
Points-to Analysis by Type Inference
of Programs with Structures and Unions

Bjarne Steensgaard

Microsoft Research*

Abstract

We present an interprocedural flow-insensitive points-to analysis algorithm
based on monomorphic type inference. The source language model the impor-
tant features of C including pointers, pointer arithmetic, pointers to functions,
structured objects, and unions. The algorithm is based on a non-standard type
system where types represent nodes and edges in a storage shape graph.

This work is an extension of previous work on performing points-to analysis
of C programs in almost linear time. This work makes three new contributions.
The first is an extension of a type system for describing storage shape graphs
to include objects with internal structure. The second is a constraint system
that can deal with arbitrary use of pointers and which incorporates a two-tier
domain of pointer offsets to improve the results of the analysis. The third is an
efficient inference algorithm for the constraint system, leading to an algorithm
that has close to linear time and space performance in practice.

Keywords: interprocedural program analysis, points-to analysis, C programs,

standard types, constraint solving.

non-

i Introduction

Modern optimizing compilers and program understanding and browsing tools for
pointer languages like C lAme89, KR88] are dependent on semantic information ob-
tained by either an alias analysis or a points-to analysis. Alias analyses compute pairs
of expressions (or access paths) that may be aliased (e.g., [LR92, LRZ93]). Points-
to analyses compute a store model using abstract locations (e.g., [CWZ90, EGH94,
WL95, Ruf95]). Points-to analysis results serve no purpose in themselves, but they
are a prerequisite for most other analyses and transformations for imperative pro-
grams (e.g., computing use-def relations, permitted code motion, and detection of use
of uninitialized variables).

Most current compilers and programming tools use only intraprocedural points-to
analyses, as the polynomial time and space complexity of the common data-flow based
points-to analyses prevents the use of interprocedural analyses for large programs.
Interprocedural analysis is becoming increasingly important, as it is a prerequisite for
whole-program optimization and various program understanding tools.

*Author's address: Microsoft Corporation, One Microsoft Way, Redmond, WA, USA.
F~mail: rusa�9 com

137

in t il, *i2, **iS,
f l o a t f l , **f2;
struct {int a, *b,

struct {int d, *e;

s2 = ~sl;

s4 = &sS;

f2 = &s4->g;

*f2 = ~fl;

i3 = ~s2->b;

14 = ~ s 2 - > c ;

* i 4 = & i l ;

i 2 = (i n t *) s2;

i 2 = (i n t *) s4;

**i4;

*c;} s l , *s2;
float f , *g;} s3, *s4;

• ~l i2: T 1

i3: 74 i4: r6

fl: ~I f2: r5

sl: 77 s2: ~2

s3: 77 s4: r3

Figure 1: A small C program fragment, the storage shape graph that our algorithm builds
for it out of types, and a typing of the program variables. Type ~ represents both structured
variables in the program. The third type component, ~h0, of 77 represents structure elements
s l .c , s2. f and s2.g.

We extend our previous work on flow-insensitive interprocedural points-to analysis
of C programs by type inference methods [Ste96, Ste95] by enabling the algorithm
to distinguish between components of structured objects, thereby increasing the pre-
cision of the analysis in the presence of structures and unions in the program to be
analyzed. Other members of our research group have found this extension crucial to
the value (accuracy) of some subsequent analyses (e.g., detection of use of uninitialized
variables). The extended algorithm does not have the almost linear time complex-
ity of the original algorithms, but it is exhibiting close to linear time complexity in
practice (Sect. 5.3 discusses complexity).

The algorithm is based on type inference over a domain of types that can model
a storage shape graph [CWZ90].. The inferred types describe the use of memory
locations. The declarations of locations are irrelevant. The algorithm computes a
valid typing even when memory locations are used in inconsistent ways, in contrast
to ML type inference which will fail to compute a typing in that case. An example
illustrating types modeling a storage shape graph for a program is shown in Fig. 1.

The computed solution is a storage shape graph that is a conservative description
of the dynamic storage shape graphs for all program points simultaneously. If pro-
grammers use locations in a consistent manner throughout their programs the loss
in precision by not computing separate solutions for each program point is typically
small. Computing only one storage shape graph permits the algorithm to be fast for
even very large programs.

We proceed by stating the source language (Sect. 2), which captures the essential
parts of the C programming language, the non-standard set of types we use to model
the storage use (Sect. 3), and a set of typing rules for programs (Sect. 4). Finding a
typing of the program that obeys the constraints imposed by the typing rules amounts
to performing a points-to analysis. We then show how to efficiently deduce the min-
imal typing that obeys the constraints (Sect. 5) and report on practical experience
with the algorithm (Sect. 6). Finally we describe related work (Sect. 7) and present
our conclusions and point out directions for future work (Sect. 8).

138

x = s y
X =s &Y

x ----m *Y
x =s a l locate(y)

*x =s Y
x =8 o p (y l . . . y n)
x =s &y->n
X = , fun(f1 . . , f ,) - -~ (r l . �9 �9 rm) S*

Xl... xm =sl...s., P(Y l . . . Yn)

Figure 2: Abstract syntax of the relevant statements, S, of the source language, x, y, f, r,
and p range over the (unbounded) set of variable names and constants, n ranges over the
(unbounded) set of structure element names, op ranges over the set of primitive operator
names. S* denotes a sequence of statements. The assignment operator, --, is annotated
with a size, s, indicating the size of the representation of the value being assigned. The
control structures of the language are irrelevant.

