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A b s t r a c t .  Workflow management techniques have become an intens- 
ive area of research in information systems. In large scale worldlow sys- 
tems modularity and reusability of existing task structures with con- 
text dependent (parametrized) task execution are essential components 
of a successful application. In this paper we study the issues related to 
management of overlapping transactional workflows, i.e., workflows that 
share component tasks and thus avoid redundancy in design. The notion 
of parametrized transactional properties of workflow tasks is introduced 
and analyzed, and the underlying implementation mechanism based on 
Event/Condition/Action (ECA) rules is discussed. 

1 I n t r o d u c t i o n  

Workflow management techniques have become one of the most exciting areas of 
research in information systems. The underlying concepts have been around in 
various forms for a long time, however, only recently the know how to implement 
commercial systems has been available. 

Modern business applications are usually composed of independently designed 
components which are accessed concurrently by a large set of users. Workflow 
management can be seen as central techniques to coordinate and streamline busi- 
ness processes, which themselves are represented as workflows. On the other hand 
current organizational investments into data processing equipment and software 
are significant, and there is a growing interest to benefit as long as possible from 
the existing "legacy systems". In large scale workflow systems with 10,000 users 
linking together several thousand geographically distributed sites, modular i ty  
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of design, reusability of existing task structures and context dependent (para- 
metrized) task execution are essential components of a successful application. 
It is within this framework of efficient business process re-engineering that our 
research is inscribed. 

Mohan et el [21] listed several key aspects in large scale workflow manage- 
ment design: failure handling, availability, navigational flexibility, replication and 
distributed coordination. Such aspects are clearly in the realm of transactional 
workflows where the application execution has to conform to a set of correctness 
constraints derived from the application domain. Since workflow management 
systems have become the top layer in the corporate information system architec- 
ture, we would like to add to this list of issues modularity and task reusability 
and focus here on mechanisms achieving these goals. 

Workflow task reusability is an essential feature of real life workflow systems, 
and should be taken into account also in the development of such systems. Re- 
usability allows one to avoid redundant design, which is an important aspect as 
large workflow applications are typically defined by combining existing applica- 
tions. Consequently management of overlapping workflows, i.e., workflows that 
share one or  more tasks, is an important topic to be addressed in transactional 
workflows. 

Workflow management research is clearly related to the work done in devel- 
oping advanced transaction models, especially for cooperative environments. Co- 
operative transaction models have been discussed in [18, 19, 26, 24, 15, 23] in the 
centralized case, and in order to better match the requirements of various mod- 
ern database applications, more general transaction frameworks are developed in 
[9, 22, 33]. The ASSET system [3] provides transaction primitives for the spe- 
cification of extended and cooperative transaction models. Some of the recent 
work also makes direct connections between workflow management systems and 
advanced transaction processing: workflows are treated as extended transactions 
in DOM systems [4, 13], and the Contract model [31, 32] provides task reusability 
and application specific concurrency control. 

In this paper we will study the design of workflow management systems that 
support modular, overlapping workflows. In order to achieve this goal of increased 
task reusability we introduce task execution modes and the notion of task integ- 
ration, i.e., we rely on context-dependent, parametrized transactional properties 
of the workflow tasks. By using different execution modes it is possible to com- 
bine tasks located at different sites to compose appropriate transactional units. 
In addition, by task integration we can bind together tasks executed at the same 
site to comprise appropriate units of atomicity or isolation. In this way we in- 
corporate workflow notions similar to multilevel atomicity [20], and increase task 
reusability and workflow system throughput. As far as we are aware of, this 
notion of parametrized transactional properties to increase reusability of tasks 
has not been addressed before. The mechanisms to implement such properties 
are based on Event/Condition/Action rules (ECA rules) [5] which are defined 
on the global workflow schema (i.e., task parameters). The ECA rules are used 
to specify which synchroniztion operations are needed. Such rules are given as 
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part of the workflow specification, and used by the global level workflow manager 
module during the execution phase. 

