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Abs t r ac t .  As a generalisation of clock-controlled shift registers, we con- 
sider a class of key-stream generators where a clocking sequence is used 
to control a "pseudorandom" walk on a finite group. 

1 I n t r o d u c t i o n  

Cascades of clock-controlled shift registers have been extensively studied as can- 
didates for secure key-stream generators [2]. It  is possible to regard any clock- 
controlled shift register used in this scheme as a finite state machine whose states 
are the elements of a finite cyclic group of order equal to the period of the reg- 
ister (see Section 2 for details). In this paper, we generalise this construction 
to the case where an arbi trary finite group is used as state space of each com- 
ponent of the cascade. Our motivat ion for this generalisation is twofold. Firstly 
since many  finite groups can be implemented efficiently in both  hardware and 
software, it is realistic to hope that  some of the new generators constructed will 
be useful in practice. Secondly, the broader perspective gained should improve 
our understanding of the strengths and weaknesses of the generators currently 
in  use.  

The rest of this paper  is organised as follows. Section 2 contains a description 
of our generalisation of a clock-controlled shift register. Sections 3 and 4 discuss 
the design criteria for such generators when used in a cascade. Next, we present 
some simple examples of our construction and discuss the statistical properties 
and security of their output  sequences. Finally, we set out our conclusions and 
suggest areas for further research. 

* This research was supported in part by Deutscher Akademischer Austauschdienst and 
the British Council under the British-German Academic Research Collaboration pro- 
gramme. Simon Blackburn is supported by E.P.S.R.C. Research Grant GR/H23719 



Clock-controlled pseudorandom generators on finite groups 7 

2 The basic setup 

A (clock-controlled) group generator consists of the following three components: 

(1) A control generator C producing a periodic binary clocking sequence (c~),_>0 
of least period 7. 

(2) A finite group G = (go, gl) generated by two elements go and gt. 
(3) An output function f :  G --~ GF(2).  

The control generator may be any finite state machine which produces a binary 
output,  e.g., an LFSR or a cascade of clock-controlled group generators. This 
allows us to build cascades from very simple group generators. 

The clocking sequence is used to control a walk on the group G as follows. 
In each step, we move from g E G to ggo if the next bit of the clocking sequence 
is 0 or to ggl otherwise. Starting with the identity of G, this defines the state 
sequence (qi)i>>_o of our generator: 

q-1 := 1 

qi := qi-lgc~ (i > O) 

Hence qi = gco "gcl "" "gc~. In each step, the generator computes an output  bit 
si by applying f to the current state: 

si := f(qi) 

We note that  clock-controlled LFSRs are a special case of our construction: 
Let G = (g) be cyclic of order 2 t - 1 and choose a pair (go = 9~~ = g~) 
generating G. For fixed 0 # fl, c~ E GF(21), where a is a primitive element of 
GF(2I), define the output function f by 

f(ge) := Tr(flae). 

The resulting generator is a clock-controlled LFSR that  is stepped by e0 or el 
steps according to the clocking sequence. In particular, setting go = 1 yields the 
well-known stop-and-go generator. 

We will end this section by giving a simple example of a non-abelian group 
generator: Let G = $3 = ((123), (12)) be the symmetric group of order 6 and 
define the output function f by 

{(1), (23), (12)} ~ 0, {(123), (132), (13)} ~ 1. 

Clocked by the m-sequence 0111010...  of period 7, we obtain the following 
pseudorandom sequence of least period 21: 

101000111110110000110... 

This sequence has periodic linear complexity 18 and a good run length distribu- 
tion. 
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3 T h e  s t a t e  s e q u e n c e  

It seems hard to prove general properties of the output  sequence (si) produced 
by a clock-controlled group generator since these strongly depend on the chosen 
output  function f .  In this section, we are going to analyse the state sequence 
(qi) of a clock-controlled group generator, which does not depend on the output  
function f .  

PERIOD. First, we determine the least period p of the state sequence (qi). Recall 
that  7 denotes the least period of the 'clocking sequence. 

L e m m a  1. p = V �9 ord(q), where q := q7-t  = go0 "gel ' �9 .. �9 g ~ - l .  