2 T h e S o u r c e L a n g u a g e

We describe the points-to analysis for a pointer language with structures and unions
that captures the important properties of the C programming language lAme89,
KR88]. Since the analysis is flow insensitive, the control structures of the language
are irrelevant. An important feature of the language is that any memory object may
be accessed as a unit or as a structured object. Type casts and variable declarations as
found in C are irrelevant; the source language permits inconsistent use of locations as
well as the use of any memory object as a structured object without such constructs.
Unions are implicit in the use of memory objects. Figure 2 shows the abstract syntax
of the relevant parts of the language.

The syntax for pointer operations borrows from the C programming language. All
variables are assumed to have unique names. The op(.. .) expression form is used to
describe primitive computations like arithmetic operations. The allocate(y) expression
dynamically allocates a block of memory of size y.

Functions are constant values described by the fun(...)--+(...)S* expression form 1.
The f~ variables are formal parameters (sometimes called in parameters), and the r~
variables are return values (sometimes called out parameters). Function calls have
call-by-value semantics [ASU86]. Both formal and return parameter variables may
appear in left- and right-hand-side position in statements in the function body.

We assume that programs are as well-behaved as (mostly) portable C programs.
We allow assignment of a structured value to a location supposed to hold only pointer
values, and vice versa, provided the representation of the assigned value fits within
the size of the representation of the object being modified. The analysis algorithm
may produce wrong (unsafe) results for programs that construct pointers from scratch
(e.g., by bitwise duplication of pointers by control flow rather than data flow) and
non-portable programs (e.g., programs that rely on how a specific compiler allocates
variables relative to each other). All previously described analyses suffer from the
same problem. However, the analysis algorithm as presented below will deal with,
e.g., exclusive-or operations on pointer values, where there is a flow of values.

1We allow functions with multiple return values; a feature not found in C.

139

3 T y p e s

For the purpose of performing the points-to analysis, we define a non-standard set of
types to describe the store. The types are unrelated to the types normally used in C
(e.g., i n t ege r , f l o a t , po in t e r , s t ruc t) . The types are used to model how storage
is used in a program at runtime (a storage model). Locations of program variables
and locations created by dynamic allocation are all described by types. Each type
describes a set of locations as well as the possible runtime contents of those locations.

The types must be able to model both simple locations, which are only ever ac-
cessed as a whole (e.g., integer variables), structured locations, and locations that
are accessed in inconsistent ways. We want to accommodate inconsistent accesses of
locations with minimal information loss. We use four different kinds of types: b l ank
describes locations with no access pattern, s imple describes locations only accessed
as a whole, s t r u c t describes locations only accessed as structured objects, and ob j ec t
describes locations accessed in ways not covered by the other three kinds of types.

Structured objects may be accessed in inconsistent ways. We want the s t r u c t
types to be able to describe commonalities in the accesses anyway. We assume struc-
tures with a "common prefix" share layout of the common prefix elements. The
s t r u c t types have component types describing distinguishable components of a loca-
tion, where "distinguishable" means that any access of part of the memory object only
accesses a single component. For the program fragment in Fig. 1, one distinguishable
component describes the first element of the structured objects, another the second
element, and a third the remaining components.

The size of an access is important. For example, if a pointer value may point
to an integer component of a structured object and an access through the pointer is
"larger" than the size of an integer, other components of the structure pointed into
may be modified or retrieved. For example, if the program fragment shown in Fig. 1
were extended with a reference of "* (long*) i3" then the structures would only have
two distinguishable components.

The type of a memory object must also describe the contents of the object. Only
pointer values are relevant. We describe pointers to locations by the type represent-
ing the object(s) it pointed to or into and an offset, which may be either zero or
unknown. If a pointer with an u n k n o w n offset is used in an indirect assignment
(e.g., *x = , y) then we don't know what part of the referenced object is being modi-
fied, and the object must be described by an o b j e c t type.

Functions, or rather function pointer values, are described by signature types
describing the locations of the argument and result values.

The non-standard set of types used by our points-to analysis algorithm is described
by the following productions:

T ::= _l_ Isimple(a,~,s,p) lstruct(m,s,p)l
ob j ec t (c~, A, s, p) I blank(s , p) (Objects)

::= (T • O) (Pointers)
o ::= zero I u n k n o w n (Offsets)
A ::= _t [lain(v1 ...7",)(~'n+1...r,+m) (Functions)
s ::= SIZE [T (Sizes)
p ::-- 7~(r)] T (Parents)
m ::= (element ~-+ T) mapping (Elements)

140

il:
i2:
i3: r 4 =

i4: r s =

fl: r n
f2: r5 =
sl: r7 =
s2: r2 =
s3: r7
S4: r3 =

rs=

rn = s imple(k, J., T, 0)
rl = simple(rT, .l_, < p t r >, $)

simple(rg, .1., < p t r >, 0)
simple(rio, .L, < p t r >, 0)

simple(r10, _L, < p t r >, 0)
s truct([< in t >~+ rs, < int , i n t >~--~ rg,* ~ rl0],T,0)
simple(rg, .1_, < pZr >, 0)

simple(rg, .1., < p t r >, 0)
simple(• < in t >,{T7})

r9 = simple(k,_L, < in t >, {rT})
r l0 = object('rll , l , T , {~7})

Figure 3: Typing of the program fragment of Fig. 1 in terms of the types of our analysis
algorithm.

The r types describe objects or object components, the a types describe pointers
to locations, the A types describe pointers to functions. The m type components
are mappings from structure element specifiers to component types. The element
specifiers can be either symbolic or numeric.

