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Abstract 

We present an interprocedural flow-insensitive points-to analysis algorithm 
based on monomorphic type inference. The source language model the impor- 
tant features of C including pointers, pointer arithmetic, pointers to functions, 
structured objects, and unions. The algorithm is based on a non-standard type 
system where types represent nodes and edges in a storage shape graph. 

This work is an extension of previous work on performing points-to analysis 
of C programs in almost linear time. This work makes three new contributions. 
The first is an extension of a type system for describing storage shape graphs 
to include objects with internal structure. The second is a constraint system 
that can deal with arbitrary use of pointers and which incorporates a two-tier 
domain of pointer offsets to improve the results of the analysis. The third is an 
efficient inference algorithm for the constraint system, leading to an algorithm 
that has close to linear time and space performance in practice. 

Keywords: interprocedural program analysis, points-to analysis, C programs, 

standard types, constraint solving. 

non- 

i Introduction 

Modern optimizing compilers and program understanding and browsing tools for 
pointer languages like C lAme89, KR88] are dependent on semantic information ob- 
tained by either an alias analysis or a points-to analysis. Alias analyses compute pairs 
of expressions (or access paths) that may be aliased (e.g., [LR92, LRZ93]). Points- 
to analyses compute a store model using abstract locations (e.g., [CWZ90, EGH94, 
WL95, Ruf95]). Points-to analysis results serve no purpose in themselves, but they 
are a prerequisite for most other analyses and transformations for imperative pro- 
grams (e.g., computing use-def relations, permitted code motion, and detection of use 
of uninitialized variables). 

Most current compilers and programming tools use only intraprocedural points-to 
analyses, as the polynomial time and space complexity of the common data-flow based 
points-to analyses prevents the use of interprocedural analyses for large programs. 
Interprocedural analysis is becoming increasingly important, as it is a prerequisite for 
whole-program optimization and various program understanding tools. 

*Author's address: Microsoft Corporation, One Microsoft Way, Redmond, WA, USA. 
F~mail: rusa�9 com 
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in t  il, *i2, **iS, 
f l o a t  f l ,  **f2; 
struct {int a, *b, 

struct {int d, *e; 

s2 = ~sl; 

s4 = &sS; 

f2 = &s4->g; 

*f2 = ~fl; 

i3 = ~s2->b;  

14 = ~ s 2 - > c ;  

* i 4  = & i l ;  

i 2  = ( i n t * )  s2; 

i 2  = ( i n t * )  s4; 

**i4; 

*c;} s l ,  *s2; 
float f ,  *g;} s3, *s4; 

• ~l i2: T 1 

i3: 74 i4: r6 

fl: ~I f2: r5 

sl: 77 s2: ~2 

s3: 77 s4: r3 

Figure 1: A small C program fragment, the storage shape graph that our algorithm builds 
for it out of types, and a typing of the program variables. Type ~ represents both structured 
variables in the program. The third type component, ~h0, of 77 represents structure elements 
s l .c ,  s2. f  and s2.g. 

We extend our previous work on flow-insensitive interprocedural points-to analysis 
of C programs by type inference methods [Ste96, Ste95] by enabling the algorithm 
to distinguish between components of structured objects, thereby increasing the pre- 
cision of the analysis in the presence of structures and unions in the program to be 
analyzed. Other members of our research group have found this extension crucial to 
the value (accuracy) of some subsequent analyses (e.g., detection of use of uninitialized 
variables). The extended algorithm does not have the almost linear time complex- 
ity of the original algorithms, but it is exhibiting close to linear time complexity in 
practice (Sect. 5.3 discusses complexity). 

The algorithm is based on type inference over a domain of types that can model 
a storage shape graph [CWZ90].. The inferred types describe the use of memory 
locations. The declarations of locations are irrelevant. The algorithm computes a 
valid typing even when memory locations are used in inconsistent ways, in contrast 
to ML type inference which will fail to compute a typing in that case. An example 
illustrating types modeling a storage shape graph for a program is shown in Fig. 1. 

The computed solution is a storage shape graph that is a conservative description 
of the dynamic storage shape graphs for all program points simultaneously. If pro- 
grammers use locations in a consistent manner throughout their programs the loss 
in precision by not computing separate solutions for each program point is typically 
small. Computing only one storage shape graph permits the algorithm to be fast for 
even very large programs. 

We proceed by stating the source language (Sect. 2), which captures the essential 
parts of the C programming language, the non-standard set of types we use to model 
the storage use (Sect. 3), and a set of typing rules for programs (Sect. 4). Finding a 
typing of the program that obeys the constraints imposed by the typing rules amounts 
to performing a points-to analysis. We then show how to efficiently deduce the min- 
imal typing that obeys the constraints (Sect. 5) and report on practical experience 
with the algorithm (Sect. 6). Finally we describe related work (Sect. 7) and present 
our conclusions and point out directions for future work (Sect. 8). 
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x = s y  
X =s &Y 

x ----m *Y 
x =s  a l locate(y)  

*x =s  Y 
x =8 o p ( y l . . . y n )  
x =s &y->n 
X = ,  fun( f1 . . ,  f , ) - -~ ( r l .  �9 �9 rm) S*  

Xl... xm =sl...s., P(Y l . . .  Yn) 

Figure 2: Abstract syntax of the relevant statements, S, of the source language, x, y, f, r, 
and p range over the (unbounded) set of variable names and constants, n ranges over the 
(unbounded) set of structure element names, op ranges over the set of primitive operator 
names. S* denotes a sequence of statements. The assignment operator, --, is annotated 
with a size, s, indicating the size of the representation of the value being assigned. The 
control structures of the language are irrelevant. 