The remainder of this paper is organized as follows. In Section 2 we will in- 
troduce the components of workflow specification, and describe the underlying 
workflow system architecture. In Section 3 we illustrate our concepts through 
an extensive example by considering five workflows in a banking domain. These 
workflows are used through the paper as an example to demostrate our approach. 
Section 4 discusses the management of concurrent execution of interfering work- 
flow tasks with ECA rules. The use of parametrized transactional properties for 
task execution modes and task integration issues are introduced in Section 5. 
Section 6 concludes the discussion. 

2 T h e  T r a n s C o o p  W o r k f l o w  a r c h i t e c t u r e  

2.1 W o r k f l o w  spec i f i ca t ion  a nd  task  v a r i a t i o n s  

Full specification of a workflow (scenario) is a complex task.For our purposes 
only the following workflow specification components need to be described: 

- The tasks 7~ involved in a particular workflow. 
- The transactional requirements of the workflow. 
- The data flow between the workflow tasks. 
- The execution structure of the workflow. 

In this paper we are focusing on the first two aspects since they are directly 
related to task reusability. Data flow between tasks is determined by specifying 
the input and output parameters of the tasks, and the execution structure specifies 
the ordering constraints for the executions of the tasks, e.g., a task may not 
begin before a particular previously started task commits. Such constraints can 
be specified e.g., by triggers [7, 6] of which the ECA rules are a special case, by 
Petri nets [16] or by finite state automaton [1]. In the following, we will make 
no assumptions of the method the execution structure is specified with. For a 
detailed discussion on inter-task dependency enforcement in workflow context 
see [27]. 

In our terminology a task defines some unit of work to be done, which can also 
be shared by several different workflows. A task may be specified in a number of 
ways. However, we model only the aspects which are relevant from task's reusab- 
ility point of view. In order to maximize task reusability a task is allowed to have 
several task variations. Task reusability and task variations can be illustrated by 
the component structure given in Figure 1. 

The component structure consists of the two levels: workflow level and com- 
ponent level. The overlapping tasks in the component set represent the variations 
of tasks. The tasks of a workflow comprise a subset of the overall component set. 

We make the distinction between a basic task and task variations. Basic tasks 
can be used by the workflow designer to integrate tasks in order to compose 
appropriate transactional units (e.g., for atomicity or isolation). This issue will 
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LEVEL 

Fig. 1. Work/tow component structure. 

be discussed more detail in Section 5.1. A task variation is a modification of a task 
which matches better the requirements of a particular workflow. Task variation 
can be seen as a logical concept in the sense that the variation is specified as a 
parameter in the task call itself. In principle a task variation can be understood 
as workflow's view of the basic task, and it is analogous to view definitions in 
a traditional database setting. In addition task variations can also be used to 
compose appropriate units of atomicity or isolation. As an example consider a 
case where two tasks located at different sites will be integrated to compose 
a unit of atomicity. In such situation one uses task variations that provide the 
prepared state as an external state. We will return to these execution mode issues 
in Section 5.2. 

2.2 A r c h i t e c t u r a l  considerations 

Our architectural views for the workflow environment are influenced by the gen- 
eral reference architecture under development in the TransCoop project [8]. The 
TransCoop architecture is intended to provide a platform for transaction manage- 
ment support for cooperative applications in general. The architecture consists 
of both a specification environment (TSE) and a run-time environment (TRE) 
which use the services of an object server (TOS). Since we are concerned with 
a particular application domain, workflow management, the architecture presen- 
ted is more specific than the original generic architecture. The overall modified 
architecture is illustrated in Figure 2. 

We assume that the workflow environment consists of a global and a local 
level. The global level supports the overlapping workflows whereas the local level 
supports existing legacy applications and databases. Here we focus on the global 
level workflows only, and discuss briefly those architectural issues that are related 
to the topic of the paper, specification and execution of concurrent overlapping 
workflows. For more detailed discussion on architectural questions see [8]. 

