
Guidel ines for Formalizing Fusion Object-Oriented Analysis
Models

B. W. Bates, J-M. Bruel, R. B. France*, and M. M. Larrondo-Petrie

Department of Computer Science & Engineering
Florida Atlantic University

Boca Raton, FL-33431, USA.
Emaih { batesb,bruel,robert ,maria} @cse.fau.edu

Abstract. The growing interest in object-oriented analysis and design methods (OOMs) in the soft-
ware development industry can be attributed to the support they give to some of the more signifi-
cant software engineering principles, for example, separation of concerns and generality. On the other
hand, most OOMs, like their structured analysis and design predecessors, produce models that are not
amenable to rigorous semantic analyses. This problem can be attributed to the lack of firm semantic
bases for the modeling notations and concepts. In this paper we show how a particular OOM, the Fu-
sion analysis method, can be made more formal while preserving its essential qualities. Our approach
involves integrating the Z formal specification style with the Fusion method. The result is an OOM
that produces semantically analyzable Fusion models of behavior at the requirements level.

Keywords: Formal Specification Techniques, Object-Oriented Analysis, Transformations.

1 Introduction

As software developers grapple with the problem of producing high quality software, attention has turned
to object-oriented methods (00Ms), mainly because of the support they give to some of the more signifi-
cant software engineering principles, in particular, separation of concerns, design for change, anticipation of
change, and incrementality (e.g., see [4, 18, 21]). As was the case with earlier graphical structured approaches,
industry's growing interest in OOMs can also be attributed to the use of simple, visually-appealing concepts
and notation. On the other hand, like earlier structured analysis and design (SA/D) approaches (e.g., see
[5, 28, 29]), most popular OOMs lack formal semantic bases, making it very difficult to rigorously reason
about and with the models they produce. In this sense, most OOMs are informal because their applications
are likely to produce ambiguous specifications that are not amenable to rigorous semantic analyses.

The lack of semantic bases in most OOMs severely inhibits their use in the specification and analysis of
complex information systems. The need to rigorously investigate the behavior of such systems suggests the
use of formal specification techniques (FSTs). A FST consists of a formal language (i.e., a language with a
precise syntax and semantics), and mechanisms for deriving consequences from specifications expressed in the
formal language. FSTs utilize mathematical concepts and notation to precisely define theories and models
of application behavior. Precise specifications facilitate effective communication among persons with a stake
in the development of the software, while the ability to reason about specified properties allows developers
to predict the behavior of implementations during the specification phases of software development.

Other object-oriented and SA/SD methods have been integrated in a formal environment (e.g., see
[3, 10, 14, 16, 20]). In this paper we describe some guidelines resulting from our work on formalizing Fusion
[4], an OOM developed in industry. We chose Fusion because it incorporates some of the best object-oriented
modeling ideas from previous OOMs in a single coherent method. The approach we used can be used to
formalize other OOMs as well. We show how Fusion can he integrated with Z [24], a popular and mature
FST. We chose Z because of its maturity, expressiveness and the availability of tools (e.g., (ADi2~ [25], fuzz
[23], and Proo:fPower [13]). The integrated specification method that we created can be used to develop
Fusion analysis models that are amenable to rigorous semantic analysis.

In Section 2 we discuss the benefits of integrating informal specification techniques (ISTs) with FSTs,
and give an overview of Z and Fusion. Section 3 provides the rules supporting the translation of Fusion
analysis models to Z specifications. Finally, Section 4 gives our conclusions and an overview of our ongoing
work in this area.

* This work was partially funded by NSF grant CCR-9410396.

223

2 I n t e g r a t i n g f o r m a l a n d i n f o r m a l s p e c i f i c a t i o n t e c h n i q u e s

The applicat ion of OOMs can be made more rigorous by providing formal foundat ions support ing the seman-
t ic analysis of the models. One approach is to interpret the models using underlying formal semant ic models.
The formal interpretat ion can be used to reason about and with the models. We describe this approach as
interpretive. In using this approach one has to make an effort to val idate the semantic model. Validation in
this sense means ensuring tha t the semantic model is "consistent" with the intui t ive interpretat ion of the
models, t ha t is, tha t the semantic model does not result in a modeling language tha t requires the modeler
to learn new meanings for old constructs.