2 T h e  S o u r c e  L a n g u a g e  

We describe the points-to analysis for a pointer language with structures and unions 
that captures the important properties of the C programming language lAme89, 
KR88]. Since the analysis is flow insensitive, the control structures of the language 
are irrelevant. An important feature of the language is that any memory object may 
be accessed as a unit or as a structured object. Type casts and variable declarations as 
found in C are irrelevant; the source language permits inconsistent use of locations as 
well as the use of any memory object as a structured object without such constructs. 
Unions are implicit in the use of memory objects. Figure 2 shows the abstract syntax 
of the relevant parts of the language. 

The syntax for pointer operations borrows from the C programming language. All 
variables are assumed to have unique names. The op(.. .  ) expression form is used to 
describe primitive computations like arithmetic operations. The allocate(y) expression 
dynamically allocates a block of memory of size y. 

Functions are constant values described by the fun(... )--+(... )S* expression form 1. 
The f~ variables are formal parameters (sometimes called in parameters), and the r~ 
variables are return values (sometimes called out parameters). Function calls have 
call-by-value semantics [ASU86]. Both formal and return parameter variables may 
appear in left- and right-hand-side position in statements in the function body. 

We assume that  programs are as well-behaved as (mostly) portable C programs. 
We allow assignment of a structured value to a location supposed to hold only pointer 
values, and vice versa, provided the representation of the assigned value fits within 
the size of the representation of the object being modified. The analysis algorithm 
may produce wrong (unsafe) results for programs that  construct pointers from scratch 
(e.g., by bitwise duplication of pointers by control flow rather than data flow) and 
non-portable programs (e.g., programs that rely on how a specific compiler allocates 
variables relative to each other). All previously described analyses suffer from the 
same problem. However, the analysis algorithm as presented below will deal with, 
e.g., exclusive-or operations on pointer values, where there is a flow of values. 

1We allow functions with multiple return values; a feature not found in C. 
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3 T y p e s  

For the purpose of performing the points-to analysis, we define a non-standard set of 
types to describe the store. The types are unrelated to the types normally used in C 
(e.g., i n t ege r ,  f l o a t ,  po in t e r ,  s t ruc t ) .  The types are used to model how storage 
is used in a program at runtime (a storage model). Locations of program variables 
and locations created by dynamic allocation are all described by types. Each type 
describes a set of locations as well as the possible runtime contents of those locations. 

The types must be able to model both simple locations, which are only ever ac- 
cessed as a whole (e.g., integer variables), structured locations, and locations that  
are accessed in inconsistent ways. We want to accommodate inconsistent accesses of 
locations with minimal information loss. We use four different kinds of types: b l ank  
describes locations with no access pattern, s imple  describes locations only accessed 
as a whole, s t r u c t  describes locations only accessed as structured objects, and ob j ec t  
describes locations accessed in ways not covered by the other three kinds of types. 

Structured objects may be accessed in inconsistent ways. We want the s t r u c t  
types to be able to describe commonalities in the accesses anyway. We assume struc- 
tures with a "common prefix" share layout of the common prefix elements. The 
s t r u c t  types have component types describing distinguishable components of a loca- 
tion, where "distinguishable" means that any access of part of the memory object only 
accesses a single component. For the program fragment in Fig. 1, one distinguishable 
component describes the first element of the structured objects, another the second 
element, and a third the remaining components. 

The size of an access is important. For example, if a pointer value may point 
to an integer component of a structured object and an access through the pointer is 
"larger" than the size of an integer, other components of the structure pointed into 
may be modified or retrieved. For example, if the program fragment shown in Fig. 1 
were extended with a reference of "* (long*) i3" then the structures would only have 
two distinguishable components. 

The type of a memory object must also describe the contents of the object. Only 
pointer values are relevant. We describe pointers to locations by the type represent- 
ing the object(s) it pointed to or into and an offset, which may be either zero  or 
unknown.  If a pointer with an u n k n o w n  offset is used in an indirect assignment 
(e.g., *x = ,  y) then we don't  know what part  of the referenced object is being modi- 
fied, and the object must be described by an o b j e c t  type. 

Functions, or rather function pointer values, are described by signature types 
describing the locations of the argument and result values. 

The non-standard set of types used by our points-to analysis algorithm is described 
by the following productions: 

T ::= _l_ Isimple(a,~,s,p) lstruct(m,s,p)l 
ob j ec t  (c~, A, s, p) I blank(s ,  p) (Objects) 

::= (T • O) (Pointers) 
o ::= zero I u n k n o w n  (Offsets) 
A ::= _t [ lain(v1 ...7",)(~'n+1...r,+m) (Functions) 
s ::= SIZE [ T (Sizes) 
p ::-- 7~(r) ] T (Parents) 
m ::= (element ~-+ T) mapping (Elements) 
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il: 
i2: 
i3: r 4  = 

i4:  r s  = 

fl: r n  
f2: r5 = 
sl: r7 = 
s2: r2 = 
s3: r7 
S4: r3 = 

rs= 

rn  = s imple(k,  J., T, 0) 
rl = simple(rT, .l_, < p t r  >, $) 

simple(rg, .1., < p t r  >, 0) 
simple(rio, .L, < p t r  >, 0) 

simple(r10, _L, < p t r  >, 0) 
s truct([  < in t  >~+ rs, < int ,  i n t  >~--~ rg,* ~ rl0],T,0) 
simple(rg, .1_, < pZr >, 0) 

simple(rg, .1., < p t r  >, 0) 
simple(• < in t  >,{T7}) 

r9 = simple(k,_L, < in t  >, {rT}) 
r l0 = object( 'rll ,  l ,  T ,  {~7}) 

Figure 3: Typing of the program fragment of Fig. 1 in terms of the types of our analysis 
algorithm. 