A workflow designer specifies system supported workflows as well as the 
consistency constraints of the system. The Workflow Specification Environment 
(WSE) analyzes the specifications to determine whether such a workflow can be 
implemented. For example, if the specification includes a reusable task but such 



349 

Workflo~ Designer Applic~ti0n users 

Workflow 
Specification 
Environment 
(WSE) 

Transcoop 
Runtime 
Environment 
ORE) 

J TransCoop l Object Workftow Specification I! ECA 
Dictionary (WSD) rule base Server (TOS) (ECARB) 

u-tl t -  , 
(UA) A~ent (REA) [ 

Execution ] 

I 

Cooperation Manager (CM) [ 
I 

TransCoop Transaction Management ] 
I Support System (TTMSS) 

Object Storage I 
Interface Mapper (OSIM) 

I 
Database 
System (DB) 

Fig. 2. Workflow system architecture. 

a task is not found from the Workflow specification dictionary stored in the TOS 
object server, then the mismatch is reported to the workflow designer. If there 
are no mismatches the specification is stored in the Workflow Specification Dic- 
tionary. In addition to the individual workflow specifications a workflow designer 
can specify consistency constraints of the system. To enforce such a constraint 
WSE compiles the necessary set of Event /Condit ion/Act ion (ECA) rules which 
are stored in the ECA rule base in the object server. In a distributed case the 
ECA rules (and the possible locking data structures) are stored at the sites where 
the tasks in question are executed. 

The User Agent (UA) module provides the interface between the users and 
the system. A user may be a human, an application program or a remote work- 
flow or task request. When it receives a workflow cMl, it generates a ~orkflow 
specification based on the Workflow Specification Dictionary. Then it sends non- 
local task requests to the UA's of the appropriate sites via the Remote Execu- 
tion Agent ([lEA). Local workflow specifications are passed to the Cooperation 
Manager (CM), which is responsible that the execution is compatible with its 
specification. WM uses the services of the TransCoop Transaction Management 
Support System (TTMSS). It can enforce correct sequencing of the tasks. 

To ensure correct interleaving of concurrent workflows and that predefined 
constraints are not violated, the Cooperation Manager uses the ECA-rule base 
generated in the specification phase. If CM will not delay the operation or a task 

the necessary operations will be performed by the TTMSS.  
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3 A n  e x a m p l e  o f  a s e t  o f  o v e r l a p p i n g  w o r k f l o w s  

As an illustrative example we will consider the following five workflows in a bank- 
ing environment: Client Credibility, Credit Account Request, Credit Card Request, 
Loan Request and Bill request. In the figures describing these workflows we have 
denoted subworkfiows (i.e., the tasks which may also be executed as an independ- 
ent workfiow) by double outlines, and shared tasks by rounded rectangles (i.e., 
tasks that can be included as components in more than one workflow). 

The workflow Client Credibility can be executed as an independent workflow 
or as a subworkflow in other workflows. Its modular task structure and task 
execution ordering constraints are presented in Figure 3. 

~..~lEnmdient ~___~lClien,: s ~ / ~  ....... 

Holding J 
Fig. 3. Execution precedence graph for the workflow Client Credibility. 

The task Enter client information accepts the information of the client. Based 
on this information the task Client's data access retrieves from the bank's data- 
base the relevant client information. This information includes the amount of the 
loan the client has in the bank, the names of the subsidiaries and the holding com- 
panies where the client has liabilities. If such liabilities exist the subsidiaries or 

holding companies are contacted to get their assessment of the client. These are 
performed by the tasks Subsidiaries contacts and Holding companies' contacts. 
The task Client's credit evaluation decides the credibility of the client. 