Another approach is to use the OOM with a suitable FST. The integrat ion of an OOM and a FST is an
instance of a class of specification techniques that we call integrated formal / in formal specification techniques
(FISTs) [6, 7, 8]. The use of FISTs can be beneficial in the following respects:

- FISTs enable an evolutionary approach to the use of FSTs in industry. FISTs allow an organization to
preserve, and even enhance, its investment in 1STs while taking advantage of FST-related benefits.

- FSTs and graphzcal ISTs can complement each other. The relatively s imple and graphical nature of
IST specifications often makes them more presentable than the more detailed, often textual , formal
specifications. On the other hand, the lack of firm semantic bases for ISTs inhibi ts their use in rigorous
specification and analysis of behavior. FSTs are needed for such activities.

FISTs can be classified as either supplementalor interpretive, depending on the relative roles of the formal
and informal models. In a supplemental FIST the formal and informal concepts supplement each other, tha t
is, the formal and informal specifications developed using the FIST capture complementary aspects of a
sys tem's functionality. An example of a supplementary FIST involving the Fusion method [4] and Z [24] is
one in which Z is used to express operation specifications, and Fusion models are used to express the stat ic
and life-cycle aspects of applications.

In an interpretive FIST, the formal model provides a more precise description of behavior captured by the
informal model. In some cases an interpretive FIST can have the same results as the interpretive approach
discussed earlier in this section. This happens when there is a formal set of rules tha t map IST modeling
constructs to FST constructs. The existence of formal mappings between the notat ions is not a necessary
par t of interpretive FSTs. Formalization of the informal models can be done in a cognitive manner, tha t is,
i t can be based on a developer's understanding of the application area and of the intent captured in the
informal models. A consequence of this cognitive approach to formalization [6] is tha t there may not always
be a clear connection between parts of the formal model and the informal model, for example, the formal
models may have details that are not representable in the informal notat ion.

The manner in which FSTs and ISTs are integrated in a FIST is usually based on one or more of the
following considerations:

- Preservation of the 'intuitive' interpretation of the ~nformal specification: The integrat ion should be
such tha t the formal specifications provide interpretations of the informal specifications tha t are consis-
tent with intuitively-held interpretations of the informal specifications. A FIST tha t does not support
intuit ively-held interpretations of its informal specifications may require tha t the informal specifications
be developed in ways that are not consistent with practices associated with the use of the ISTs. In such
eases, a specifier learning and using the FIST is not likely to take full advantage of his prior experience
with the ISTs.

- Level of automated support for moving between formal and informal speczfications: Developing formal
specifications can be a very arduous task. Well-defined relationships between FST and IST constructs
and concepts can provide the basis for mechanical generation of some parts of the formal specification.
In the other direction, it is often possible, given a well-defined relationship between formal and informal
specification elements, to mechanically generate informal specifications from formal specifications. This
t ransformat ion is often easier to automate because it usually entails s imply choosing what information
to hide.

- Degree of integration: In some cases it may not be worthwhile to formally interpret all aspects of an
informal specification. It may be sufficient to formalize only those par ts tha t can benefit from more
rigorous specification and analysis.

In this paper we describe an interpretive FIST tha t integrates Fusion analysis models [4] with the Z
specification style [24]. Transformation rules are defined for some aspects of the formalization, some of which

224

can be mechanized. We made every attempt to preserve the intuitive interpretation of Fusion models in our
formalization; empirical investigation is still needed to validate the integration in this sense. In the following
subsections we give an overview of Fusion and Z.

2.1 Overview of Fusion

Fusion [4] is an object-oriented software development methodology that combines and extends existing
techniques, e.g. Rumbaugh's Objet Model Technique (OMT) [18], Booeh's technique [2], Wirfs-Brock's Class
P~esponsibility Collaborator [26] (CRC) technique, and Jacobson's Objectory [12]. Fusion claims to take the
best ideas from these methods and incorporate them into a single coherent method that covers software
analysis, design, and implementation. In this section we present an overview of the Fusion analysis process
and products.