Proof. Siffce the clocking sequence (ci) can be reconstructed from the state se- 
quence (qi), p equals the least period of the sequence of pairs (ci, qi), which is 
easy to determine: Obviously, it is a multiple of 7. By definition of q, we have 
qkT-1 -~ qk for k E N. Hence the sequence (ci, qi) has minimal period 17, where 
l = min{k [qk ._ 1} = ord(q). 

To apply this lemma, we have to find the order of q. In general, there seems 
to be no better way than explicitly computing q from one cycle of the clocking 
sequence. However, this is not necessary in some special cases: Modulo its derived 
subgroup G', G is a two-generator abelian group�9 The coset of G ~ containing q 
is uniquely determined by the number of zeroes and ones in one cycle of the 
clocking sequence. Hence the minimum order of an element of this coset is a 
lower bound on the ord(q). See Sections 5 and 6 for examples. 

STATES REACHED. Next, we ask how many times each state occurs in one period 
of (qi). In particular, we would like to know whether the sequence contains all 
possible states. Our intuition is that for good statistical properties of the output  
sequence, the state sequence should hit every element of G about equally often. 

From the definition of q, it is clear that  qi+7 = qqi for all i. It follows that  
if we write a full period of the state sequence (q~) as (e • 7)-matrix , where 
e := ord(q), we obtain 

( qiT+j )O<_i < e,O<_j <.y ---- 

qo ql . . . q  ] 
qqo qql q2 

{ q~qo q2ql i 3 . 

\q~-lqo qe-lqt 

Each column of this matr ix  contains a coset of the cyclic subgroup U := (q) of 
G. Hence we have the following. 

L e m m a  2. (a) The set Q := {qi l i >_ 0} c_ G of states reached by the generator 
is a union of cosets of the cyclic subgroup U := (q). 

(b) All elements of the same cose~ occur equally often in (qi). 



Clock-controlled pseudorandom generators on finite groups 9 

(c) Q = G iff (qo, q l , . . . , q~- l )  contains a transversal of the cosets of U in G. 
(d) (qi) contains every element of G equally often iff (qo,. . . ,  q7-1) contains the 

same number of elements from each coset of U in G. 

In general, one will have to construct the states (q0, . - . ,  q~-l) to check if the 
condition in part  (d) is satisfied. In some special cases however, this can be 
easily seen a priori from simple conditions on the clocking sequence, see the 
examples in Sections 5 and 6. 

STATISTICAL PROPERTIES. One can expect the state sequence to have good 
statistical properties if the clocking sequence has reasonable statistics. To see 
why, suppose that  our generator's clocking sequence consists of independent and 
identically distributed random bits. Then the state sequence corresponds to a 
random walk on G. By general Markov chain theory, the random walk converges 
exponentially fast to a distribution that  periodically cycles through the uniform 
distributions on all cosets of the unique normal subgroup U of G of the form 
U = {go,gl} k. For details and further reference on random walks, see [1]. This 
indicates tha t  the state sequence should still have good statistics if the generator 
is clocked by a reasonable pseudorandom sequence. 

4 T h e  o u t p u t  f u n c t i o n  

The choice of the output  function f is crucial for our generator's performance. 
Of the 2 Icl possible output  functions, we should choose one that  

- is easy and fast to evaluate, 
- guarantees high period and linear complexity of the output  sequence, 
- yields an output  sequence with good statistical properties and 
- disguises the group structure of the generator as much as possible. 

For cryptographic applications, there should be a sufficient number of good out- 
put  functions for a given generator so the choice of f can be used as (part of) a 
secret key. 

Our ul t imate goal is to find an efficient algorithm which when given a suitable 
group G and generators go,g1, finds a set of good output  functions. As this 
appears to be beyond our reach at the moment,  we will discuss some properties 
that  we consider desirable. 

Firstly, we consider how to choose f such that  the output  sequence has large 
period c~. Obviously, cr divides the period p = 7ord(q) of the state sequence. 
How can we make sure that  ~ has the maximum possible value p? A counting 
argument shows that  if the set Q of states reached by the state sequence is large 
enough, then c~ = p for most choices of f .  However, this is not very helpful since 
we have to construct a suitable output  function that  has additional properties. 
Hence we will t ry to find (simple) conditions on f that  guarantee the maximal 
possible period cr = p. 