The workfiows Credit account request in Figure 4 and Credit card request in 
Figure 5 have the subworkflow Client Credibility as a second task, and share the 
last task Client data update which updates client's data by the given limit if 
the request has been accepted. In practice, however, these workflows are quite 
different in nature as the task Enter credit account decision is processed by 
the bank while the task Enter credit card decision is processed by the credit 
company. Hence, the former is typically a short duration activity, while the latter 
tends to become a long lasting workflow. 

The workflow Loan request processing is presented in Figure 6. The first task 
Enter loan request accepts the amount and the information of the client. Based on 
the client information the subworkflow Client Credibility is processed which gives 
input for the task Risk evaluation. The risk evaluation task computes the interest 
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Fig. 4. Execution precedence graph for the workflow Credit account request. 
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Fig. 5. Execution precedence graph for the workflow Credit card request. 

for the loan request based on the amount of the loan and client credibility. The 
task Enter loan decision makes the decision to either grant or refuse the loan 
request. Before the loan can be granted the task Bank's liability update checks 
that the bank does not exceed its liability limit, and if the limit will not be 
exceeded, bank's total liability will be increased by the amount of the loan. If 
the loan is granted the task Client's data update adds the information of the 
granted loan to client's data, and if the loan request is refused the task Bank's 
liability decrement compensates the increment of bank's total liability. 

LOAN REQUEST ~ [ Bank's [ 
~" [ liability I ~  / ~  liability [ 

~ ~  [,_update ) ~ - - ~ . ~ ~  [decrement] 

[[ credibility_ I] - evaluation F [~=l~te y 

Fig. 6. Execution precedence graph for the workflow Loan request processing. 

A bill is a special type of loan which differs from other loans in that the capital 
involved is usually smaller, and no pledges are used. The task Bank's liability 
update is shared by both the workflow Bill request (Figure 7) and the workfiow 
Loan request. In these workfl0ws, however, the task has different execution re- 
quirements: in the former it is executed as a traditional ACID transaction and 
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in the latter as a semantically atomic transaction, i.e., it can be compensated by 
the task Bank's liability decrement if necessary. 

BILL REQUEST [Bank's ....... 
/ I liability I 

..~ ~ ~ [,update J 

rc .o . . , ,  .... 1 
L,.t.o,,.,o J " 

Fig. 7. Execution precedence graph for the worMtow Bill request processing. 

The simplified example above was chosen only for illustrative purposes. In 
our analysis of real workflow processes, one example being Telecom Finland [28], 
we have encountered numerous examples of overlapping workflows. From these 
studies it is evident that there are tasks which can be used as part of different 
workflows. For example the customer credibility check can be used in several 
different service workflows, whenever a new customer is added into the set of 
serviced customers (a new mobile unit, a new "101-service" etc.). In principle 
the same task can be used, but the credibility requirements might differ due to 
the differences in tariffs. The same holds for the customer billing base creation. 
In such a case different type of tasks or task variation is needed, because mobile 
customer records and practices differ from those of a 101 customer. Otherwise, the 
overall process specifications of customer insertion into these service processes 
are different and non-overlapping (in fact they are handled by separate units). 

The reusability of the tasks is naturally closely linked to their definition. It is 
evident that the processes supported by workflows are changing. Consequently 
the tasks and their signatures change according to the changing functions of 
the organization. Methodically, whenever a new workflow specification is being 
developed, the existing tasks are checked and compared against the emerging 
needs, and the new workflow is based on a modification of existing ones, assuming 
that close enough match can be found. This way the best fitting set of tasks for 
the organizational needs will be adopted. 