The s type components describe object or object component sizes. The sizes can
be either numeric or symbolic. The T size indicates the rest of a memory object and
is used in types describing objects of different sizes. The p type components describe
the set of s t r u c t types (parents) of which a given type is a component. The T value
means "no parents" and is introduced to enable a requirement tha t a type has no
parents while allowing use of least-upper-bound operators in the inference algorithm.
We assume the programmer is denied knowledge of the activation record layout and
therefore do not consider parents of A type.

Types may be recursive (the type graph may be cyclic). The types may be written
out using type identifiers (type variables). Two types are equal when they are either
both .L or are described by the same type identifier. Note that this is different from
the usual structural equality criterion on types. We could use the structural equality
criterion if we added a tag to the r , o, and A types.

Figure 3 shows the typing of the variables of the program fragment of Fig. 1.

4 Typing Rules

In this section we define a set of typing rules based on the set of non-standard types
defined in the previous section. The typing rules specify when a program is well-typed.
A well-typed program is one for which the static storage shape graph indicated by
the types is a safe (conservative) description of all possible dynamic (runtime) storage
configurations and which also safely describes the use of the storage.

There are three kinds of use of storage in the source language. Use via pointer
indirection uses the pointer location as a whole. Computing the address of a structure
element is a use of a location as a structured object. These two uses force the location
being addressed to be described by at least a s imp le or s t r u c t type respectively in
the ~ s partial order described below. The third kind of use is by assignment of entire

141

objects. For example, if we assign a structured value to a location that is otherwise
used only as a whole the contents of the location assigned to is used in inconsistent
ways. The assigned-to location must therefore be described by an ob jec t type, while
the assigned-from location may still be described by a s t r u c t type.

We use the partial order a <3, b to describe the relationship between the type, b, of
the assigned-to location, and the type, a, of the assigned-from location. The partial
order is parameterized by a size, s, as the size of the representation of the assigned
value must be smaller than that of (the types of) the assigned-to and the assigned-
from location to avoid problems with unmodeled capture of adjacent elements in a
structured object. The size constraints are trivially fulfilled if the types describe entire
objects or the entire rest of objects (s = T).

The ~ ~ partial order uses the following hierarchy among the kinds of types:

ob j ec t
/ \

s imple s t r uc t
\ /
b lank

where a necessary (but not sufficient) requirement for a ~ s b to hold is that a and b are
either of the same kind or the kind of b appears above the kind of a in the hierarchy.

If the offset component of either a or b is u n k n o w n then we have to assume
the worst about the usage of the described memory location and the memory object
component should be of the ob jec t kind.

Since there is a flow of data from the assigned-from location to the assigned-to
location, any pointer content of the assigned-from location should also be described
by the content components of the assigned-to location. We describe the relationship
between the assigned-from and assigned-to location contents by the E, and E partial
order between memory and function pointer component types respectively defined as
follows:

(~1 x ol) ___, (~2 x 05) *~ (rl = _L) v ((~1 E, r~) ^ (ol E o2))
rl Es r2 r (rl = 7-2) A (s _ sizeof(rl))

OLEO5 r (0 1 = z e r o) V (0 1 = 0 2)
sl E s~ 4* (sl = s~) v (~ = T)

~1 E ~ ~ (A1 = _L) V (~1 = ~) ,

where "sizeof(r)" denotes the size component of whatever kind of type T is. For
example, a necessary requirement for simple(a1, A1, sl, Pl) <J s simple(c~2, A2, s2, P2)
to hold is that al Es as and A1 E A2 both hold.

We could have used equality (--) instead of E ordering. The primary reason for
not doing so is discussed in [Ste96]. Of particular importance to the type system used
in the present paper is that use of _ rather than --- permits non-pointer content of
components of s t r uc t mappings when a value in a s t r u c t location is assigned to an
ob jec t location.

142

A i - x : r i A l - y : r 2
(r~ x zero) _'3 s (r~ x zero)

A Fwelltyped(x =, y)

A I- x : s im/obj(a~, A~, s~,p~)
A I-- y : -r~ s ~ s ~

(r~ X zero) --s Oq
A ~-welltyped(x =,, &y)

A F y : sim/obj(a2,A2,s~,p2)
A ~- x : r~ a~ _<I s (r~ x zero)

A ~-welltyped(x =, *y)

A I- x: s im/obj((r l x ol),~l,sl,p~)
r~ ~ .L s ~_ s~

A t-welltyped(x =s allocate(y))

A I- x : s im/ob j (a l , A1, Sl,Pl)
A ~- y : r2 (r2 x zero) <] s o/1

A I-welltyped(*x =s Y)

A t - x : r A F y i : r i
Vi �9 [1.. .n] : (rl x zero) ~ s (r x zero)
"r = s im/ob j ((r ' x unknown), ~, d,p)

A Fwelltyped(x =~ op(yl.., y~))

A I- x : s im/ob j (a l , ~1, S l , P l)
A I- y : s im/obj((r2 x o2), ~2, s2,P2)

r2 = object(as, As, T, T)
s _ sl (r~ x o~) E_, al

A ~-weUtyped(x =s &y->n)

A I- x : s im/ob j (a l , A1, sl ,pl)
A b y : simple((r2 x zero),)~2, s2,p2)

r2 = struct(ms, ss,p3)
compatible(n,ms)

S C Sl (m3(n) X zero) C, al
A ~'welltyped(x =s &y->n)