PROPERTY 1. The least common multiple of the least periods of all sequences 
(f(hqi))i>l, h E Q, should equal ord(q). 
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Since these sequences are all shifted decimations of (si) by 7, Property 1 is a 
necessary condition for cr = p = 7ord(q) according to Lemma 6. Although it is 
not sufficient in general, there are some special cases where Property 1 guarantees 
O'~p:  

L e m m a 3 .  Suppose that 7 = pa and ord(q) = pb (a, b ) 1) are powers of the 
same prime p. Then Property 1 implies c~ = p. 

Proof. As p is prime, cr[7ord(q ) = pa+b must be a power of p as well: cr = pC. 
Since b > 1, it follows from Lemma 7 that c > a and b = c - a. 

PaOPEaTY 2. The function f should be nearly balanced (so I l f - l ( 0 )  l - I f - l ( 1 ) l [  
should be small). 

We want our output  sequence to contain about same number of zeroes and 
ones. Property 2 guarantees this if we assume that  the state sequence hits every 
element of G equally often. 

If the output  sequence is to be cryptographically secure, it is desirable that  
deducing any information about the state sequence from the output  sequence 
should be difficult. Thus f should disguise the group structure as much as pos- 
sible. 

PROPERTY 3. For any proper normal subgroup N of G, f should not be constant 
on every coset of N. 

Otherwise, the generator is equivalent to one based on the smaller factor group 
G / N .  In particular, f or its complement should not be group homomorphisms. 
In fact, if a close approximation to f fails Property 3, then f is also a poor choice 
because then the generator can be approximated by a smaller one. 

We now introduce a much stronger property, which is easily seen to imply 
Property 3. 

PROPERTY 4. The function f does not correlate with multiplication in G: 

vg c \ {1}: I{x e G I/(xg) = = [GI/2. 

To see why this requirement makes sense, suppose that  for some g C G, f ( z )  = 
f ( z 9 )  for significantly more (or less) than half of all z E G. Then for all positions 
i < j with qj = qig, sj can be predicted by si (resp. its complement),  with high 
probability. Such correlations could also be used to gain information about the 
state sequence from the output  sequence. Hence for cryptographic strength of 
our generator, f should - at least approximately - have Property 4. 

Functions satisfying Property 4 have been studied in the case when G is an 
elementary abelian 2-group under the name of bent functions [5]. By analogy 
with this case, we say a function f is bent if it satisfies Property 4. 

Unfortunately, bent functions do not exist for all groups and are never com- 
pletely balanced: 
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T h e o r e m 4 .  Let G be a group of order n. Suppose that f is a bent function on 
G and define z := {f-l(O)l to be ~he number of zeroes o f f .  Then n mus~ be an 
even square and z = (n + v/-ff)/2. 

Proof. For any elements z, y E G, define the integer t (z ,  y) by 

1 if f (z) = f ( zy )  and 
t (x ,y)  := - 1  i f f ( x )  # f(xy)  

We evaluate the sum ~ . e c  )--~-yeG t(x, y) in two different ways: Firstly, 

E 
~eG yeG seG xEG yEG\ {1} 

since because f is bent, )-'~zeG t(z, y) = 0 for any y # 1. Secondly, 

~eG yeG :v6..: -I (0) yEG z6f -I (1) yEG 

-- z ( 2 z -  n) + ( n -  z ) ( n -  2z) 

= (n - 2 z )  2. 

Thus n = (n - 2z) 2 and hence n is a square and z = (n + v ~ ) / 2 .  The theorem 
follows, since clearly n must be even. 

It is not clear whether bent functions exist for every group whose order is an 
even square, nor do we know how to find them efficiently. If G is an elementary 
abelian 2-group, efficient constructions of bent functions are well known, see 
[5]. For small examples of non-abelian groups, we have found bent functions by 
exhaustive search. However, this approach is not feasible unless G is very small, 
say IGI _< 25. The fact that  bent functions are not perfectly balanced does not 
seem to be a problem in practice since if a balanced function is desired, we can 
complement an appropriate number of bits to produce a balanced function which 
still has reasonable correlation properties. Even if no bent function exists for a 
given group, we can search for "approximately bent" functions. 

Despite their good correlation properties, we are not sure that  bent functions 
are the ideal choice for cryptographically secure output functions. Because the 
property of being bent is so strong, it may well force extra structure upon the 
function which can be exploited in an attack. Some experimental evidence of 
such phenomena is presented in Sections 5 and 6. However, the structures we 
found would only exhibit themselves over long segments of the sequence, so they 
might not be detectable in practical situations. 

