
Tiger: A Fast N e w Hash Function

Ross Anderson I and Eli Biham 2

Cambridge University, England; email r j a l 4 @ c l , cam.ac.uk
2 Technion, Haifa, Israel; email biham@cs.tochnion.ac.il

A b s t r a c t . Among those cryptographic hash function which are not
based on block ciphers, MD4 and Snefru seemed initially quite attrac-
tive for applications requiring fast software hashing. However collisions
for Snefru were found in 1990, and recently a collision of MD4 was also
found. This Casts doubt on how long these functions' variants, such as
RIPE-MD, MD5, SHA, SHA1 and Snefru-8, will remain unbroken. Fur-
thermore, all these functions were designed for 32-bit processors, and
cannot be implemented efficiently on the new generation of 64-bit pro-
cessors such as the DEC Alpha. We therefore present a new hash function
which we believe to be secure; it is designed to run quickly on 64-bit pro-
cessors, without being too slow on existing machines.

1 Motivation and Design Requirements

Cryptographic hash functions are very important for cryptographic protocols.
When used with signature schemes, their role is to reduce the amount of data
which must be signed [Pre93] and to break up any properties such as multiplica-
rive homomorphism which might be exploited by an opponent lAnd93]. In short,
they need to be both efficient and secure; and in most commercial applications,
they need to run quickly in software on all the common hardware platforms.

Some hash functions are based on feedforward modes of block ciphers [Pre93],
but the main contenders have been the functions based on MD4 [Pdvg0], which
include MD5 [Riv92], RIPE-MD [RACE95], SHA [NIST92] and SHA-1 [NIST95].
Another family was Snefru, and its derivative Snefru-8 [Mer90].

However, comsions for Snefru were found in 1990 [BSgl] [BS93], and recently
a collision of MD4 has also been found [Dob95]. These attacks cast doubt on
the security of the other members of these families. One may only speculate at
how long each function will remain unbroken; however it seems prudent to start
work now on replacements.

From the performance point of view, all the functions mentioned above were
designed for 32-bit processors. The next generation of processors has 64-bit
words, and includes the DEC Alpha series as well as forthcoming processors
from Intel, HP and IBM. It seems reasonable to assume that, with the exception
of microcontrollers used in embedded applications, the majority of systems will
use 64-bit processors within five years or so. However, on such processors, the
above families of hash functions cannot be implemented efficiently.

90

For example, the MD family uses many 32-bit rotations and additions, so a
64-bit register can only handle one 32-bit value at a time, which decreases the
potential speed by a factor of about two. Moreover, the Alpha architecture does
not have any rotation operations, whether 64-bit or 32-bit.

From these considerations, we believe that a next generation hash function:

- should be secure. At the very least it must be one-way, collision-free and
multiplication-free;

- should run quickly on 64-bit processors, and yet not run too slowly on the
already fielded 32-bit machines such as Intel's 80486;

- should, insofar as possible, be usable as a drop-in replacement for MD4,
MD5, SHA and SHA-1.

2 O u r P r o p o s a l

In this paper we propose a new hash function, which is called Tiger, as it is
strong and fast: as fast as SHA-1 on 32-bit processors, and about three times
faster on 64-bit (DEC Alpha) processors. It is also expected to be faster than
SHA-1 on 16-bit processors, since SHA-1 is optimized for 32-bit machines, while
our proposal is designed to work adequately on many word sizes.

Its main operation is table lookup into four S-boxes, each from eight bits to 64
bits. On 32-bit machines this can be implemented as a pair of table lookups, with
the offset computation done only once. The other operations are 64-bit additions
and subtractions, 64-bit multiplication by small constants (5, 7 and 9), 64-bit
shifts and logical operations such as XOR and NOT. All these operations are
at most twice as slow on 32-1' machines, with the exception of the shifts and
the multiplications by small constants which are four or five times slower (Alpha
processors have special instructions which multiply by constants of the form 4 • 1
and S ~ 1).

For drop-in compatibility, we adopt the outer structure of the MD4 family:
the message is padded by a single '1' bit followed by a string of 'O's and finally
the message length as a 64-bit word. The result is divided into n 512-bit blocks.

The size of the hash value, and of the intermediate state, is three words, or
192 bits. This value was chosen for the following reasons:

1. Since we use 64-bit words, the size should be a multiple of 64;
2. To be compatible with applications using SHA-1, the hash size should be at

least 160 bits;
3. All the successf~ 1 ::hortcut attacks on existing hash functions attack the

intermediate state, rather than the final hash value. The attacker typically
chooses two colliding values for an intermediate block, and this propagates
to a collision of the full function. However, these attacks would not work if
the intermediate hash values were larger.