The r types describe objects or object components, the a types describe pointers 
to locations, the A types describe pointers to functions. The m type components 
are mappings from structure element specifiers to component types. The element 
specifiers can be either symbolic or numeric. 

The s type components describe object or object component sizes. The sizes can 
be either numeric or symbolic. The T size indicates the rest of a memory object and 
is used in types describing objects of different sizes. The p type components describe 
the set of s t r u c t  types (parents) of which a given type is a component. The T value 
means "no parents" and is introduced to enable a requirement tha t  a type has no 
parents while allowing use of least-upper-bound operators in the inference algorithm. 
We assume the programmer is denied knowledge of the activation record layout and 
therefore do not consider parents of A type. 

Types may be recursive (the type graph may be cyclic). The types may be written 
out using type identifiers (type variables). Two types are equal when they are either 
both .L or are described by the same type identifier. Note that  this is different from 
the usual structural equality criterion on types. We could use the structural equality 
criterion if we added a tag to the r ,  o, and A types. 

Figure 3 shows the typing of the variables of the program fragment of Fig. 1. 

4 Typing Rules 

In this section we define a set of typing rules based on the set of non-standard types 
defined in the previous section. The typing rules specify when a program is well-typed. 
A well-typed program is one for which the static storage shape graph indicated by 
the types is a safe (conservative) description of all possible dynamic (runtime) storage 
configurations and which also safely describes the use of the storage. 

There are three kinds of use of storage in the source language. Use via pointer 
indirection uses the pointer location as a whole. Computing the address of a structure 
element is a use of a location as a structured object. These two uses force the location 
being addressed to be described by at least a s imp le  or s t r u c t  type respectively in 
the ~ s partial order described below. The third kind of use is by assignment of entire 
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objects. For example, if we assign a structured value to a location that is otherwise 
used only as a whole the contents of the location assigned to is used in inconsistent 
ways. The assigned-to location must therefore be described by an ob jec t  type, while 
the assigned-from location may still be described by a s t r u c t  type. 

We use the partial order a <3, b to describe the relationship between the type, b, of 
the assigned-to location, and the type, a, of the assigned-from location. The partial 
order is parameterized by a size, s, as the size of the representation of the assigned 
value must be smaller than that of (the types of) the assigned-to and the assigned- 
from location to avoid problems with unmodeled capture of adjacent elements in a 
structured object. The size constraints are trivially fulfilled if the types describe entire 
objects or the entire rest of objects (s = T). 

The ~ ~ partial order uses the following hierarchy among the kinds of types: 

ob j ec t  
/ \ 

s imple  s t r uc t  
\ / 
b lank  

where a necessary (but not sufficient) requirement for a ~ s b to hold is that a and b are 
either of the same kind or the kind of b appears above the kind of a in the hierarchy. 

If the offset component of either a or b is u n k n o w n  then we have to assume 
the worst about the usage of the described memory location and the memory object 
component should be of the ob jec t  kind. 

Since there is a flow of data from the assigned-from location to the assigned-to 
location, any pointer content of the assigned-from location should also be described 
by the content components of the assigned-to location. We describe the relationship 
between the assigned-from and assigned-to location contents by the E, and E partial 
order between memory and function pointer component types respectively defined as 
follows: 

(~1 x ol) ___, (~2 x 05) *~ (rl = _L) v ((~1 E,  r~) ^ (ol E o2)) 
rl Es r2 r (rl = 7-2) A (s _ sizeof(rl)) 

OLEO5 r ( 0 1 = z e r o )  V ( 0 1 = 0 2 )  
sl E s~ 4* (sl = s~) v ( ~  = T) 

~1 E ~ ~ (A1 = _L) V (~1 = ~ ) ,  

where "sizeof(r)" denotes the size component of whatever kind of type T is. For 
example, a necessary requirement for simple(a1, A1, sl, Pl) <J s simple(c~2, A2, s2, P2) 
to hold is that al  Es as and A1 E A2 both hold. 

We could have used equality (--) instead of E ordering. The primary reason for 
not doing so is discussed in [Ste96]. Of particular importance to the type system used 
in the present paper is that use of _ rather than --- permits non-pointer content of 
components of s t r uc t  mappings when a value in a s t r u c t  location is assigned to an 
ob jec t  location. 
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A i - x : r i  A l - y : r 2  
(r~ x zero) _'3 s (r~ x zero) 

A Fwelltyped(x =,  y) 

A I- x : s im/obj(a~,  A~, s~,p~) 
A I-- y : -r~ s ~ s ~  

(r~ X zero) --s Oq 
A ~-welltyped(x =,, &y) 

A F y : sim/obj(a2,A2,s~,p2) 
A ~- x : r~ a~ _<I s (r~ x zero) 

A ~-welltyped(x =,  *y) 

A I- x: s im/obj( ( r l  x ol),~l,sl,p~) 
r~ ~ .L s ~_ s~ 

A t-welltyped(x =s allocate(y)) 

