Multilevel atomicity - a new correctness criteria for database concur-
rency control. A CM Transactions on Database Systems, 8(4), December 1983.

21. C. Mohan, G. Alonso, R. GiinthSr, and M. Kamath. Exotica: A research perspect-
ive on workflow management systems. Bulletin of the IEEE Technical Committee
on Data Engineering, 18(1), March 1995.

22. J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. Phi) thesis, Massachusetts Institute of Technology, 1985.

23. K. Narayanaswamy and K. Goldman. "Lazy" consistency: A basis for cooperative
software development. In Proceedings of the Conference on Computer-Supported
Cooperative Work, 1992.

24. M. Nodine, S. Ramaswamy, and S. Zdonik. A cooperative transaction model for
design databases. In A.K. Elmagarmid, editor, Database Transaction Models]or
Advanced Applications, chapter 3. Morgan Kaufmarm Publishers, 1992.

25. P.E. O'neil. The escrow transactional method. ACM Transactions on Database
Systems, 11(4), December 1986.

361

26. C. Pu and N. Hutchinson. Split transactions for open ended activities. In The lSth
International Conference on VLDB, 1988.

27. J. Tang and J. Veijalainen. Enforcing inter-task dependencies in transactional
workflows. In Proceedings of the the Third International Con.ference on Cooperative
Information Systems (CoopIS-95), 1995.

28. T. Tesch and P. Verkoulen. Transcoop deliverable ii.2. Technical Report
TC/REP/GMD/D2-2/207, ESPRIT Basic Research Action 8012, 1995.

29. J. Veijalainen. Heterogeneous multilevel transaction management with multiple
subtransactions. In Proceedings of the DEXA '93, 1993.

30. J. Veijalainen, F. Eliassen, and B. Holtkamp. The s-transaction model. In A.K.
Elmagarmid, editor, Database Transaction Models .for Advanced Applications,
chapter 12. Morgan Kaufmann Publishers, 1992.

31. W. W~ichter. Contracts: A means for improving reliability in distributed comput-
ing. In IEEE COMPCON, 1991.

32. H. W~ihter and A. Reuter. The contract model. In A.K. Elmagarmid, editor, Data-
base Transaction Models .for Advanced Applications, chapter 7. Morgan Kaufmann
Publishers, 1992.

33. G. Weikum and H. Schek. Concepts and applications of multilevel transactions
and open nested transactions. In A.K. Elmagarmid, editor, Database Transaction
Models .for Advanced Applications, chapter 13. Morgan Kaufmann Publishers, 1992.