4 Managing overlapping concurrent workflows 

4.1 Event/Condition/Action rules and markers 
When several related workflows are executed concurrently, the interference of 
their tasks has to be controlled. The problem is naturally related to traditional 
transaction concurrency control [2]. A trivial approach to this problem (as well 
as to all concurrency control problems) would be to treat each workflow as a 
single monolithic transaction and require the execution of workflows to be seri- 
alizable. The problem is that the workflows are prime examples of long lasting 
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activities which cannot be handled using traditional concurrency control meth- 
ods without heavy penalties to the overall system performance. For example, if 
straight-forward locking is used for concurrency control, the task Client credibil- 
ity would lock client's data until the end of the workflow. Such a lock would then 
hold for many days preventing client's data to be updated, which clearly is not 
an acceptable alternative. In the other extreme are the s-transaction model [30] 
and the Sagas [12], where the local subtransactions (including the compensation 
transactions) are run in a serializable manner together with other subtransac- 
tions and local transactions, without global level restrictions on the order of the 
subtransactions (for more discussion on the topic see [29]). 

We use ECA rules [17] and markers as mechanisms to control the interference 
caused by several tasks (from different workflows) executing concurrently. ECA 
rules with the related marker conditions are defined at the global schema level, 
since in the general case it is not possible to control the data modification at 
the underlying "legacy system level". In this respect our ECA rule mechanism 
is similar to, but more general than predicate locking [10] or escrow locking 
[25]. Unlike these locking methods our ECA rules are based on a predefined set 
of markers. In principle, the more marker types we have, the more application 
semantics we can utilize in our workflow concurrency control. An additional 
benefit in using ECA rules is that they conform nicely to the work done in active 
database area, and can reuse (at least part of) the implementation mechanisms 
available [5]. 

In general, an ECA rule is of the following form: 

DEFINE RULE <rule_name> 

CALLED BY <ctask_id> 
IF <marker_condition> THEN 

EXECUTE <control_operat ion> 
ACTIVATED FOR <.orkflow_id,task_id> 

For our purposes the ECA rules can be viewed as predicates that should be 
satisfied by the system in order to guarantee that the workflows work correctly. 
It should be pointed out that ECA rules (unlike 2-phase locking) do not aim at 
ensuring that the execution history will be serializable. In managing concurrent 
workflows ECA rules are activated by tasks. Therefore the workflow designer 
determines the constraints that the tasks have to follow in order to ensure that 
the workflow behaves correctly. 

In our example bank application case the following ECA rules are introduced: 

DEFINE RULE upperlimit(x,1) 
CALLED BY <r 
IF value(x) > 1 THEN 

EXECUTE suspend(ctask_id) 

ACTIVATED FOR <workflow_id,task_id> 
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DEFINE RULE bottomlimit(x,l) 
CALLED BY <ctask_id> 
IF value(x) < 1 THEN 
EXECUTE suspend(ctask_id) 

ACTIVATED FOR <workflow_id,task_id> 

DEFINE RULE value(x,S) 
CALLED BY <r : 
IF value(x) NOT IN S THEN 
EXECUTE suspend(ctask_id) 

ACTIVATED FOR <workflow_id,task_id> 

DEFINE RULE variation(x,S) 
CALLED BY <ctask_id> 
IF value(x) NOT IN [x-s,x+s], s IN S 
EXECUTE suspend(ctask_id) 

ACTIVATED FOR <workflow_id,task_id> 

THEN 

The ECA rule upperlimit(x,1) prevents other workflows from updating a 
data object x such that the new value would be greater than 1. Respectively 
bo t t o r a l im i t (x ,1 )  prevents other workflows of updating x in such a way that 
the new value would be smaller than 1. 

A v a l u e ( x , s )  prevents other workflows from updating the data object x 
in such a way that the new value would not be included in the value set S. 
The value set may be an interval or a finite set of values. Setting a value lock 
does not require that the current value of x is included in the value set. This is 
necessary if value rules are used as dynamic consistency constraints. A related 
rule type is v a r i a t i o n ( x , S ) ,  which allows other workflows to update x only if 
the new value of x deviates from its old value by the value which is an item of 
the set S. In all these ECA rules the execution condition "suspend" implies that 
the task attempting to violate the constraint is suspended to wait the removal 
of the activation of the rule. This corresponds to traditional locking. ECA rules 
offer also other possibilities, for example the execution of the calling task can be 
continued with a notification that the attempted modification of the data object 
was not allowed. 