In Fusion's analysis phase the required behavior of the system is described by

- an Object Model that defines the static structure of the information manipulated by the application in
terms of classes and the relationships among them; and

- an Interface Model that defines the externally observable behavior of the application. The Interface
Model, in turn, consists of two models:
Opera t ion Model: This model characterizes the effect of application services in terms of the observable

state changes they make and the output events they send to the environment.
Life-Cycle Model: This model characterizes the allowable sequences of service invocations for the

application.

A data dictionary is maintained and updated throughout the development process.
The services identified in the interface model are not associated with class operations at the analysis

level. In fact, Fusion does not attach operations to classes in this phase; this is done during design.
The notation used in the Object Model is summarized in Fig. 1. There are three different types of

associations in Fusion:

a) A C l m

at~ibulcs C L ~ . . J

I I
b) An Assoclalmo RellUcm~ip (C - caardinal/~

~ nm disjcdnt

�9 eisje/nt

I I I [
I I

r A GeneJal~a~on ("is a') RelaUo~lhip

Ag~egate Oam Name ,

a l t r i ~

attributm [at~llmtu

(~fau]t) ""

Zexo ormoM -]

Nume~ value N~~

Toed marlmr
(all m ust pu'licilm~) =

e) Ca~dm~ty (C)

d) An Aggrega,/o~ R~al/o~ship (C - cardi~a~ty)
Q u s _ A S~l C~ss_B are components of lhe A~J~ep~ Q u s

Fig. 1. Summary of Fusion Object Model Notation

225

G e n e r a l i z a t i o n : A tr iangle symbol A symbolizes the "is a" relationship between two classes (see Fig. 1.c).
The subclasses may par t i t ion the superclass (i.e., can be disjoint), or they may overlap (i.e., can be non
disjoint). The disjoint subclasses are joined to their superclass with a filled-in tr iangle A.

A g g r e g a t i o n : The relationship between an aggregate class and its component classes, is shown as classes
embedded in the aggregate class (see Fig. 1.d). Cardinal i ty is shown adjacent to each component class.
The symbols used for cardinal i ty are given in Fig. 1.e.

R e l a t i o n s h i p : This represents more general forms of associations between classes. The relationship is as-
signed a name and can have at t r ibutes associated with it (see Fig. 1.b).

A filled-in rectangle or "marker" on a relationship means tha t all members must part icipate in the relation-
ship. Relat ionships can be annotated with assertions (called invariants) tha t s t ipulate tha t certain properties
must be mainta ined, and roles, which indicate the role objects play in the relationships. Invariants can also
be associated wi th individual classes.

The Fusion Operat ion Model consists of a set of operation schemas. Each schema consists of the following
parts:

D e s c r i p t i o n : an informal and concise description of the operation.
R e a d s : a list of the i tems tha t the operation reads.

C h a n g e s : a list of the i tems the operation changes.
S e n d s : a list of the events the operation sends to other objects in the environment.
A s s u m e s : a condition tha t describes what is assumed true at the s tar t of the operation.

R e s u l t : describes what is t rue after the operation has completed its execution.

The Life-Cycle Model is expressed in a language tha t allows one to express relationships such as "event
x is followed by event y"~ "either event x or event y occurs", "event x is optional", "the steps of events x
and y are interleaved".

More detailed descriptions of Fusion notat ion will be given when needed in the remainder of this paper.

2.2 T h e Z N o t a t i o n

The Z specification language [11, 24] is a general purpose specification language which was developed by
the Programming Research Group at Oxford. It has a strong mathemat ica l basis in predicate logic and set
theory. Stat ic aspects of applications are represented by sets and dynamic aspects by operations on sets.

In this section we introduce only the Z notations necessary to understand the specifications given in this
paper 2 .

The pr imary s t ructur ing construct in Z is the schema. A schema has two parts: a declaration and a
predicate part. The declaration part consists of variable declarations of the form w : Type, where w is a
variable name and Type is a type name. Intuitively, the preceding declaration means tha t the value of w is
a member of the set named by Type (types are sets in Z). The predicate par t consists of a predicate tha t
expresses the relationships among the declared variables.