5 E x a m p l e  1: T h e  q u a t e r n i o n  g r o u p  g e n e r a t o r  

In this section, we will have a closer look at a group generator based on the 
group of quaternions. 



12 U. Baum and S. Blackburn 

THE GENERATOR. In the notation of our basic setup, choose 

G := ( i , j  l i 2 = j2 = i j i j  = -1} = { 1 , - 1 ,  i , - i , j , - j ,  i j , - i j } ,  

the quaternion group of order 8 with generators g0 := i and gl := j .  

STATE SEQUENCE. Modulo the commutator  subgroup G r = {1 , -1} ,  the gener- 
ators commute and have order 2. Hence the coset of G r containing a state qi is 
uniquely determined by the number of zeroes and ones in the first i bits of the 
clocking sequence. Since all elements of G \ G ~ have order 4, we know that  the 
state q reached after a full period of the clocldng sequence has order 4 iff one 
cycle of (ci) contains an odd number of zeroes or ones, or both. In this case, the 
state sequence has period a = 47. 

From now on, suppose that the clocking sequence has least period 7 = 2k 
and odd weight. Then it is clear that  q = +ij  has order 4, so the state sequence 
has period p = 47 = 2 k+2. 

We claim that  the state sequence hits every element of G the same number 
of times in each cycle. To see this, look at the subgroup generated by q: 

U = (q} = {1 , -1 ,  i j , - i j } .  

Since U has index 2 in G and does not contain the generators go = i and gq = j ,  
the state sequence alternates between elements of U and elements of the coset 
iU = jU  = G \ U. Since 7 is even, it follows by Lemma 2 that  every group 
element is reached exactly 7/2 times in one cycle of the state sequence. 

OUTPUT FUNCTION. Next, we have to choose a suitable output  function f sat- 
isfying Properties 1-4 of Section 4. Since 8 is not a square, no bent functions on 
G exist according to Theorem 4, so we have looked for functions that  have Prop- 
erties 1-3 and are approximately bent. By exhaustive search using the group 
theory package GAP [3], we have found the following 8 best candidates for f 
that  look very much alike. 

1 - 1 j  - j  i - i  i j  - i j  
f l l  01  10  0 1 0 
f20  11 10 0 1 0 
f 3 1  00  01  1 1 0 
f 4 0  10 01  1 1 0 
f s 1  01  10  0 0 1 
f 6 0  11 10 0 0 1 
fT1  00  01  1 0 1 
f s 0  10  01  1 0 1 

If we use one of these output  functions, the resulting binary output  sequence of 
our generator has least period ~r = p = 47 by Lemma 3. Since this is a power of 
2, the linear complexity of the sequence is at least half the period according to 
Lemma 8. 
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IMPLEMENTATION. The quaternion group generator is very easy to implement 
in hard- or software: If we represent the elements of G by three bits according 
to 

(a,b,c) ~ ~ ( - -1)aibj  c, 

multiplication by i means (a, b, c) ~-* (a | b @ c, b, c) while multiplication by j 
amounts to (a, b, c) ~ (a �9 b, b, ~). The output function can be implemented by 
a lookup table or a few boolean gates. In this implementation, we can expect 
our generator to be about as fast as a 3-bit LFSR. 

CASCADES. Since one quaternion group generator is too small to be useful in 
practice, we are interested in cascading them. If we can make sure that the 
clocking input of each generator in the cascade has odd weight, we know that 
the period and linear complexity of our sequence is increased by a factor of 4 
in each stage. Unfortunately, the ~)utput of our generator has even weight since 
the output function has weight 4 and every group element is reached the same 
number of times. A simple (but cryptographically questionable) way to overcome 
this difficulty is to change one output bit in each cycle of each stage. 

When building cascades of LFSR, it is common to add the input of each 
stage to its output. Our experiments indicate that that the sequences obtained 
from cascades of quaternion group generators have better statistical properties 
if we do this as well. 

For cryptographic applications, a key of three bits per stage can be used to 
choose one of the 8 output functions f l , -  �9 fs in each stage. 