As an example of the use of an ECA rule consider the workflow Client credib- 
ility of Figure 3. The correctness of the workflow requires that data on which the 
evaluation is based on should be valid at the end of the execution of the work- 
flow. For example, the loans the client has should not have essential increments 
during the process. Minor increments could be allowed as they may be resulted 
from interest additions. Such a constraint can be forced by activating in the task 
Client's data access the rule uppe r l imi t  ( c l i en t_ loan ,  1), where the value of 1 
is e.g., five percent greater than the value of client's current loan: The rule may 
be deactivated at the end of the workflow or at the end of the workflow which 
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called Client credibility as a subworkflow. In general, the moment when the rules 
are deactivated may be a parameter of the task or a workflow call. 

4.2 Managing static consistency constraints 

As an example of the use of the u p p e r l i m i t  ECA rule to maintain a consistency 
constraint assume that there is a Consistency constraint stating that a fixed limit 
m a x l i a b i l i t y  exists for the bank's liability. To ensure this consistency constraint 
the workflow designer defines the ECA rule u p p e r l i m i t  (bank "s l i a b i l i t y ,  
m a x l i a b i l i t y  ), after which workflows can be processed concurrently as long 
as the validity of the constraint is not challenged. Evidently this is a more liberal 
approach than testing the validity of the consistency constraint in each transac- 
tion program updating bank's liability and setting a traditional "data lock" on 
bank's liability. It should be observed that activating an upperlimit rule does not 
require reading the state of the object x itself. This is important  as the workflow 
management system is a global system constructed on top of possibly autonom- 
ous applications, and thus has no way of controlling the modification of the data 
objects used by the applications. 

4.3 Managing dynamic consistency constraints 

By activating more than one ECA rule on a single data object it is possible 
to utilize more application semantics in the synchronization. For example, by 
activating rules u p p e r l i m i t ( x , t 0 )  and v a r i a t i o n ( x ,  i )  we can enforce that 
data item x can only grow in increments of one from it's current value up to 
value 10. 

By allowing ECA rules to invoke other ECA rules we can also support  dy- 
namic consistency constraints. To illustrate this assume that the workflow sys- 
tem supports the states ( h a n d - i n ,  i n - p r o c e s s i n g ,  g r a n t e d ,  r e j e c t e d )  of 
the"request" workflows such that the state transitions have dynamic consistency 
constraints (Figure 8). 

Fig. 8. A graphical presentation of a dynamic consistency constraint. 

For example assume that the marker object is l o a n - r e q u e s t - s t a t u s  having 
the value hand-in.  Then the ECA rule va lue  with the value set S = {in-processing} 
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would only allow the modification hand-in ---> in-process ing .  If such a modi- 
fication activates a value rule with the value set consisting of the items granted 
and r e j ec t ed ,  the dynamic consistency constraint stating the intended legal state 
transitions is enforced. 

4.4 Ensuring compensations 

The use of the traditional transaction models would require that a whole workflow 
or a workflow task constitutes an atomic unit. In fact we argue that atomicity, 
i,e., a workflow being always run into a successful or a non-successful comple- 
tion, is in many cases a useful transactional property for users. Unfortunately, 
if "too much" autonomy is left for the local legacy systems, atomicity cannot 
be fully guaranteed. Some tasks do not, even in principle, have a compensating 
task, and even if they had, the compensating task cannot always be completed 
without violating the local database consistency. This can easily be illustrated by 
a simple example. Let us assume that a task transferring an amount consists of 
an action which performs a withdraw on bank account account_9 and an action 
which deposits into account account_l the same amount. Assume now that the 
withdrawal fails and the deposit succeeds, and immediately after the successful 
deposit an action succeeds to withdraw the whole account accoun t J .  As a result 
the compensation, i.e., the withdrawal from account account_l will not succeed 
anymore. 