There are two ways of wri t ing schemas, vertically or horizontally:

f
Schema
Declara._______tion

Predicate
Schema -~ [Declaration I Predicate]

Schemas are used to model both the stat ic and dynamic aspects of a system. A schema tha t captures
the s ta t ic aspect of a system will be referred to as a state schema, and a schema tha t captures the dynamic
aspect will be referred to as an operation schema. In a s ta te schema the components of a system's s ta te are
declared in the declaration section and constraints on the s ta te are given in the predicate part .

2 The reader is invited to see [24] or the URL: ht tp: / /www.comlab.ox.ac .uk/archive/z .html .

226

The declaration w : Schema, where Schema is a schema name, declares a variable w with components
(declared in Schema) that satisfy the predicate part of Schema.

Let S be a schema defined as:

; ! ~2 _y :~N
x < # y

for the declaration w : S

w.z denotes the projection function: w.x is w's
z component,
OS is a tuple consisting of (schema variable,
value) pairs, where the values are said to be
bound to the schema variables (commonly used
to equate the before and after state components
of an operation),
pred S is the predicate part of a schema.

An operation schema defines the relationship between the state at the start and at the end of an opera-
tion's execution. The declaration part of an operation schema declares variables representing the before and
after state, inputs, outputs, and any other variables needed to define the relationship. The predicate part of
the schema defines the relationship between the before and after states.

The following conventions are used for variable names in operation schemas:

unprimed variable (e.g., w) - value of variable before
operation execution;
primed variable (e.g., w I) - value of variable after
operation execution;
variable ending in '? ' - an input to the operation;
and
variable ending in '!' - an output from the operation.

AS == S A S ~ denotes the change of state
schema,
~'S == [AS [0S' = 0S] denotes that the state
schema does not change.

3 Fusion to Z translation guidelines

3.1 Object Model

In examining the Fusion Object Model it was noticed that the model has three major classes of constructs:
objects (classes), relations, and annotations (invariants). In the following subsections we give rules guiding
the translation of instances of these constructs to Z specifications.

Represen t ing objec ts in Z In Fusion, an object in an Object Model can have zero or more attributes
associated with it. The attributes are values, not objects.

Objects that have no attributes associated with them are represented as Z schemas that contain only an
object identifier.

Rule 1 (a t t r ibu te less objects) Objects that contain no attributes are represented by Z
schemas. An object identifier attribute is defined in order to identify the instances of the
class.

-~ [caw]
CoRr$C ~ id : CRID

Fig. 2. Formal specification of a class without attributes

Objects with attributes are represented by Z state schemas, in which the attributes are declared as state
variables, and any invariant annotations are expressed formally in the predicate part (e.g, see Fig. 3).

227

R u l e 2 Objects with attributes are made into state schemas. Attributes are declared as state
variables, and invariants (if any) are formally expressed in the predicate part. I f an attribute
is not associated with a type, the capitahzed name of the attribute is used as a type name
and declared as a basic g type. Each object instance has a unique identifier that is explicitly
defined through an attribute.

[ADVID, NAME, DEPT]
_Advisor

l id : ADVID
|name : NAME
|dept : D E P T

Fig. 3. Formal specification of a class with attribute

Operat ions tha t modify the s ta te of a system may only affect a subset of the variables. In Z one has
to specify tha t s ta te variables tha t are not affected by operations are left unchanged, for example, if s ta te
variable x is unaffected by an operation's execution then the equation x ~ = x should appear in the predicate
par t of the operation schema. If an operation affects only a small part of the s ta te consisting of a large
number of variables, then numerous equations of the above form need to be writ ten. One can structure s ta te
schemas in a way tha t minimizes the need to write a large number of such equations.

The rule below provides some guidelines for s t ructuring schemas to minimize the impact of this problem.
It utilizes schema inclusion to achieve structuring. When a schema A is included in another schema B then
B's declaration par t includes all the declarations in A, and the predicate part of A is logically 'anded ' to the
predicate par t of B. The rule involves identifying sets of at t r ibutes of a class tha t are unaffected by a group
of operat ions tha t act on the instances of the class. These at t r ibutes are defined in separate schemas which
are included in the schema representing the class (e.g., see Fig. 4).