EXPERIMENTS. We have implemented a cascade of quaternion group generators 
in software using the group theory system GAP [3]. Each stage uses the output 
function fl  from the table above and adds its input to its output. Between the 
stages, the first output bit is changed to guarantee that all clocking sequence in 
the cascade have odd weight. Clocking a four-stage cascade with the sequence 
(1, 0, 0, 0), we obtain the following sequences: 

(1011110001101001) 

(1010111111011100110100000110011101111010100010011000010100110010) 

(1010000100001111111000010011001110010111001111001100011000000001 
1100101110110000000010111101110000111601110001110110100010101010 
0111010001011010101101000110011011000010011010011001001101010100 
1001111011100101010111101000100101101100100100100011110111111111) 

(1010010010111110111001001010101011001100000001010101001100010001 
1010100000101011101111010000111110101100111111000011001111001001 
1100001010001100100000101000100010101111001100100010000000110111 
1100111000001000110110110011110011011111110010100101000011101110 
1100111101000001000011110101010101110110101011111111110110111010 
0101001011010100010001111011000001010111000001101101110001110010 
0110110100110111001011010011001101010001110111001100101011011000 
0111000010110011011001011100011101100000011101001111101100010001 
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0111000111101011101100011111111110011001010100000000011001000100 
IIII110101111110111010000101101011111001101010010110011010011100 
I001011111011001110101111101110111111010011001110111010101100010 
I001101101011101100011100110100110001010100111110000010110111011 
I001101000010100010110100000000000100011111110101010100011101111 
0000011110000001000100101110010100000010010100111000100100100111 
0011100001100010011110000110011000000100100010011001111110001101 
0010010111100110001100001001001000110101001000011010111001000100) 

The output  sequence of the fourth stage has period and linear complexity 
4 ~ = 1024. The graph below shows that  its linear complexity profile is nearly 
optimal, i.e. very close to the line y = x/2: 
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For all nonnegative integers k, the k-error linear complexity of a binary se- 
quence is defined to be the smallest linear complexity that  can be obtained by 
changing at most k bits of the sequence. The k-error linear complexity is an im- 
portant  indicator for the security of pseudorandom sequences: a sequence that  
has high linear complexity but  is close to a sequence with low linear complexity, 
such as (0n 1), is cryptographieally weak. See [6] for an  algorithm which calcu- 
lates the k-error complexity of a binary sequence of period 2 n. The k-error linear 
complexity of our sequence looks as follows: 
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0 
1-254 
255-256 
257-510 
511-512 
> 513 

k-error linear complexity 
1024 
514 
513 
257 
1 
0 

Note that the linear complexity drops down to 514 if a single error is allowed. 
This happens because we changed one bit of the output sequence in order to 
give it odd weight. So in fact, the output sequence has linear complexity 514 
which is quite close to the minimum value 512 from Lemma 8 and certainly far 
from the expected value of 1023 for a random sequence. This indicates that the 
sequence might have some hidden structure. 

The sequence contains 511 zeroes and 512 ones with the following run length 
distribution (compared to the ideal values for true random sequences): 

l 11216 2 3 4 5 6 7 8 9 1 0 1 1  
0-runs of length 71 31 13 8 4 2 0 1 0 1 

~: 1-runs of length 1 131 61 36 12 8 5 2 0 0 2 0 
ideal value 128 64 32 16 8 4 2 1 0 0 0 

This run length distribution comes quite close to what might be expected from 
a random sequence. 

Finally, we look at the autocorrelation function of the sequence. For a true 
random sequence, this should be constant at about 512 (half the length of the 
sequence): 

1024 

512 
.'. "..-'.;'," q "  . ' . ' f ' ,  " ' " ,  . . . .  ": . �9 - : .." - .  . , " ' "  . - ' ( . ' .  ",:" ','k ::,,,," ".. 

Q Q 

I I ' -  I 

0 256 768 1024 
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From the distinctive low values at shifts of 256 and 768, it can bee seen that  the 
sequence has some global structure. In fact, we found the following symmetries: 
If the first half of the sequence is XORed to the second, we obtain (except for 
the first bit which was changed in the output) the alternating sequence 0101 . . . .  
This problem is caused by the output  function: A shift of 512 = 27 in the state 
sequence is equivalent to multiplication by q2 = _ 1. Since f ( - g )  equals f ( g )  if 
g E (q) and f (g )  otherwise, the sequence (s~ | s~+512)i>0 ~ alternates between 0 
and 1. 