To prevent the above described situations from happening, we can use previ- 
ously described ECA rules. For example, one only needs to activate a rule which 
prevents withdrawals in the above example case. However, this is overly conser- 
vative as withdrawals have to be prevented only if the balance of the account is 
less than the amount to be withdrawn. This can be enforced by activating a rule 
bot tomlimi t  (accoun~a_:t, amount) in the withdrawing task. 

5 Task reusability 

We have already argued above that workflow task reusability is an essential 
feature of real life workflow systems. However, task reusability introduces the 
problem that the task variations appearing in different workflows may require 
different transactional properties (e.g., isolation or atomicity requirements). This 
leads us to consider parametrized transactional properties which reflect the ap- 
plication dependent variations in the workflow tasks. We will address the reuse 
issues by introducing the concepts of task integration and task execution modes, 
implemented by the ECA rule mechanism. 

5.1 Task integration 

ECA rule based mechanisms are very suitable for providing less restrictive prop- 
erties than the traditional ACID-properties. For example, the traditionally used 
consistency degrees [14] from degree 0 to degree 3 provide various atomicity and 
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isolation levels, and for each of the levels there is a corresponding ECA rule 3. 
Such rules differ in their execution policies described in their action parts. In 
particular the "degree 3 consistency" provides traditional serializable and recov- 
erable executions, while other levels weaken these criteria. 

It should be noted, that theoretically task integration with ECA rules is akin 
to multilevel atomicity [20], which weakens the usual notion of serializability 
by permitting controlled interleaving among transactions. Multilevel atomicity 
in the general transactional context, analogously to our workflow task integra- 
tion, is based on the observation that there are different purposes for grouping 
the steps into transactions (transaction forms a unit of atomicity, or a unit of 
serializability). 

A simple example illustrates the notion of task integration. Let us assume 
that the basic tasks TI and T2 are units of serializability, while their compound 
execution T ~ = T1T~ should only be a unit of atomicity. In our example domain, 
banking environment, transfer of money (i.e., withdrawing an account followed 
by the deposit of another account) can be seen as a compound transaction T ~. 

If the workflow tasks T1 and T2 are units of seriMizability and they are to be 
integrated into one unit of serializability, we have to address three things: 

- First, as the integrated task T' is a unit of serializability the operations of 
the basic tasks T1 and T2 should not cause any conflicts. 

- Second, there must be a moment during the execution of T r when both T1 
and T2 have an exclusive access to all the data objects they need. Such a 
moment corresponds to the traditional serialization point [2] and thus guar- 
antees serializable behavior. 

- Third, either both T1 and T2 commit or neither of them will. 

The first of the above aspects can be enforced by creating an equivalence class 
for the task identifiers task_id(T1) and task_id(T2) used in the "ACTIVATED 
FOR" component in the ECA rule. For ECA rules it is assumed that the rule 
conditions are not checked for equivalent t a skAd  identifiers. The second aspect 
can be enforced by using markers tel_an_object(T1) and rel_an_object(T2) 
which test the signal that the corresponding basic task has acquired access to all 
necessary data objects, and is ready to share an object value with others. These 
markers are tested in a single ECA-rule a l l_accesses -acqui red(T I) and the 
access decision in the action part for other tasks will then depend on the result of 
this conjunctive condition. The third condition, commit is handled analogously. 

The three most straight-forward task integration choices can be specified e.g., 
by the following specification primitives, which the specification environment then 
tranlates into a set of ECA rules: 

3 In the most degenerate case ECA rules can be used to implement traditional locking 
policies to achieve the various degrees of consistency defined by Gray. However, in 
the general case the flexibility of the action part in an ECA rule allows us a more 
fine-grained scaJe of consistency degrees. 
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- DEFINE task-atomicity(T1, ..., T,) 

- DEFINE taskCserializabili~y(T1, ..., T,) 

- DEFINE task- t r ansac ' c ion(T1 ,  ...,Tn) (corresponding to degree 3 consist- 
ency) 

Naturally this set of task integration primitives is open in the sense that new 
primitives can be introduced if needed, e.g., the integration primitives corres- 
ponding degree 1 and degree 2 consistency could be introduced. 