R u l e 3 (s c h e m a s t r u c t u r i n g) Determine sets of attmbutes that are not changed often by
operations and declare them in separate schemas. The schema representing the class is then
formed by including these schemas in the declaration part along with any attributes that are
not declared in any of the included schemas.

R u l e 4 (i n s t a n c e s) Instances of classes are represented as bindings of values to variables
declared in Z schemas representzng the classes. The identifier of an *nstance is the value
bound to the identifier variable (sd) declared in the Z schema for the instance class (see
Fig. 5).

R e p r e s e n t i n g r e l a t i o n s h i p s i n Z We created a mathemat ica l toolki t t ha t includes Z definitions of the
different types of general binary relationships tha t can exist between objects in an Object Model. The
types are defined by parameterized Z schemas. We utilize graphical symbols in the toolki t to make clear
the connection between formalizations and the Fusion representations of relationships. In Fig. 6 we give an
example of a toolki t formalization of a Fusion relationship and show how it is used to represent a part icular
relationship in a model. If the relationship is associated with a cardinali ty other than 0 and 1, then the
cardinal i ty constraint is expressed in the predicate part of the schema (e.g., see Fig. 7).

R u l e 5 Relationships are represented by variables declared in a state schema. The type
associated with a relationship variable is obtained from the mathematical toolkit defining
standard relationshzp types (many, O, 1). I f the relationship has a cardinality other than
many, O, and I then the cardinality constraint is expressed in the predicate part of the
schema.

2 2 8

Without schema structuring:

S T U D E N T
id : S T I D
n a m e : N A M E
address : A D D R E S S
s s n u m : S S
gpa : GPA
cou. rseenrolled : P C O U R S E

After schema structuring:

I S tuden iPar t
id : S T I D
n a m e : N A M E
address : A D D R E S S
s s n u m : S S

I S T U D E N T
S t u d e n t P art
gpa : GPA
:o?rseenrolled : IP C O U R S E

_AddCourse ,,
A S T U D E N T
c? : C O U R S E

c? ~ courseenrolled
courseenrotted I = conrseenrolled 1,3 { c?}
id t = id

n a m d = n a m e
address I = address
s s n ~ m I ~-- s s n u m

_ A d d C o u r s e
] z l S T U D E N T

d : C O U R S E

| c ? ~ courseenrolled |7.rseenrol,ed': coursee. .edu.?
[OS tuden t Pav t I = OStudentPart

Fig. 4. Illustration of schema structuring

AdvJ$oz

~ e Sept

Robeal CSE

M~rJa CSE

advisors : IP Adv i sor
a l , a2 : Adv isor

a l . i d = O1
a l . n a m e = Rober t
a l . d e p t = C S E
a2. id = 02
a 2 . n a m e = Mar ia
a2.dept = C S E
advisors = {al , a2}

Fig. 5, Particular instances representation

Fig. 8 shows how relationships with attributes are represented in Z.

R u l e 6 (a t t r i b u t e s) Relat ionship at tr ibutes are handled by declaring the at tr ibutes as basic
types (i f only one) or schemas. A func t ion thai maps the relationship to its at tr ibutes is then

defined in the relationship schema.

N-ary relationships are represented in Z as variables of n-tuple types, where the classes (sequences of
instances) involved in the tuple are the components of the tuple type. Cardinality constraints are expressed
in the predicate part of the relationship schema (e.g., see Fig. 9).

Fig. 6. Formal specification

2 2 9

[x , Y]
1" �9 * : F (X ~ Y)

R : X * - , Y ,

R E I = ~-= * : ~ R - 1 E (Y - * X)

advisors : F Adv i sor
s tudents : ~ S t u d e n t

assigned_to : 1 ~ = ~ * [Advisor , Student]

dora assigned_to C_ advisors
ran assigned_to C s tudents
V i , j : s tudents * i . id = j . i d r i = j
V i , j : advisors �9 i . id = j . i d r162 i = j

of a binary relationship

_ Relat ionship
s tudents : F S tuden t
courses : IP Course
studied_by : S tuden t ~ Course

g s : d o m studied_by *,
1 < # s t u d i e d _ b y 0 {s} } < 4

dom studied_by C_ s tudents
ran studied_by C courses
V i , j : s tudents �9 i . id = j , i d r i = j
V i , j : c o u r s e s , ~.id = j . zd c*, i = j

Fig. 7. Integration of the cardinality constraints

R u l e 7 (n - a r y r e l a t i o n s h i p) Ternary or higher relationships are handled by modehng the
relationship as a variable wzth an n-tuple type, where each class in the re la twn zs a component
o f the type. Card~nahty constraints are ezpressed in the predicate part o f relationshzp schema.