A I- x : s im/ob j (a l ,  A1, Sl,Pl) 
A ~- y : r2 (r2 x zero) <] s o/1 

A I-welltyped(*x =s Y) 

A t - x : r  A F y i : r i  
Vi �9 [1.. .n] : (rl x zero) ~ s (r x zero) 
"r = s im/ob j ( ( r '  x unknown),  ~, d,p) 

A Fwelltyped(x =~ op(yl.., y~)) 

A I- x : s im/ob j ( a l ,  ~1, S l , P l )  
A I- y : s im/obj((r2 x o2), ~2, s2,P2) 

r2 = object(as,  As, T, T) 
s _ sl  (r~ x o~) E_, al  

A ~-weUtyped(x =s &y->n) 

A I- x : s im/ob j ( a l ,  A1, sl ,pl) 
A b y : simple((r2 x zero), )~2, s2,p2) 

r2 = struct(ms, ss,p3) 
compatible(n,ms) 

S C Sl (m3(n) X zero)  C, al  
A ~'welltyped(x =s &y->n) 

A I- x : s im/obj(ao,  A0, so,Po) 
Ao = lam(vl . . ,  r~)(V~+l.., r,+,~) 

A } -  f~ : r~ A t- r j  : r ~ + j  
sl = sizeof(fi) s,~+j = sizeof(rj) s E So 

Vi �9 [ 1 . . . h i  : (ri x zero)  _~,, (r~ x zero)  
Vj �9 [ 1 . . . m ] :  (r:+j x zero)  <3,,+~ (r~+j x zero) 

Vx �9 S* : A ~-welltyped(x) 
A Fwelltyped(x =,  fun(f1.., fn)-+(rl..,  rm) S*) 

A ~- p : sim/obj(ao,Ao,so,Po) 
Ao = ]am(rl ...  "r~)('r~+l... "r~+m) 

A F xj : v~+j A t- Yi : r~ si = sizeof(y~) 
Vi e [1... n] : (r~ x zero) <3,, (ri x zero) 

Vj �9 [1... m]: (r,+j x zero) <Jq,. (r~+f x zero) 
A Fwelltyped(Xl... x,,~ =s.+l ..... +~ P(Yl... Yn)) 

F i g u r e  4: Type rules for the relevant statement types of the source language. The s i m / o b j  
pat tern matches both s i m p l e  and o b j e c t  types. All variables are assumed to have been 
associated with a type in the type environment, A. 

Given the  ~ ,  par t ia l  order, well- typedness of a simple ass ignment  s t a t emen t  can 
be expressed as follows: 

A I -  x :  I" 1 A I - y :  r2 
(T2 • z e r o )  _~, (rl  • z e r o )  

A ~-welltyped(x = ,  y) 

In  Fig. 4 we s ta te  the  typ ing  rules for the relevant par ts  of the  source language.  A 
program is well- typed under  t yp ing  env i ronment  A if all the s t a t e m e n t s  of the program 
are well- typed unde r  A. A typ ing  env i ronment  associates all var iables  wi th  a type. 

In  s t a t emen t s  of the  form x = op(yl . . .  y , ) ,  the  op opera t ion  m ay  be a comparison,  
a bit-wise opera t ion ,  an  addi t ion ,  etc. Consider  a sub t rac t ion  (or bi twise exclusive or) 
of two pointer  values. The  resul t  is no t  a pointer  value, bu t  e i ther  of the  two pointer  
values can be recons t i tu ted  from the result  given the other  po in te r  value 2. The  result  
mus t  therefore be described by the  same locat ion type  as the  two i npu t  pointer  values 
and  an  u n k n o w n  offset. There  are operat ions  from which ope rand  pointer  values 
canno t  be recons t i tu ted  from the  result  (e.g., comparisons:  < ,  # ,  etc.). For such 

2This is true for most implementations of C even though subtraction of pointers to different 
objects is implementation dependent according to the ANSI C specification [Ame89]. 
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operations, the result is not required to be described by the same type as any input 
pointer value. We treat all primitive operations identically. 

The typing rule for dynamic allocation states that some pointer value is being 
assigned. The type that  describes the allocated location need not be the type of any 
variable in the program. The type of the allocated location is then only indirectly 
available through the type of the variable assigned to. All locations allocated by the 
same statement will have the same type, but locations allocated by different allocation 
statements may have different types. 

The typing rule for computing the address of a structure element makes use of a 
predicate, compatible(n,m). The details of the predicate is dependent on the choice of 
representation of element specifiers, but the predicate should capture that the mapping 
describes a structure whose prefix matches that of the structure being accessed up to 
and including the element n. 

We have defined the typing rules under the assumption that  the number of formal 
and actual parameters (and results) always match up. The rules are trivially ex- 
tendible to handle programs where this is not the case and to handle programs with 
variable arguments (e.g., using <stdarg.h> in C). 

5 E f f i c i e n t  T y p e  I n f e r e n c e  

Performing a points-to analysis amounts to inferring a typing environment under 
which a program is well-typed. The typing environment we seek is the minimal solu- 
tion to the well-typedness problem, i.e., each location type describes as few locations 
as possible, and each function type describes as few functions as possible. In this 
section we state how to efficiently compute such a minimal solution. 

The basic principle of the algorithm is that we start with the assumption that  
all variables are described by different types (type variables) and then proceed to 
unifying and merging types as necessary to ensure well-typedness of different parts of 
the program. Merging two types means replacing the two type variables with a single 
type variable throughout the typing environment. When all parts of the program has 
been processed, the program is well-typed. 