91

Tiger with the full 192 bits of output in use may be called Tiger/192, and
we recommend its use in all new applications. When replacing other functions
in existing applications, we suggest two shorter variants:

1. Tiger/160: the hash value is the first 160 bits of the result of Tiger/192, and
is used for compatibility with SHA and SHA-1;

2. Tiger/128: the hash value is the first 128 bits of the result of Tiger/192, and
is used for compatibility with MD4, MD5, RIPE-MD, the Snefru variants
and some hash functions based on block ciphers.

We conjecture that all the three variants of Tiger are collision-free, in that col-
lisions for T i g e r / N cannot be found with substantially less effort than 0(2N/2) .
We also believe that they are one-way and multiplication-free land93].

The efficiency of this function is partially based on the potential parallelism
in its design. In the MD and Snefru families, each operation depends directly on
the result of the previous operation, and thus RISC processors cannot be used
efficiently due to pipeline stalls. In each round of Tiger, the eight table lookup
operations can be done in parallel, so compilers can make best use of pipelining.
The design also allows efficient hardware implementation.

The memory size required by Tiger is only slightly more than the size of the
four S boxes. I f this can be accommodated within the cache of the processor,
the computat ion runs about twice as fast (measured on DEC Alpha). The size
of the four S boxes is 4 �9 256 �9 8 = 8096 = 8 Kbytes, which is about the size of
the cache on most machines. I f eight S boxes were used, 16 Kbytes would be
required, which is twice as the size of the cache on Alpha.

3 S p e c i f i c a t i o n

In Tiger all the computat ions are on 64-bit words, in l i t t le-endian/2-complement
representation. We use three 64-bit registers called a, b, and c as the intermediate
hash values. These registers are initialized to h0 which is:

a = OxOI23456789ABCDEF

b = OxFEDCBA9876543210

c = OxFO96ASB4C3B2E187

Each successive 512-bit message block is divided into eight 64-bit words x0,
x l , . . . , xT, and the following computat ion is performed to update hi to h/+l.

This computat ion consists of three passes, and between each of them there is a
key schedule - - an invertible transformation of the input da ta which prevents an
attacker forcing sparse inputs in all three rounds. Finally there is a feedforward
stage in which the new values of a, b, and c are combined with their initial values
to give hi+l:

save_abe

pass(a,b,c,5)
k e y _ s c h e d u l e
p a s s (c , a , b , 7)
k e y _ s c h e d u l e
pass(b,c,a,9)
feedforward

92

where

1. save_abe saves the value of hi

aa= a ;

b b = b ;
CC = C ;

2. p a s s (a , b , c , m u l)

round (a , b ,c ,xO ,mul) ;
r o u n d (b , c , a , x l ,mul) ;
r o u n d (c , a , b , x 2 ,mul) ;
round (a ,b , c , x3 ,mul) ;
round (b , c , a , x4, mul) ;
r o u n d (c , a , b , x S , m u l) ;
r o u n d (a , b , c ,x6 ,mul) ;
round(b ,c , a , x 7 ,mul) ;

where ro tmd (a , b , c , x, mul) is

C = X ;

a - = t l [c _ O] * t 2 [c _ 2] " t 3 [c _ 4] * t 4 [c _ 6] ;

b + = t 4 [c _ 1] * t 3 [c _ 3] * t 2 [c _ 5] " t 1 [c _ 7] ;

b *= mul;

and where c_ i is the i th byte o fc (0 < i < 7). Note that we use the notation
of the C programming language, where " denotes the XOR operator, and
the notation X op= Y means X = X op Y, for any operator op. The S boxes
t l to t4 would take ten pages to publish here, so they will be published
electronically along with the full source code, and made available from the
authors ' world wide web home pages.

93

3. key_schedule is

x O - = x 7 * O x A S A S A S A S A S A 5 A S A 5 ;

x l " = xO ;

x 2 += x l ;

x3 -= x2 * ((' x l) < < 1 9) ;
x4 * = x3;
x5 += x4;
x6 -= x5 ~ ((' x 4) > > 2 3) ;
x7 " = x6;
x0 += xT;
xl -= x0 " (('x7)<<19);
x2 ~= x l ;
x3 += x2;
x4 -= x3 ~ (('X2)>>23) ;
x5 "= x4;
x6 += x5;

x7 -= x6 " OxOI23456789ABCDEF;

where << and >> are logical (rather than arithmetic) shift left and shift right
operators.