A I- x : s im/obj(ao, A0, so,Po)
Ao = lam(vl . . , r~)(V~+l.., r,+,~)

A } - f~ : r~ A t- r j : r ~ + j
sl = sizeof(fi) s,~+j = sizeof(rj) s E So

Vi �9 [1 . . . h i : (ri x zero) _~,, (r~ x zero)
Vj �9 [1 . . . m] : (r:+j x zero) <3,,+~ (r~+j x zero)

Vx �9 S* : A ~-welltyped(x)
A Fwelltyped(x =, fun(f1.., fn)-+(rl.., rm) S*)

A ~- p : sim/obj(ao,Ao,so,Po)
Ao =]am(rl ... "r~)('r~+l... "r~+m)

A F xj : v~+j A t- Yi : r~ si = sizeof(y~)
Vi e [1... n] : (r~ x zero) <3,, (ri x zero)

Vj �9 [1... m]: (r,+j x zero) <Jq,. (r~+f x zero)
A Fwelltyped(Xl... x,,~ =s.+l +~ P(Yl... Yn))

F i g u r e 4: Type rules for the relevant statement types of the source language. The s i m / o b j
pat tern matches both s i m p l e and o b j e c t types. All variables are assumed to have been
associated with a type in the type environment, A.

Given the ~ , par t ia l order, well- typedness of a simple ass ignment s t a t emen t can
be expressed as follows:

A I - x : I" 1 A I - y : r2
(T2 • z e r o) _~, (rl • z e r o)

A ~-welltyped(x = , y)

In Fig. 4 we s ta te the typ ing rules for the relevant par ts of the source language. A
program is well- typed under t yp ing env i ronment A if all the s t a t e m e n t s of the program
are well- typed unde r A. A typ ing env i ronment associates all var iables wi th a type.

In s t a t emen t s of the form x = op(yl . . . y ,) , the op opera t ion m ay be a comparison,
a bit-wise opera t ion , an addi t ion , etc. Consider a sub t rac t ion (or bi twise exclusive or)
of two pointer values. The resul t is no t a pointer value, bu t e i ther of the two pointer
values can be recons t i tu ted from the result given the other po in te r value 2. The result
mus t therefore be described by the same locat ion type as the two i npu t pointer values
and an u n k n o w n offset. There are operat ions from which ope rand pointer values
canno t be recons t i tu ted from the result (e.g., comparisons: < , # , etc.). For such

2This is true for most implementations of C even though subtraction of pointers to different
objects is implementation dependent according to the ANSI C specification [Ame89].

143

operations, the result is not required to be described by the same type as any input
pointer value. We treat all primitive operations identically.

The typing rule for dynamic allocation states that some pointer value is being
assigned. The type that describes the allocated location need not be the type of any
variable in the program. The type of the allocated location is then only indirectly
available through the type of the variable assigned to. All locations allocated by the
same statement will have the same type, but locations allocated by different allocation
statements may have different types.

The typing rule for computing the address of a structure element makes use of a
predicate, compatible(n,m). The details of the predicate is dependent on the choice of
representation of element specifiers, but the predicate should capture that the mapping
describes a structure whose prefix matches that of the structure being accessed up to
and including the element n.

We have defined the typing rules under the assumption that the number of formal
and actual parameters (and results) always match up. The rules are trivially ex-
tendible to handle programs where this is not the case and to handle programs with
variable arguments (e.g., using <stdarg.h> in C).

5 E f f i c i e n t T y p e I n f e r e n c e

Performing a points-to analysis amounts to inferring a typing environment under
which a program is well-typed. The typing environment we seek is the minimal solu-
tion to the well-typedness problem, i.e., each location type describes as few locations
as possible, and each function type describes as few functions as possible. In this
section we state how to efficiently compute such a minimal solution.

The basic principle of the algorithm is that we start with the assumption that
all variables are described by different types (type variables) and then proceed to
unifying and merging types as necessary to ensure well-typedness of different parts of
the program. Merging two types means replacing the two type variables with a single
type variable throughout the typing environment. When all parts of the program has
been processed, the program is well-typed.

5.1 Algorithm Stages

In the first stage of the algorithm we provide a typing environment where all program
variables are described by different type variables. A type variable consists of a
fast union/find structure (an equivalence class representative (ECR)) with associated
type information. ECRs allows us to replace two type variables with a single type
variables by a constant time "union" operation. The initial type of each program
variable is b lank(s , 0), where s is the size of the representation of the variable. We
assume that name resolution has been performed and that we can encode the typing
environment in the program representation and get constant time access to the type
variable associated with a variable name.

In the second stage of the algorithm we process each statement of the program
exactly once. Type variables are joined as necessary to ensure well-typedness of each
statement (as described in the next section). When joining two type variables, the
associated type information is unified by computing the least upper bound of the two
types, joining component type variables as necessary. Joining two types will never

144

make a once well-typed statement no longer be well-typed. If type variables are only
joined when necessary to ensure well-typedness, the final type graph is the minimal
solution we seek.

5 . 2 P r o c e s s i n g C o n s t r a i n t s

When processing a statement, we must ensure that the constraints imposed by the
Es and <3 s partial orders are obeyed. This can be achieved by joining type variables
and by "upgrading" s imple and s t ruc t types to ob jec t types and b l ank types to
s imple, s t ruc t , or ob j ec t types.

It may happen that the effects of a constraint cannot be determined at the time
of processing the statement introducing the constraint. The algorithm uses latent
constraints by annotating type variables with actions that are to be invoked if the
"value" of the type variable should change.