5.1 Algorithm Stages 

In the first stage of the algorithm we provide a typing environment where all program 
variables are described by different type variables. A type variable consists of a 
fast union/find structure (an equivalence class representative (ECR)) with associated 
type information. ECRs allows us to replace two type variables with a single type 
variables by a constant time "union" operation. The initial type of each program 
variable is b lank(s ,  0), where s is the size of the representation of the variable. We 
assume that name resolution has been performed and that we can encode the typing 
environment in the program representation and get constant time access to the type 
variable associated with a variable name. 

In the second stage of the algorithm we process each statement of the program 
exactly once. Type variables are joined as necessary to ensure well-typedness of each 
statement (as described in the next section). When joining two type variables, the 
associated type information is unified by computing the least upper bound of the two 
types, joining component type variables as necessary. Joining two types will never 
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make a once well-typed statement no longer be well-typed. If type variables are only 
joined when necessary to ensure well-typedness, the final type graph is the minimal 
solution we seek. 

5 . 2  P r o c e s s i n g  C o n s t r a i n t s  

When processing a statement, we must ensure that the constraints imposed by the 
Es and <3 s partial orders are obeyed. This can be achieved by joining type variables 
and by "upgrading" s imple  and s t ruc t  types to ob jec t  types and b l ank  types to 
s imple,  s t ruc t ,  or ob j ec t  types. 

It may happen that the effects of a constraint cannot be determined at the time 
of processing the statement introducing the constraint. The algorithm uses latent 
constraints by annotating type variables with actions that are to be invoked if the 
"value" of the type variable should change. 

For example, consider a partial order constraint between two function types, A1 _E 
A2. If A1 is anything other than J_, then A1 and A2 must be joined to meet the 
constraint. However, we may not know at the time of processing the statement with 
the constraint whether )`1 will be 2- or something else in the final solution. Joining 
the two type variables will be safe, but it may be too conservative, and the final result 
may not be the minimal solution we seek. If ),1 is 2_ at the time we encounter the 
constraint, we add to the set of latent actions associated with A1 that  it should be 
joined with A2 if it ever changes value. 

Figure 5 provides the precise set of rules for processing the relevant kinds of state- 
ments of a program. The processing rules follow immediately from the well-typedness 
rules and are straightforward to implement. Figure 6 provides the details of the join 
operations. 

5 . 3  C o m p l e x i t y  

We argue that  the space and time complexity is exponential in the size of the input 
program using a theoretically correct (but practically meaningless) metric, is quadratic 
in the size of the program using a more reasonable metric, and is likely to be close to 
linear in the size of the program in practice. 

The number of distinguishable memory locations in a program is O(exp N), where 
N is the size of the program. This is achievable by building a structure in the shape 
of a binary tree. A size N program could also populate all the "left" leaves of such 
a binary tree with pointers to the root of the tree. The points-to solution for such 
a program would be of size O(exp N). The runtime complexity of any points-to 
algorithm computing such a solution must therefore be exponential or worse. 

While theoretically correct, expressing the algorithm complexity in terms of N is 
a practically meaningless metric of the complexity of the algorithm. We know of no 
related work using this metric; although several specify complexity in terms of N they 
are really using a different metric. A more reasonable metric measures the complexity 
of the algorithm in terms of the combined size, S, of all variables of the program. 

The number of type variables created during the stages of our algorithm is O(S). 
Any constraints not involving s t r uc t  types can be processed in linear space and 
almost linear time complexity in terms of the number of type variables joined. For 
programs that  do not use structured variables, the algorithm has a O(S) space and 



1 4 5  

X----s y 
let rl = ecr(x), r2 = ecr(y) in 

cjoin (s, 7,2, rl ) 

x = , .  &Y 
let rl = ecr(x), r2 = ecr(y) in 

ensure-s im/obj ( r} . ,  s) 
let s i m / o b j  (al ,  A1,81, Pl ) = type(r1 ) in 

if s g s}. then expand(7,1) 
join((r2 x zero),a}.) 

X = s  *Y 
let r}. = ecr(x), r2 ---- ecr(y) in 
ensure-sire/oh j(7,2, s) 
let s i m / o b j ( a 2 ,  A2, 82,p2) ---- type(r2)  in 

let (r3 • o3) = c~2 in unless-zero(o~,rs)  
cjoin(s ,  r3 ,  r} . )  

x = a  a l l oca te (y )  

let r = ecr(x) in 
e n s u r e - s i m / o b j ( r ,  s) 
let s im/obj(a} . ,  A1, S I , p } . )  = t ype ( r )  in 

if 8 [Z s}. then expand(7,) 
let (71 x Ol) = a}. in 

if type(r}.) = J. then 
settype(r}.,  b lank(T,  0)) 