R e p r e s e n t i n g a g g r e g a t i o n s t r u c t u r e s An aggregate object is represented in Z by a schema in which the
variables representing sets of component parts and relationships among the component parts are declared
(e.g., see Fig. 10).

_ Rc la twnsh ip
s tudents : F S tudent
courses : P Course
studied_by : S tuden t ,--* Course
s emes t e r : (S tuden t s ~ , Course) ---* S E M E S T E R

V s : dom studied_by �9
1 < # s t u d i e d _ b y ~ {s} I) < 4

doms tud i ed_by C_ s tudents
ran studied_by CC_ courses
V i , j : s tudents �9 i . id = j . i d r162 i = j
V i , j : courses �9 i.*d = j .~d r i -- j
d o m semes t c r = studied_by

Fig. 8. Relationship with attributes

230

The schema represents a ternary relationship called takes
involving the classes Student, Room, and Test. Relationship

takes : ~(~r Student x I? Room x I? Test)

Fig. 9. Formalization of a ternary relationship

Rule 8 Aggregation is handled by declaring components as sets containing elements of the
component schemas types in the aggregate class schema. Relationships among the components
are expressed as described by the rules on formalizing Fusion relationships.

_ Aggregate_Class
id : AGGID
advisors : 17 Advisor
students : ~ Studeut

assigned_to : 1 : == * [Advisor, Student|

Fig. 10. Formalization of an aggregation

Represen t ing generalization hierarchies A generalization hierarchy is represented in Z by including
superclass schemas in subclass schemas. See Fig. 11 for an example.

id : lD
al : A1
a2 A2

A_attributes == A \ (id)

ABattributes C A_attributes
|id : 19 |id : IO
|bl : B1 |cl : C1

Fig. 11. Generalization hierarchy formalization

P u t t i n g it all toge ther Once the parts of the Object Model are defined they are collected in a schema
that is a representation of the model. Invariants involving parts that were separately defined are expressed
in the predicate part of this schema.

231

Our rules provide a bottom-up approach to formalizing an Object Model. Some restructuring of the
schemas and/or redefinition of the parts may be needed to reduce the complexity of the schemas produced
by the rules.

3.2 Fo rma l i z ing t he In t e r f ace Mode l

We formalize only the Operation Model. The Fusion Life-Cycle Model is rigorous and analyzable; reexpression
of this model in Z is not necessary.

R e p r e s e n t i n g O p e r a t i o n Mode l s Fusion Operation Models are translated to Z operation schemas in the
following manner:

Rule 9 The following are rules guiding the translation of a Fusion Operation schema to a
Z operation schema:

- The operation name is used as the schema name.
- The informal definition is used to document the Z operation schema.
- Variables mentioned in the Reads section are declared as input variables in the Z schema.
- I f variables are mentioned in the Changes section then the state is declared in the op-

eration schema preceded by the A symbol (indicating that the operation causes a change
in the state). Equations for variables not changed by the operations (i.e., not mentioned
in the Changes section) are generated. For example, i f state variable x is not mentioned
~n the Changes section then the equation x ~ = x is 9enerated; if no variable in the state
schema, S, in which x is declared is mentioned in the Changes section then the equation
OS ~ = ~S is generated.

- Variables mentioned in the Sends section are declared as output variables in the Z oper-
ation schema.

- The condition in the Assumes section, when formalized, is the precondition of the oper-
ation.

- the formahzed content of the Result is given ~n the predicate part of the operation schema.

In Fig. 12 the above rule is applied to a Fusion Operation Model.

Operation: view_WS
Description: A request to view a worksheet.