For example, consider a partial order constraint between two function types, A1 _E
A2. If A1 is anything other than J_, then A1 and A2 must be joined to meet the
constraint. However, we may not know at the time of processing the statement with
the constraint whether)`1 will be 2- or something else in the final solution. Joining
the two type variables will be safe, but it may be too conservative, and the final result
may not be the minimal solution we seek. If),1 is 2_ at the time we encounter the
constraint, we add to the set of latent actions associated with A1 that it should be
joined with A2 if it ever changes value.

Figure 5 provides the precise set of rules for processing the relevant kinds of state-
ments of a program. The processing rules follow immediately from the well-typedness
rules and are straightforward to implement. Figure 6 provides the details of the join
operations.

5 . 3 C o m p l e x i t y

We argue that the space and time complexity is exponential in the size of the input
program using a theoretically correct (but practically meaningless) metric, is quadratic
in the size of the program using a more reasonable metric, and is likely to be close to
linear in the size of the program in practice.

The number of distinguishable memory locations in a program is O(exp N), where
N is the size of the program. This is achievable by building a structure in the shape
of a binary tree. A size N program could also populate all the "left" leaves of such
a binary tree with pointers to the root of the tree. The points-to solution for such
a program would be of size O(exp N). The runtime complexity of any points-to
algorithm computing such a solution must therefore be exponential or worse.

While theoretically correct, expressing the algorithm complexity in terms of N is
a practically meaningless metric of the complexity of the algorithm. We know of no
related work using this metric; although several specify complexity in terms of N they
are really using a different metric. A more reasonable metric measures the complexity
of the algorithm in terms of the combined size, S, of all variables of the program.

The number of type variables created during the stages of our algorithm is O(S).
Any constraints not involving s t r uc t types can be processed in linear space and
almost linear time complexity in terms of the number of type variables joined. For
programs that do not use structured variables, the algorithm has a O(S) space and

1 4 5

X----s y
let rl = ecr(x), r2 = ecr(y) in

cjoin (s, 7,2, rl)

x = , . &Y
let rl = ecr(x), r2 = ecr(y) in

ensure-s im/obj (r} . , s)
let s i m / o b j (al , A1,81, Pl) = type(r1) in

if s g s}. then expand(7,1)
join((r2 x zero),a}.)

X = s *Y
let r}. = ecr(x), r2 ---- ecr(y) in
ensure-sire/oh j(7,2, s)
let s i m / o b j (a 2 , A2, 82,p2) ---- type(r2) in

let (r3 • o3) = c~2 in unless-zero(o~,rs)
cjoin(s , r3 , r} .)

x = a a l l oca te (y)

let r = ecr(x) in
e n s u r e - s i m / o b j (r , s)
let s im/obj(a} . , A1, S I , p } .) = t ype (r) in

if 8 [Z s}. then expand(7,)
let (71 x Ol) = a}. in

if type(r}.) = J. then
settype(r}., b lank(T, 0))

*x = s Y
let 7"}. = ecr(x), r2 = ecr(y) in

e n s u r e - s i m / o b j (r l , 8)

let s i m / o b j (a}., 2}., sl , Pl) = type(r}.) in
let (ra x 03) = a}. in unless-zero(os , rs)
cjoln(s~ 72, r3)

x : , fun(f}.., f,~)~(r}..., r ~) S*
let ro = ecr(x) in

en su re - s im /ob j (r0 , s)
let s i m / o b j (a o , Ao, so,Po) = type(to) in

if 8 ~Z so then expand(r0)
if type(Ao) = .L then

let Jr}. . . . r~+,~] --
M a k e E C R (n + m) in

let t = lam(7,1.. , rn)(r~+}.... 7,~+,~) in
set type(Ao, t),

let lam(r l . . . r~)(r,+}..., r~+~) = A o in
for i E {1.. .n] do

let si = sizeof(fi), 7,~ = ecr(fl) in
ejoln(si , ri, r~)

for j e [1 . . . m] do
let sn+j = sizeof(rj), r~+j = ecr(rj) in

c jo ln(s .+ j , r'+j, r.+j)

x =, op(yl.., y~)
let 7, = ecr(x) in
for i E [I... n] do

let rl = ecr(yi) in cjoin(s , rl, r)
e n s u r e - s i m / o b j (r , S)
let s i m / o b j (a ' , A', s ' ,p ') = type(7, i in

let (r ' x o') = a ' in
if type(o ') = ze ro then

m a k e - u n k n o w n (d)

x = ~ & y - > n

let rl = ecr(x), r0 -- ecr(y) in
e n s u r e - s i m / o b j (r l , 8)
e n s u r e - s i m / o b j (r0, sizeof(y))
let s i m / o b j (a l , A1,81, Pl) = type(r1)

s im/obj (~2~ A2, 82,p2) = type(to) in
if 8 {Z 81 then expand(r1)
let (r2 x 02) = a2 in

if type(o2) = u n k n o w n then
col lapse (r2), j o i n (a2, a l)

else
unless-zero(o2, r2)
if type(r2) = blank(ss ,p3) then

r n s = []
se t type(r2 , s t r u c t (ms, 8z, P3))
m a k e - c o m p a t i b l e (n , ms)
join((m3(n) x zero) , a l)

elseif type(r2) = s t r u c t (m s , s3, p3) then
m a k e - c o m p a t i b l e (n , m3)
join((m3 (n) X zero) , a l)