*x  = s  Y 
let 7"}. = ecr(x), r2 = ecr(y) in 

e n s u r e - s i m / o b j ( r l ,  8) 

let s i m / o b j  (a}., 2}., sl ,  Pl ) = type(r}.) in 
let (ra x 03) = a}. in unless-zero(os , rs)  
cjoln(s~ 72, r3) 

x : ,  fun(f}.., f,~)~(r}..., r ~ )  S* 
let ro = ecr(x) in 

en su re - s im /ob j ( r0 ,  s) 
let s i m / o b j ( a o ,  Ao, so,Po) = type( to)  in 

if 8 ~Z so then expand(r0)  
if type(Ao) = .L then 

let Jr}. . . .  r~+,~] -- 
M a k e E C R ( n  + m) in 

let t = lam(7,1.. ,  rn)(r~+}.... 7,~+,~) in 
set type(Ao,  t), 

let lam(r l  . . .  r~)(r,+}..., r~+~) = A o in 
for i E {1.. .n] do 

let si = sizeof(fi), 7,~ = ecr(fl) in 
ejoln(si ,  ri, r~) 

for j e [ 1 . . . m ]  do 
let sn+j = sizeof(rj), r~+j = ecr(rj)  in 

c jo ln(s .+ j ,  r'+j, r.+j) 

x =, op(yl.., y~) 
let 7, = ecr(x) in 
for i E [I... n] do 

let rl = ecr(yi) in cjoin(s ,  rl, r) 
e n s u r e - s i m / o b j ( r ,  S) 
let s i m / o b j ( a ' ,  A', s ' ,p ' )  = type(7, i in 

let ( r '  x o') = a '  in 
if type(o ' )  = ze ro  then 

m a k e - u n k n o w n ( d )  

x = ~  & y - > n  

let rl = ecr(x), r0 -- ecr(y) in 
e n s u r e - s i m / o b j ( r l ,  8) 
e n s u r e - s i m / o b j  (r0, sizeof(y)) 
let s i m / o b j ( a l ,  A1,81, Pl) = type(r1 ) 

s im/obj (~2~ A2, 82,p2) = type( to )  in 
if 8 {Z 81 then expand( r1)  
let (r2 x 02) = a2 in 

if type(o2) = u n k n o w n  then 
col lapse  (r2), j o i n  (a2, a l  ) 

else 
unless-zero(o2,  r2 ) 
if type(r2)  = blank(ss ,p3)  then 

r n s  = [] 
se t type( r2 ,  s t r u c t  (ms, 8z, P3)) 
m a k e - c o m p a t i b l e ( n ,  ms) 
join((m3(n) x zero) ,  a l )  

elseif type(r2)  = s t r u c t ( m s ,  s3, p3) then 
m a k e - c o m p a t i b l e ( n ,  m3) 
join((m3 (n) X zero) ,  a l )  

else 
promote(7,2, sizeof(*y)), jo in(a2 ,  a l )  

x l . . .  x,~ ----e,+ ...... +~ P(Yl...Y~) 
let ro = ecr(p) in 

ensure-s im/obj(7 ,0 ,  sizeof(p)) 
let s i m / o b j ( a 0 ,  A0, so,P0) = type(r0)  in 

if type(A0) = .L then 
let [ r l  . -  �9 7n+m] = M a k e E C R ( n  + m) in 

let t = lam(r}. . . ,  r~)(r~+}..., r,,+m) in 
set type(A0,  t) 

let lam(7,1 . . .  r~)(7,~+}. . . .  r~+,~) -- A0 in 
for i E [1 . . .n]  do 

let si = sizeof(yi), r~ = eer(yi)  in 
cjoin(sl ,  r~, ri) 

for j E [1 . . .m]  do 
let r~+j = ecr(xj)  in 

e joln(s~+j ,  rn+j, r~+j) 

F i g u r e  5: Inference rules corresponding to the  typ ing  rules given in Fig. 4. 
m a k e - c o m p a t i b l e ( n ,  m)  is a side-effecting predica te  t ha t  modif ies  m a p p i n g  m to be  com- 
pat ib le  wi th  access of  s t ruc ture  e lement  n (if possible and  necessary)  and  re turns  a boo lean  
value indicat ing the  success of  this  modif icat ion.  M a k e E C R ( x )  cons t ruc t s  a list of  x new 
ECRs ,  each associated with  the  b o t t o m  type,  .L. F igure  6 provides  detai ls  of  the  o ther  
funct ions used in the  above rules. 
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join(('rl x Ol), (T2 X O2)): 
if type(ol)  = zero then 

pending(ol)  ~--pending(o2) U 
{ <makeunknown,o2 > } 

elseif type(o2) = zero then 
make-unknown(o2) 

join(r1, ~'2) 

join(el ,  e2): 
if type(el )  = I then 

pending(el)  ~-pending(el)  U 
{<join,el,e2>} 

else 
let e = ecr-union(el, e2) in 

pending(e) e- 
pending(el)  U pending(e2) 

type(e) ~- type(e l )  
set type(e,  unify(el,  e2)) 

settype(e,  t): 
type(e) ~- t 
for a E pending(e) do 

case a of 
[<join,el,e2>]: join(el ,  e~) 
[<cjoin,s,el,e2>]: cjoin(s, el,ea) 

ensure-sim/obj(T,  s): 
case type(T) Of 

[.L]: se t type( r ,  s i m p l e ( l ,  1, s, 0)) 
[blank(s',p)]: 

settype(T, s l m p l e ( l ,  1,  s', p)) 
if s tZ s' then expand(T) 

[simple(a, A, s', p)]: 
if s [Z s' then expand(T) 