5.2 Task  e x e c u t i o n  m o d e s  

Coming back to our example, we have seen that the task Bank's liability update 
is included in the workflows Loan request and Bill request. In the former it can 
be compensated by the task Bank's liability decrement if necessary. In the latter 
it is not executed until the bill is granted, and thus its execution requirement 
matches more to that of the traditional transaction without any requirement for 
compensation. This example suggests that analogously to the different isolation 
modes discussed in the context of basic task integration, a variation task may 
also require different modes for atomicity. This situation is analogous with nested 
transactions [22, 11, 12] where typically subtransactions have to satisfy ACID 
properties when executed alone, but the nested transaction does not necessary 
have to be fully isolated. 

To capture the facility of varying execution requirements of a task we intro- 
duce the following execution modes:  

- DEFINE serialization-mode(T) 

- DEFINE prepare-mode(T) 

- DEFINE compensation-mode(T) 

- D E F I N E  i n d e p e n d e n t - m o d e ( T )  

The serialization mode is the strictest way to execute a task. A task is 
in a serialization mode if it is in a prepared mode [14] and it has not released 
access to any data object it requires. If several tasks T1, T2, ...Tn are executed 
in serialization mode then the commit protocol (e.g., the 2PC-protocol [2]) im- 
plies that this set of tasks can be combined into one transaction. Executing the 
transactions T1, T2,...Tn in the p repare  mode ensures only the atomicity of the 
combined task. In many workflow application domains even prepare mode is too 
strict or cannot be used as no commit protocol is available (e.g., due to local 
autonomy). In such cases a more liberal way to execute a task is to use ap- 
plication semantics and execute a task in compensat ion mode , i.e., to enforce 
semantic atomicity. Compensation mode is particularly useful in the execution of 
distributed workflows as it allows one to preserve the autonomy of local systems. 
Executing a task in a independent  mode means that no assurance of ACID prop- 
erties of a task execution is needed. In such cases it is assumed that the workflow 
itself restarts the failed task. 
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6 Conclusions 

Modern business applications are usually composed of independently designed 
components which are accessed concurrently by a large set of users. Workflow 
techniques can be seen as techniques to coordinate and streamline such business 
processes. We have discussed here several key aspects in the development of 
large scale workflow management systems based on the notion of transactional 
workflows, where the application execution has to conform to a set of correctness 
constraints derived from the application domain. 

One salient feature of a real workflow system is its dynamicity. New work- 
flow definitions and the modifications of existing workflow specifications occur 
frequently. We argue that to avoid redundant design and maintenance it should 
be possible to produce new specifications by using existing specifications, i.e., 
workflow task reusability should be possible. Consequently management of over- 
lapping workflows, i.e., workflows that share one or more tasks, is an impor tant  
issue in transactional workflows. Our work presented relies on the observation 
that there is no reason to bind the specification of a task to any particular set 
of transactional properties (atomicity and isolation requirements) since these re- 
quirements may vary in different workflows. Consequently in our approach trans- 
actional properties are not fixed until a specification is linked to a workflow. 

Our goal has been to address issues related to concurrent execution of over- 
lapping workflows and to provide concepts for managing tasks with transactional 
properties in such contexts. In particular we have introduced the novel idea of 
parametrized transactional properties of task specifications with the related no- 
tions of task integration and task execution modes. Our approach is based on 
the use of the ECA rule mechanism at the global schema level in the Trans- 
Coop architectural framework described in Section 2. Evident topics for future 
work are twofold: formalization of the parametrization concepts introduced, and 
application of the techniques in the real life cases available in the TransCoop 
project. 
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