else
promote(7,2, sizeof(*y)), jo in(a2 , a l)

x l . . . x,~ ----e,+ +~ P(Yl...Y~)
let ro = ecr(p) in

ensure-s im/obj(7 ,0 , sizeof(p))
let s i m / o b j (a 0 , A0, so,P0) = type(r0) in

if type(A0) = .L then
let [r l . - �9 7n+m] = M a k e E C R (n + m) in

let t = lam(r}. . . , r~)(r~+}..., r,,+m) in
set type(A0, t)

let lam(7,1 . . . r~)(7,~+}. . . . r~+,~) -- A0 in
for i E [1 . . .n] do

let si = sizeof(yi), r~ = eer(yi) in
cjoin(sl , r~, ri)

for j E [1 . . .m] do
let r~+j = ecr(xj) in

e joln(s~+j , rn+j, r~+j)

F i g u r e 5: Inference rules corresponding to the typ ing rules given in Fig. 4.
m a k e - c o m p a t i b l e (n , m) is a side-effecting predica te t ha t modif ies m a p p i n g m to be com-
pat ib le wi th access of s t ruc ture e lement n (if possible and necessary) and re turns a boo lean
value indicat ing the success of this modif icat ion. M a k e E C R (x) cons t ruc t s a list of x new
ECRs , each associated with the b o t t o m type, .L. F igure 6 provides detai ls of the o ther
funct ions used in the above rules.

146

join(('rl x Ol), (T2 X O2)):
if type(ol) = zero then

pending(ol) ~--pending(o2) U
{ <makeunknown,o2 > }

elseif type(o2) = zero then
make-unknown(o2)

join(r1, ~'2)

join(el , e2):
if type(el) = I then

pending(el) ~-pending(el) U
{<join,el,e2>}

else
let e = ecr-union(el, e2) in

pending(e) e-
pending(el) U pending(e2)

type(e) ~- type(e l)
set type(e, unify(el, e2))

settype(e, t):
type(e) ~- t
for a E pending(e) do

case a of
[<join,el,e2>]: join(el , e~)
[<cjoin,s,el,e2>]: cjoin(s, el,ea)

ensure-sim/obj(T, s):
case type(T) Of

[.L]: se t type(r , s i m p l e (l , 1, s, 0))
[blank(s',p)]:

settype(T, s l m p l e (l , 1, s', p))
if s tZ s' then expand(T)

[simple(a, A, s', p)]:
if s [Z s' then expand(T)

[struct(m, s',p)]: p romote(r , s')

expand(e):
let T = blank(T, 0) in

set type(e, unify(type(e), T))

promote(e, s):
let r = o b j e c t (l , 1 , s, 0) in

set type(e, unify(type(e), r))

collapse(e):
let ~ = object(l, I, T, T) in

set type(e, unify(type(e), T))

make-unknown(o):
type(o) ~ unknown
for a E pending(o) do

case a of
[<collapse,T>]: collapse(T)
[<makeunknown,o'>]:

make-unknown(d)

unless-zero(o, T):
if type(o) -- zero then
pending(o) +- {<collapse,T>) U pending(o)

else collapse(v)

cjoin(s, el, e2):
pending(el) ~{<cjoin,s,el,e2>} Upending(e l)
case type(el) of

[I]: /* nothing */
[blank(sl,Pl)]:

if s [Z sl then expand(el)
elseif type(e2) = 1 then

settype(e2, blank(s, $))
elseif s [Z sizeof(type(e~)) then

expand(e2)
[simple(a1, A1,81, Pl)]:

if s [Z st then expand(el)
else

case type(e2) of
[1]: settype(e2, s lmple(a l , A1, s, @))
[blank(s2,p~)]:

se t type (e2, simple(a1, A1, s2, P2))
if s tZ s2 then expand(e2)

[simple(a2, A2, s2,p2)]:
join(a1, or2), join(A1, A2)
if s [Z s2 then expand(e2)

[struct(m2, s2,p2)]: promote(e2, s2)
[object (a2, A2, T, $)]:

jo in(a l , a2), join(At, Aa)
[struct (ml, 81, pl)]:

if s ~ Sl then expand(el)
else

case type(e2) of
[1]: set type(e2, s truct(ml , s, O))
[blank(s2,p2)]:

settype(e2, s t ruc t (ml, s2,p2))
if s [Z s2 then expand(e2)

[simple(a2, A2, s2,p~)]: promote(e2, s2)
[struct (m2, s2, P2)]:

i f s _s2A
Vx E Dom(ml) :

make-compat ible(x , m2) then
for x E Dora(m1) do

cjoln(sizeof(x), rnl (x), rn2 (x))
else expand(e2)

[object (a2, A2, T, ~)]:
for x e Dom(ml) do

cjoin(sizeof(x), ml (x), e2)
[object (at, A1, T, 0)]:

if type(e~) = object(a2, A2, T, 0) then
join(a1, a2), join(A1, A2)

else promote(e2, s)

F i g u r e 6: Implementat ion details for the function used in the inference rules in Figure 5.
ecr(x) is the ECR representing the type of variable x, and t y p e (E) is the type associated
with the ECR E. j o ln (x , y) performs the conditional _=s join and cjoin(s , x, y) performs the
conditional <] s join of ECRs x and y. ecr-union performs a (fast union/find) join operat ion
on its ECR arguments and returns the value of a subsequent find operation on one of them.