4. f e e d f o r w a r d i s

a *= aa ;

b -= bb ;
C + = CC ;

The resultant registers a, b, c are the 192 bits of the (intermediate) hash
value h~+l.

Figure 1 describes the compression function. In this figure the black area
denotes the affected registers, where the slanted lines point to the affecting bytes
in the white area. The variables y0, yl , . . . , y7, and z0, zl, . . . , z7 denote the
values of x0, xl, . . . , x7 in the second and the third passes, respectively. Finally,
the last intermediate value hn is taken as the output of Tiger/192.

4 S e c u r i t y

1. The nonlinearity comes mostly from S-boxes from 8 bits to 64 bits. This
is much bet ter than merely combining additions and XORs (i.e., using the
carry bits), and it affects all the output bits, not just neighboring bits.

2. There is a strong avalanche, in that each message bit affects all the three
registers after three rounds - - much faster than in any other hash function.
The avalanche in 64-bit words (and 64-bit S boxes) is much faster than when
shorter words are used.

94

a b c

I

save abc
round 1
round 2
round 3
round 4
round 5
round 6
round 7
round 8
key schedule
round 9
round 10
round 11
round 12
round 13
round 14
round 15
round 16
key schedule
round 17
round 18
round 19
round 20
round 21
round 22
round 23
round 24

I feedforward

Fig. 1. Outline of the compression function of Tiger

3. As remarked above, all shortcut attacks on MD*/Snefru target one of the in-
termediate blocks. Increasing the intermediate value to 192 bits helps thwart
these attacks.

4. The key schedule ensures that changing a small number of bits in a mes-
sage affects many bits during the various passes. Together with the strong
avalanche, it helps Tiger to resist attacks similar to Dobbertin's differential
attack on MD4 (where changing certain bits in the message affects at most
two bits in many rounds, and then these small differences can be made to
cancel out in the last pass).

5. The multiplication of the register b in each round also contributes to the
resistance to such attacks, since it ensures that bits which were used as inputs
to S boxes in the previous rounds are mixed into other S boxes as well, and

95

to the same S boxes with a different input difference. This multiplication also
prevents related-key []394] at tacks on the hash function, since the constant
differs in each round.

6. The feedforward prevents meet-in-the-middle bir thday at tacks that find preim-
ages of the hash function (although their complexity would be 29~ anyway).

5 Summary

In this paper we have put forward a new hash function, called Tiger, which is
designed to be both fast and secure. Its core is three rounds, each of which uses
eight lookups into 8-to-64-bit S-boxes to provide a strong nonlinear avalanche
plus a number of register operations to increase diffusion and make differential
at tacks harder.

It can be implemented efficiently on 32-bit and 64-bit machines. On the
former it is as fast as SHA1, but unlike SHA1, it can use the full power of 64-
bit machines, on which it is about 2.5 times faster than SHA1. It can also be
implemented on 16-bit machines, on which it should still be faster than SHA1.

It outputs 192-bit hash values. For compatibility with existing hash functions,
we suggest that its output can be truncated to 160 or 128 bits if required for
compatibility with existing applications. We believe that even these shortened
variants are more secure than existing functions of the same output length;
however if the ultra-cautious wish to add extra passes to Tiger, then they are
welcome to do so, and we suggest a multiplicative constant of 9 in all the extra
passes. We call these variants TigerM, or T i g e r M / N , where M is the number
of passes, and N is the number of bits in the hash value.

As usual when suggesting a new cryptographic primitive, we urge people
to study the strength of Tiger; we will appreciate attacks, analysis and any
other comments. More information on the current status of Tiger, an updated
copy of this paper, and reference implementations, will be available at the au-
thors ' home pages at the URLs: h t t p ://www. c s . t e c h n i o n , ac . i l / ' b i h a m / a n d
http ://www. cl. cam. ac .uk/us ers/rj a14/.

R e f e r e n c e s

[And93]

[BS91]

[BS93]

[B94]

RJ Anderson, "The Classification of Hash Functions", in 'Codes and Ci-
phers ', proceedings of Fourth IMA Conference on Cryptography and Coding,
pp 83-93
E Biham, A Shamir, "Differential Cryptanalysis of Snefru, Khafre, REDOC-
II, LOKI and Lucifer (extended abstract)", in Advances in Cryptology --
CRYPTO '91, pp 156-171
E Biham, A Shamir, 'Differential Cryptanalysis of the Data Encryption
Standard' (Springer 1993)
E Biham, "New Types of Cryptanalytic Attacks Using Related Keys" in
Journal of Cryptology v 7 no ~ (199~} pp ~Z9-2~6