Reads: supplied student : stud_id
Changes: none
Sends: student : worksheet advisor : worksheet

sys_adrn : worksheet univ_adm : workshcet
Assumes: stud_id is valid and a student can only

view their own worksheet.
Result: Displays the student's worksheet.

_ view_ WS

l
id? : STID
ws! : Worksheet
~AdvState

3 s : students *
s.id = id? ~ ws! = getsheet(s)

Fig. 12. Illustration of an operation translation

4 C o n c l u s i o n

The use of OOMs in the development of complex information systems can be inhibited by their lack of formal
semantic bases. In this this paper we discuss how a particular object-oriented analysis method, Fusion, can

232

be integrated with a FST, Z, to produce analyzable object-oriented analysis models. A case study on an
application of the Fusion/Z FIST described in this paper can be found in [I].

Our FIST approach can be abstracted as shown in Fig. 13, where the boxes represent models and the
ovals represent activities.

Fccdback {

P~dback (Z Tools
[" Formal Validatlcn

Fig. 13. The integration process

Fee, dback

The translation activity is guided by the rules we stated in the previous section. Currently the translation
process is manual, but we are working on formalizing the rules in order to identify those that can be
mechanized to support partial automation of the translation.

In our experimentations with the Fusion/Z FIST s, we found that formalizing the Fusion models helped
identify problems with the object model, for example, inconsistent use of attribute names, undefined variables,
and missing operation arguments. More generally, formalization revealed ambiguities, gaps in our knowledge
of the systems being modeled, and inconsistent requirements. The feedback from the translation activity can
be used to improve the Fusion models (as indicated by the feedback arrow/leaving the translation activity
in the figure).

The primary objective of integrating Fusion and Z is to create analyzable Fusion models. The integration
allows one to use Z type checkers (e.g., ZTC [27] and fuzz [23]) and Z animation tools, such as ZANS, to
analyze models. In our experimentations, we used ZTC, fuzz and ZANS and found that doing such analyses
can reveal additional problems with the Fusion models (as well as the formalization of the problem).

From the above, it should be clear that the process of formalizing an informal OOM model is an iterative
process. Formalization can help identify inadequacies in the informal model, which results in changes being
made to the models. Formalization of the changed models is then carried out, and the process is repeated
until a formalization that is consistent with the intent captured in the informal models is obtained.

It can be argued that an object-oriented version of Z such as Object-Z [22], MooZ [15] or SP-Z[19], would
be a more appropriate formalism to integrate with an OOM. Unlike Z, the object-oriented versions of Z do
not have sufficient tool support as yet. One of the reasons we chose Z is the availability of analysis tools. A
goal of our research in this area is the development of a CASE tool supporting the creation and analysis of
analyzable Fusion analysis models. It is important that the formal notation we use is adequately supported
by analysis tools.

We anticipate that. tools for analyzing object-oriented versions of Z will soon be available. For this reason
we are currently defining rules to guide the integration of Fusion models with object-oriented versions of Z.
One of the formalisms that we are looking at is Hall's object-oriented style [9]. Our derived Z specification
has some common points with Hall's style, for example, our treatment of identity is based on ideas from
Hall's approach. We should point out that it is not clear to us at this time whether there is a significant
advantage in using an object-oriented style of Z with Fusion. The integrated approach described in this paper
has been adequate for the problems we applied them to. One the objectives of our work on integrating Fusion
with an object-oriented style of Z is to determine whether the object-oriented Z concepts have a significant
impact on formalizing and analyzing Fusion models.

s see [1] for a fuller account of our experiences

233

References

I. Brian W. Bates, Jean-Michel Bruel, Robert B. France, and Maria M. Larrondc-Petrie. Experiences with Formal-
izing Fusion Object-Oriented Analysis Models. FAU Technical Report TR-CSE-95-44, Department of Computer
Science & Engineering, Florida Atlantic University, Boca Raton, FL-33431, USA, November 1995.