147

O(Sc~(S, S)) time complexity, where a is the inverse Ackerman's function [Tar83].
The a(S,S) component of the time complexity is due to the use of fast union/find
data structures. This complexity result is equal to that of our previous algorithm
[Ste96].

Constraints involving s t r u c t types may require processing all the element types in
addition to any joins being performed. If all structures have R or fewer elements, the
algorithm has an O(S) space and O(RSa(S, S)) time complexity. While this means
that the algorithm has a quadratic worst-case running time complexity in terms of S,
the actual running time complexity is likely to be close to linear as R is typically a
fairly small number. While R does grow with program size, the growth is controlled
by the tendency of programmers to group structure elements in substructures when
the number of elements grows large.

6 E x p e r i e n c e

We have implemented a slightly improved version of the above algorithm in our proto-
type programming system based on the Value Dependence Graph (VDG) [WCES94].
The implementation is performed in the Scheme programming language [CR91]. The
implementation uses a weaker typing rule for primitive operations returning boolean
values (thus leading to better results). It also uses predetermined transfer functions
for calls of library functions, effectively making the type inference algorithm be poly-
morphic (context-sensitive) for all direct calls of library functions.

Our implementation demonstrates that the running time of the algorithm is roughly
linear in the size of the input program on our test-suite of around 50 C programs.
We have performed points-to analysis of programs up to 75,000 lines of code 3. The
experience with the algorithm is very encouraging; we are considering doing an im-
plementation that allows piecewise analysis of programs, thus permitting analysis of
programs of a million lines of code or more.

In Table 1 we present empirical data on the performance of the algorithm on the
unoptimized representation of a number of programs. The programs are a subset of
the programs in William Landi's test suite, Todd Austin's test suite, the SPEC92
benchmarks, and LambdaMOO (version 1.7.1) from Xerox PARC. These programs
are the same we presented results for in our previous paper [Ste96]. We have also
included information on analysis of a Microsoft tool of 75,000 lines of C code.

The first column indicates running time for our implementation of the algorithm.
The time is the result of a single measurement. The time includes initial setup and
type inference. The runtime measurements are not directly comparable with the
runtime measurements presented in [Ste96] as the old implementation was able to use
a trick to reduce the number of initial type variables by 50%. The second column
indicates the number of extra distinguishable elements of structured objects compared
with our previous algorithm [Ste96]. An object with two distinguishable elements will
thus contribute a count of one to this number. These numbers are very significant
as they in most cases represent separation of distinguishable elements in central data
structures. The separation has significant second-order effects on the results, but
space limitations prevent us from providing details.

3This is the largest program we have represented in the VDG program representation.

148

Benchmark running I
name time!
landi:allroots
landi:assembler
landi:loader
landi:compiler
landi:simulator
landi:lex315
landi:football
austin:anagram
austin:backprop
austin:bc
austin:ft

0.23/0.21s
2.47/2.38s
0.99/0.96s
1.17/1.16s
2.81/2.62s,
0.50/0.49s
4.34/3.51s]
0.44/0.37s
0.30/0.28s
5.03/4.19s
0.73/0.65s

struct
count

0
10
6
5
8
0
1
2
0

11
12

Benchmark running
name time

o.76/o.~os austin:ks
austin:yacr2
spec:compress
spec:eqntott
spec:espresso
spec:li
spec:sc
spec:alvinn
spec:ear
LambdaMOO
MS tool

struct
count

4
3.40/2.45s 0
1.12/0.80s 0
3.05/2.30s 1
30.0/22.2s 121
8.96/6.47s 41
10.8/8.08s 12
0.28/0.27s 0
2.40/2.12s 6
25.3/19.5s 147
95.4/58.7s 1747

Table 1: Running time (wall time and process time on a 150MHz Indigo2 running Chez
Scheme) and number of extra distinguishable structure components relative to our previous
algorithm [Ste96].

7 R e l a t e d W o r k

The algorithm presented in this paper is an extension of two almost-linear points-
to analysis algorithms that did not distinguish between components of structured
objects [Ste96, Ste95]. William Landi independently arrived at the earliest of these
algorithms [Lan95]. Barbara Ryder and Sean Zhang have independently developed an
similar algorithm that distinguishes components of structured objects [Zha95]. They
use a type system without a .t_ element, substituting the [operator by the = operator,
thus not being as precise as our algorithm. David Morgenthaler extended our earliest
algorithm to distinguish components of structured objects [Mor95]. His algorithm also
uses a type system without a .l_ element and does not incorporate pointer offsets in
the constraint system. Furthermore, his implementation is not meant to deal correctly
with unions. His analysis is performed during parsing of the program.

Henglein used type inference to perform a binding time analysis in almost lin-
ear time [Hen91]. His types represent binding time values. Our points-to analysis
algorithms have been inspired by Hengtein's type inference algorithm.

Choi, et aL, developed a flow-insensitive points-to analysis based on data flow
methods [CBC93]. Their algorithm was only developed for a language with pair
structures (like cons cells in Lisp). Their algorithm has worse time and space com-
plexity than our algorithm. Burke, et al., describes an improvement of the algorithm
[BCCH95]. The improved algorithm does not deal with pointers into structured ob-
jects and has worse time and space complexity than our algorithm. Both algorithms
are potentially more accurate than our algorithm, as their analysis results permit a
location representative to have pointers to multiple other location representatives.

Andersen defined a flow-insensitive, context-sensitive 4 points-to analysis in terms
of constraints and constraint solving [And94]. The values being constrained are sets of
abstract locations, the analysis being more conventional than the analysis presented in
the present paper. His algorithm assumes source programs to be strictly conforming
to ANSI C and may generate unsafe results for the large class of programs written by

4Andersen uses the term "inter-procedural" to mean "context-sensitive".