[struct(m, s',p)]: p romote( r ,  s') 

expand(e): 
let T = blank(T,  0) in 

set type(e,  unify(type(e),  T)) 

promote(e,  s): 
let r = o b j e c t ( l ,  1 ,  s, 0) in 

set type(e,  unify(type(e),  r)) 

collapse(e): 
let ~ = object(l, I, T, T) in 

set type(e,  unify(type(e),  T)) 

make-unknown(o):  
type(o) ~ unknown 
for a E pending(o) do 

case a of 
[<collapse,T>]: collapse(T) 
[<makeunknown,o'>]: 

make-unknown(d)  

unless-zero(o, T): 
if type(o) -- zero then 
pending(o) +- {<collapse,T>) U pending(o) 

else collapse(v) 

cjoin(s, el, e2): 
pending(el)  ~{<cjoin,s,el,e2>} Upending(e l )  
case type(el)  of 

[I]: /* nothing */ 
[blank(sl,Pl)]: 

if s [Z sl then expand(el )  
elseif type(e2) = 1 then 

settype(e2, blank(s,  $)) 
elseif s [Z sizeof(type(e~)) then 

expand(e2) 
[simple(a1, A1,81, Pl)]: 

if s [Z st then expand(el )  
else 

case type(e2) of 
[1]: settype(e2, s lmple(a l ,  A1, s, @)) 
[blank(s2,p~)]: 

se t type  (e2, simple(a1, A1, s2, P2)) 
if s tZ s2 then expand(e2) 

[simple(a2, A2, s2,p2)]: 
join(a1, or2), join(A1, A2) 
if s [Z s2 then expand(e2) 

[struct(m2, s2,p2)]: promote(e2, s2) 
[object (a2, A2, T, $)]: 

jo in(a l ,  a2), join(At, Aa) 
[struct (ml, 81, pl)]: 

if s ~ Sl then expand(el )  
else 

case type(e2) of 
[1]: set type(  e2, s truct(ml  , s, O) ) 
[blank(s2,p2)]: 

settype(e2, s t ruc t  (ml, s2,p2)) 
if s [Z s2 then expand(e2) 

[simple(a2, A2, s2,p~)]: promote(e2, s2) 
[struct (m2, s2, P2)]: 

i f s  _s2A 
Vx E Dom(ml) : 

make-compat ible(x ,  m2) then 
for x E Dora(m1) do 

cjoln(sizeof(x), rnl (x), rn2 (x)) 
else expand(e2) 

[object (a2, A2, T, ~)]: 
for x e Dom(ml) do 

cjoin(sizeof(x), ml (x), e2) 
[object (at,  A1, T, 0)]: 

if type(e~) = object(a2,  A2, T, 0) then 
join(a1, a2), join(A1, A2) 

else promote(e2, s) 

F i g u r e  6: Implementat ion details for the function used in the inference rules in Figure 5. 
ecr(x) is the ECR representing the type of variable x, and t y p e ( E )  is the type associated 
with the ECR E. j o ln (x ,  y) performs the conditional _=s join and cjoin(s ,  x,  y) performs the 
conditional <] s join of ECRs x and y. ecr-union performs a (fast union/find) join operat ion 
on its ECR arguments and returns the value of a subsequent find operation on one of them. 
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O(Sc~(S, S)) time complexity, where a is the inverse Ackerman's function [Tar83]. 
The a(S,S) component of the time complexity is due to the use of fast union/find 
data structures. This complexity result is equal to that of our previous algorithm 
[Ste96]. 

Constraints involving s t r u c t  types may require processing all the element types in 
addition to any joins being performed. If all structures have R or fewer elements, the 
algorithm has an O(S) space and O(RSa(S, S)) time complexity. While this means 
that the algorithm has a quadratic worst-case running time complexity in terms of S, 
the actual running time complexity is likely to be close to linear as R is typically a 
fairly small number. While R does grow with program size, the growth is controlled 
by the tendency of programmers to group structure elements in substructures when 
the number of elements grows large. 

6 E x p e r i e n c e  

We have implemented a slightly improved version of the above algorithm in our proto- 
type programming system based on the Value Dependence Graph (VDG) [WCES94]. 
The implementation is performed in the Scheme programming language [CR91]. The 
implementation uses a weaker typing rule for primitive operations returning boolean 
values (thus leading to better results). It also uses predetermined transfer functions 
for calls of library functions, effectively making the type inference algorithm be poly- 
morphic (context-sensitive) for all direct calls of library functions. 

Our implementation demonstrates that  the running time of the algorithm is roughly 
linear in the size of the input program on our test-suite of around 50 C programs. 
We have performed points-to analysis of programs up to 75,000 lines of code 3. The 
experience with the algorithm is very encouraging; we are considering doing an im- 
plementation that allows piecewise analysis of programs, thus permitting analysis of 
programs of a million lines of code or more. 

In Table 1 we present empirical data on the performance of the algorithm on the 
unoptimized representation of a number of programs. The programs are a subset of 
the programs in William Landi's test suite, Todd Austin's test suite, the SPEC92 
benchmarks, and LambdaMOO (version 1.7.1) from Xerox PARC. These programs 
are the same we presented results for in our previous paper [Ste96]. We have also 
included information on analysis of a Microsoft tool of 75,000 lines of C code. 

The first column indicates running time for our implementation of the algorithm. 
The time is the result of a single measurement. The time includes initial setup and 
type inference. The runtime measurements are not directly comparable with the 
runtime measurements presented in [Ste96] as the old implementation was able to use 
a trick to reduce the number of initial type variables by 50%. The second column 
indicates the number of extra distinguishable elements of structured objects compared 
with our previous algorithm [Ste96]. An object with two distinguishable elements will 
thus contribute a count of one to this number. These numbers are very significant 
as they in most cases represent separation of distinguishable elements in central data 
structures. The separation has significant second-order effects on the results, but 
space limitations prevent us from providing details. 