2. G. Booch. Object.oriented analysis and design with applications. Benjamin/Cummings, 1994.
3. Robert H. Bourdeau and Betty H.C. Cheng. A formal semantics for object model diagrams. 1EEE Transactions

on Software Engineering, 21(10):799-821, October 1995.
4. D. Coleman, P. Arnold, S. Bodoff, C. Donin, H. Gilchrist, F. Hayes, and P. Jeremaes. Object-Oriented Develop-

ment: The Fusion Method. Prentice Hall, 1994.
5. T. DeMarco. Structured Analysis and System Specification. Prentice-Hall, 1978.
6. R. France and M. M. Larrondo-Petrie. A two-dimensional view of integrated formal and informal specification

techniques. In ZUM'Y5, Lecture Notes in Computer Science 967. Springer-Verlag, 1995.
7. R. France and M. M. Larrondo-Petrie. Understanding the role of formal specification techniques in requirements

engineering. In in Proceedings of The 8th SE1 Conference on Software Engineering Education, Lecture Notes in
Computer Science 895. Springer-Verlag, 1995, pages 207-222.

8. R. B. France and M. M. Larrondo-Petrie. From structured analysis to formal specifications: State of the theory.
In Proceedings of the 199.[ACM Computer Science Conference. ACM, 1994.

9. J. A. Hall. Using Z as a specification calculus for object-oriented systems. In D. Bjerner, C. A. R. Hoare, and
H. Langmaack, editors, VDM and Z - Formal Methods in Software Development, volume 428 of Lecture Notes
in Computer Science, pages 290-318. VDM-Europe, Springer-Verlag, 1990.

10. T. C. Hartrum and P. D. Bailor. Teaching formal extensions of informal-based object-oriented analysis method-
ologies. In Proc. Computer Science Education, pages 389-409, 1994.

11. I. J. Hayes, editor. Specification Case Studies. Prentice Hall International Series in Computer Science, 2nd
edition, 1993.

12. I. Jacobson. Object oriented software engineering. Addison-Wesley, 1992.
13. R. B. Jones. ICL ProofPower. BCS FACS FACTS, Series III, 1(1):10-13, Winter 1992.
14. K. C. Mander and F. Polack. Rigorous specification using structured systems analysis and Z. Information and

Software Technology, 37(5):285-291, May 1995.
15. S. L. Meira and A. L. C. Cavaicanti. Modular object-oriented Z specifications. In NichoUs [17], pages 173-192.
16. John Murphy and Jane Grimson. The Jupiter System: A Prototype for Multidatabase Interoperability. In

Proceedings of the 1s British National Conference on Databases, BNCOD.Is Lecture Notes in Computer
Science. Springer-Verlag, 1994.

17. J. E. Nieholls, editor. Workshops in Computing. Springer-Verlag, 1991.
18. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.

Prentice Hall, 1991.
19. S. A. Schuman, D. H. Pitt, and P. J. Byers. Object-oriented process specification. In C. Rattray, editor, Specifi-

cation and Verification of Concurrent Systems, Workshops in Computing, pages 21-70. Springer-Verlag, 1990.
20. Lesley T. Semmens and Pat M. Allen. Using Yourdon and Z: An approach to formal specification. In Nicholls

[17], pages 228-253.
21. S. Shlaer and S. J. Menor. Object lifecycles: Modeling the world in states. Prentice Hall, 1992.
22. Graeme Smith. An Object-Oriented Approach to Formal Specification. PhD thesis, Department of Computer

Science, University of Queensland, St. Lucia 4072, Australia, October 1992.
23. J. M. Spivey. The f u z z Manual. Computing Science Consultancy, 34 Westlands Grove, Stockton Lane, York

YO3 0EF, UK, 2nd edition, July 1992.
24. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer Science, 2nd

edition, 1992.
25. I. Toyn. CADIZ Quick Reference Guide. York Software Engineering Ltd, University of York, York YO1 5DD,

UK, 1990.
26. R. Wirfs-Brock and B. Wilkerson. Designing object oriented software. Prentice-HMl, 1990.
27. Xiaoping Jia. ZTC: A Type Checker for Z - User's Guide. Institute for Software Engineering, Department of

Compuler Science and Information Systems, DePaul University, Chicago, IL 60604, USA, 1994.
28. E. Yourdon. Modern Systems Analysis. Prentice-Hall, 1989.
29. E. Yourdon and L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program and

Systems Design. Prentice-Hall, 1979.