149

programmers who make "creative" assumptions about the language implementation.
A context-insensitive version of Andersen's algorithm would compute results very
similar to those of [BCCH95] but is likely to be faster since it is based on constraint
solving rather than data flow analysis.

O'Callahan and Jackson convert C programs to ML programs and use ML type
inference to compute the equivalent of points-to results [OJ95]. Not all C programs
can be converted to ML by their techniques, and even then their algorithm may
compute unsafe results due to type casts in the source program.

There exist many interprocedural flow-sensitive data flow analyses, e.g., [CWZ90,
EGH94, WL95, Ruf95]. Both the algorithm by Chase, et al., [CWZ90] and Ruf's
algorithm [Ruf95] are context-insensitive and have polynomial time complexity. The
two other algorithms are context-sensitive. The algorithm by Emami, et al., [EGH94]
has a exponential time complexity (in theory and in practice), as it performs a virtual
unfolding of all non-recursive calls. The algorithm by Wilson and Lam [WL95] also
has exponential time complexity but is likely to exhibit polynomial time complexity
in practice as it uses partial transfer functions to summarize the behavior of already
analyzed functions and procedures.

8 C o n c l u s i o n a n d F u t u r e W o r k

We have presented a flow-insensitive, interprocedural, context-insensitive points-to
analysis based on type inference methods. The algorithm is being implemented. We
will have empirical evidence that the algorithm is very efficient in practice before the
final version of the paper is due.

This work is part of an effort to construct very efficient points-to analysis algo-
rithms for large programs. We have found type inference methods a very useful tool
for doing so. The algorithms presented in this paper and in previous papers [Ste96,
Ste95] are based on monomorphic type inference methods. We have also investigated
extending the algorithm of [Ste96] to use polymorphic type inference methods. We
have yet to combine the extensions to generate an context-sensitive (polymorphic)
points-to algorithm that can distinguish between elements of structured objects.

A c k n o w l e d g m e n t s

Roger Crew, Michael Ernst, Erik Ruf, and Daniel Weise of the Analysts group at
Microsoft Research co-developed the VDG-based programming environment without
which this work would not have come into existence. Daniel Weise and the reviewers
provided helpful comments. The author also enjoyed interesting discussions with
David Morgenthaler, William Griswold, Barbara Ryder, Sean Zhang, and Bill Landi
on performing points-to analysis by type inference methods.

R e f e r e n c e s

[Ame89] American National Standards Institute, Inc. Programming language - - C, December 1989.

land94] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, Department of Computer Science, University of Copenhagen, May 1994.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers--Principles, Techniques, and
Tools. Addison-Wesley, 1986.

150

[BCCH95] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive inter-
procedural alias analysis in the presence of pointers. In Proceedings from the 7th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, volume 892 of Lec-
ture Notes in Computer Science, pages 234-250. Springer-Verlag, 1995. Extended version
published as Research Report RC 19546, IBM T.J. Watson Research Center, September
1994.

[CBC93] Jong-Deok Choi, Michael Burke, and Panl Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In Proceedings of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 232-245, January 1993.

[CR91] William Clinger and Jonathan Rees (editors). Revised 4 report on the algorithmic language
Scheme, November 1991.

[cwzg0] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and struc-
tures. In Proceedings of the SIGPLAN '90 Conference on Programming Language Design
and Implementation, pages 296-310, June 1990.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In SIGPLAN'94: Conference on
Programming Language Design and Implementation, pages 242-256, June 20-24 1994.

[Hen91] Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In Func-
tional Programming and Computer Architecture, pages 448-472, 1991.

[KRBS] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second edition.
Prentice Hall, 1988.

[Lan95] William Landi. Almost linear time points-to analyses. Personal communication at
POPL'95, January 1995.

[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of the SIGPLAN '9~ Conference on Programming Language
Design and Implementation, pages 235-248, June 1992.

[LRZ93] William A. Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modification side
effect analysis with pointer aliasing. In Proceedings of the SIGPLAN '93 Conference on
Programming Language Design and Implementation, pages 56-67, June 1993.

[Mor95] David Morgenthaler. Poster presentation at PLDI'95, June 1995.

[OJ95] Robert O'Callahan and Daniel Jackson. Detecting shared representations using type in-
ference. Technical Report CMU-CS-95-202, School of Computer Science, Carnegie Mellon
University, September 1995.

[Ruf95] Erik Ruf. Context-insensitive alias analysis reconsidered. In SIGPLAN'95 Conference on
Programming Language Design and Implementation, pages 13-22, June 1995.

[Ste95] Bjarne Steensgaard. Points-to analysis in almost linear time. Technical Report MSR-TR-
95-08, Microsoft Research, March 1995.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings 23rd
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1996.

[Tar83] Robert E. Tarjan. Data structures and network flow algorithms. In Regional Conference
Series in Applied Mathematics, volume CMBS 44. SIAM, 1983.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value depen-
dence graphs: Representation without taxation. In Proceedings 21st SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 297-310, January 1994.

[WL95] Robert P. Wilson and Monica S. Lain. Efficient context-sensitive pointer analysis for C
programs. In SIGPLAN'95 Conference on Programming Language Design and Implemen-
tation, pages 1-12, June 1995.

[Zha95] Sean Zhang. Poster presentation at PLDI'95, June 1995.