[Dob95]
[Mer90]

[NIST92]

[NIST95]

[Pre93]

[Riv90]

[Riv92]

[RACE95]

96

H Dobertin, "MD4 is not collision-free" preprint, September I995
RC Merlde, "A Fast Software One-Way Hash Function" in Journal of Cryp-
tology v 3 no I (1990) pp .~3-58
National Institute of Standards and Technology, 'Secure Hash Standard',
FIPS 186, US Department of Commerce, January 1992
National Institute of Standards and Technology, 'Secure Hash Standard',
FIPS 186-1, US Department of Commerce, April 1995
B Preneel, 'Analysis and Design of Cryptographic Hash Functions', PhD
Thesis, Catholic University of Leuven 1993.
RL Rivest, "The MD4 message-dlgest algorithm", in Advances in Cryptology
- - CRYPTO '90, Springer LNCS v 537 pp 303-311; also Internet RFC 1320,
April 1992
RL Rivest, "The MD5 message-digest algorithm", Internet RFC 1321, April
1992
'Integrity Primitives /or Secure Information Systems', Final Report of

RACE Integrity Primitives Evaluation RIPE-RACE 1040, Springer LNCS
v 1007, 1995.

Appendix - - Source for the Compression Function of Tiger

w o r d 6 4 t11256] ffi { . . . } ;
w o r d S 4 t21288] = { . . . } ;
word64 t31286] = { . . . } ;
w o r d 6 4 t 4 1 2 5 6] = { . . . } ;

TIGER_compression_function (s t a t e , block)
w o r d 6 4 s t a t e [3] ;

unsisned word64 block[8] ;
{

w o r d 6 4 a ffi s t a t e [O] , b = s t a t e [I] , c ffi s t a t e [2] ;

~ord64 xO=b lock [O] , x l = b l o c k [1] , x2 f f ib lock [2] , x 3 = b l o c k [3] ,
x 4 = b l o c k [4] , x S = b l o c k [5] , x 6 = b l o c k [6] , x 7 = b l o c k [7] ;

w o r d 6 4 a a , bb, cc;

#define save_abc aa = a; bb ffi b; cc ffi c;

#define z o u n d (a , b , c , x , m u l) \
c "= x ; \
a -= t l [((c) > > (O * 8)) & O x _ ~] " t 2 [((c } > > (2 * 8)) k O x F F] " \

t 3 [((c)>>(4*8))kOx]PF] " t4 [((c)>>(6*8))kOxF l~J ; \
b +ffi t4[((c)>>(l*8))kOxFF] " t3E((c)>>(3*8))kOxFF] ~ \

t2[((c)>>(5*8))kOxFF] " tl[((c)>>(7*8))kOxFF] ; \
b *= m u l ;

97

d e f i n e p a s s (a , b , c , m u l) \
r o u n d (a , b , c , x O , m u l) \
r o u n d (b , c , a , x l , m u l) \

r o u n d (c , a , b , x 2 , m u l) \

r o u n d (a , b , c , x 3 , m u l) \

r o u n d (b , c , a , x 4 , m u l) \

r o u n d (c , a , b , x S , m u l) \
r o u n d (a , b , c , x 6 , m u l) \

r o u n d (b , c , a , x T , m u l)

#define key_schedule \
xO - = x7 " OxASASASASASASASAS; \
x l "= xO; \

x2 += x l ; \

x3 - = x2 " ((' x l) < < 1 9) ; \
x4 "= x 3 ; \
x5 += x 4 ; \

x6 - = x5 ~ ((' x 4) > > 2 3) ; \

x7 "= x 6 ; \

xO += xT ; \

x l - = xO " ((' x 7) < < 1 9) ; \

x2 "= x l ; \

x3 += x 2 ; \

x4 - = x3 ~ ((' x 2) > > 2 3) ; \

x5 ~= x4; \
x6 += x S ; \

x7 - = x6 ~ O x O 1 2 3 4 5 6 7 8 9 A B C D E F ;

d e f i n e f e e d f o r w a r d a "= a a ; b - = b b ; c += c c ;

d e f i n e c o m p r e s s \

s a v e _ a b c \

p a s s (a , b , c , 5) \

k e y _ s c h e d u l e \

p a s s (c , a , b , 7) \

k e y _ s c h e d u l e \

p a s s (b , c , a , 9) \

feedforward

c o m p r e s s ;

s t a t e [O] -- a ; s t a t e [l] -- b ; s t a t e [2] -- c ;
}