3This is the largest program we have represented in the VDG program representation. 
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Benchmark running I 
name time! 
landi:allroots 
landi:assembler 
landi:loader 
landi:compiler 
landi:simulator 
landi:lex315 
landi:football 
austin:anagram 
austin:backprop 
austin:bc 
austin:ft 

0.23/0.21s 
2.47/2.38s 
0.99/0.96s 
1.17/1.16s 
2.81/2.62s, 
0.50/0.49s 
4.34/3.51s ] 
0.44/0.37s 
0.30/0.28s 
5.03/4.19s 
0.73/0.65s 

struct 
count 

0 
10 
6 
5 
8 
0 
1 
2 
0 

11 
12 

Benchmark running 
name time 

o.76/o.~os austin:ks 
austin:yacr2 
spec:compress 
spec:eqntott 
spec:espresso 
spec:li 
spec:sc 
spec:alvinn 
spec:ear 
LambdaMOO 
MS tool 

struct 
count 

4 
3.40/2.45s 0 
1.12/0.80s 0 
3.05/2.30s 1 
30.0/22.2s 121 
8.96/6.47s 41 
10.8/8.08s 12 
0.28/0.27s 0 
2.40/2.12s 6 
25.3/19.5s 147 
95.4/58.7s 1747 

Table 1: Running time (wall time and process time on a 150MHz Indigo2 running Chez 
Scheme) and number of extra distinguishable structure components relative to our previous 
algorithm [Ste96]. 

7 R e l a t e d  W o r k  

The algorithm presented in this paper is an extension of two almost-linear points- 
to analysis algorithms that did not distinguish between components of structured 
objects [Ste96, Ste95]. William Landi independently arrived at the earliest of these 
algorithms [Lan95]. Barbara Ryder and Sean Zhang have independently developed an 
similar algorithm that distinguishes components of structured objects [Zha95]. They 
use a type system without a .t_ element, substituting the [ operator by the = operator, 
thus not being as precise as our algorithm. David Morgenthaler extended our earliest 
algorithm to distinguish components of structured objects [Mor95]. His algorithm also 
uses a type system without a .l_ element and does not incorporate pointer offsets in 
the constraint system. Furthermore, his implementation is not meant to deal correctly 
with unions. His analysis is performed during parsing of the program. 

Henglein used type inference to perform a binding time analysis in almost lin- 
ear time [Hen91]. His types represent binding time values. Our points-to analysis 
algorithms have been inspired by Hengtein's type inference algorithm. 

Choi, et aL, developed a flow-insensitive points-to analysis based on data flow 
methods [CBC93]. Their algorithm was only developed for a language with pair 
structures (like cons cells in Lisp). Their algorithm has worse time and space com- 
plexity than our algorithm. Burke, et al., describes an improvement of the algorithm 
[BCCH95]. The improved algorithm does not deal with pointers into structured ob- 
jects and has worse time and space complexity than our algorithm. Both algorithms 
are potentially more accurate than our algorithm, as their analysis results permit a 
location representative to have pointers to multiple other location representatives. 

Andersen defined a flow-insensitive, context-sensitive 4 points-to analysis in terms 
of constraints and constraint solving [And94]. The values being constrained are sets of 
abstract locations, the analysis being more conventional than the analysis presented in 
the present paper. His algorithm assumes source programs to be strictly conforming 
to ANSI C and may generate unsafe results for the large class of programs written by 

4Andersen uses the term "inter-procedural" to mean "context-sensitive". 
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programmers who make "creative" assumptions about the language implementation. 
A context-insensitive version of Andersen's algorithm would compute results very 
similar to those of [BCCH95] but is likely to be faster since it is based on constraint 
solving rather than data flow analysis. 

O'Callahan and Jackson convert C programs to ML programs and use ML type 
inference to compute the equivalent of points-to results [OJ95]. Not all C programs 
can be converted to ML by their techniques, and even then their algorithm may 
compute unsafe results due to type casts in the source program. 

There exist many interprocedural flow-sensitive data flow analyses, e.g., [CWZ90, 
EGH94, WL95, Ruf95]. Both the algorithm by Chase, et al., [CWZ90] and Ruf's 
algorithm [Ruf95] are context-insensitive and have polynomial time complexity. The 
two other algorithms are context-sensitive. The algorithm by Emami, et al., [EGH94] 
has a exponential time complexity (in theory and in practice), as it performs a virtual 
unfolding of all non-recursive calls. The algorithm by Wilson and Lam [WL95] also 
has exponential time complexity but is likely to exhibit polynomial time complexity 
in practice as it uses partial transfer functions to summarize the behavior of already 
analyzed functions and procedures. 

8 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have presented a flow-insensitive, interprocedural, context-insensitive points-to 
analysis based on type inference methods. The algorithm is being implemented. We 
will have empirical evidence that the algorithm is very efficient in practice before the 
final version of the paper is due. 

This work is part of an effort to construct very efficient points-to analysis algo- 
rithms for large programs. We have found type inference methods a very useful tool 
for doing so. The algorithms presented in this paper and in previous papers [Ste96, 
Ste95] are based on monomorphic type inference methods. We have also investigated 
extending the algorithm of [Ste96] to use polymorphic type inference methods. We 
have yet to combine the extensions to generate an context-sensitive (polymorphic) 
points-to algorithm that can distinguish between elements of structured objects. 
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