CRYPTOGRAPHIC STRENGTH. Our sequence has sufficiently large period and 
linear complexity, a good local linear complexity profile and a good run length 
distribution. Unfortuflately, it shows some strong correlations over large dis- 
tances, and will thus be cryptographically weak if large portions of the sequence 
are used. However, the experiments indicate that  the sequence is quite secure if 
only segments up to length 256 are used. 

6 E x a m p l e  2: T h e  q u a t e r n i o n  g r o u p  o f  o r d e r  x 6  

In a similar way, we can define a group generator using the quaternion group of 
order 16. 

THE GENERATOR. We use the 

a:=(h, kl 

and the generators go := h and 

STATE SEQUENCE. Modulo the 
ators commute and have order 

quaternion group of order 16 defined by 

k 4 = h  2 'h 4 = l , ( h , k ) = k  -2) 

gl := kah. 

derived subgroup G p = (k ~, h2}, the two gener- 
2. The group G contains four elements of order 

8, which form the coset goglG'  = {k, kh 2, k 3, k3h2}. Hence q has order 8 iff one 
period of the clocking sequence contains an odd number of zeroes and an odd 
number of ones. In this case, the state sequen~ e has least period 87. 

The same argument as in Section 5 can be used to show that  the state 
sequence hits every element of G the same number of times in one cycle. 

OUTPUT FUNCTION. Again, we used GAP to search for a suitable output  func- 
tion. As the order of G is a square, bent functions on G may exist. By Theorem 
4, such bent functions will not be balanced, but have either 6 or 10 zeroes. By 
exhaustive search, we have found 128 bent functions on G with 10 zeroes. The 
complements of these functions are the bent functions of G with 6 zeroes. Of 
these bent functions, we used the following as output  function for the experi- 
ments: 

1 h ~ h h 3 k2h k2h 3 k~h 2 k S k kh 2 kh kh 3 k3h k3h3k3h 2 k 3 
10 10 ] 0 1 0 11 0 0 0 0 0 0 

IMPLEMENTATION. There is an efficient four-bit representation of G similar to 
the one of the quaternion group of order 8 given in Section 5: 
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The choice of 256 possible output functions will give us up to 8 bits of key for 
each stage of a cascade. 

CASCADES. The comments in the previous section apply. 

EXPERIMENTS. We have also implemented a cascade of these generators in GAP. 
Each stage uses the output function from the table above. As with the Qs- 
generator, we add the input of each stage to its output and change the first 
output bit to make sure that all sequences in the cascade have odd weight. 
Clocking a three-stage cascade with the sequence (1, 1, 1, 0, 0, 0, 0, 0), the output 
of the third stage is the following sequence of period and linear complexity 
84 = 4096. 

( •••••••••••••••••••••••••••••••••••••••••••••••••••••••••1•••••••••1•••••••••••••••••••••••••••••••• 
~ ~ 1 ~ o ~ 1 ~ 1 ~ o ~ 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~  
~ ~ G ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ 1 1 ~ o o ~ 1 1 ~ 1 ~ 1 ~ o ~ o ~ 1 ~  
~ 1 ~ o ~ o ~ l o ~ o ~ O ~ 1 ~ 1 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 ~ o o ~ o ~ 1 ~ o o ~ o 1 ~ 1 ~ 1 ~  
~ 1 1 1 ~ 1 ~ o ~ ~ 1 ~ 1 ~ 1 ~ 1 ~ O ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ 1 ~ ~ o ~ 1 ~  
o ~ ~ o ~ o ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ o ~ o 1 ~ o ~ o ~ 1 o ~ o ~ o o o ~ o 1 ~ o ~ o ~ 1 ~ o ~ o ~ o  
~ G ~ 1 ~ ~ o ~ G 1 ~ o ~ o ~ o ~ 1 ~ o o ~ o o ~ o 1 I o ~ 1 1 ~ 1 ~ 1 ~  
~ o ~ G ~ ~ 1 ~ 1 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ 1 1 ~ o o 1 1 1 ~ 1 o ~  
~ 1 ~ 1 ~ o ~ o o ~ o ~ o o ~ o ~ o o o ~ 1 ~ 1 ~ 1 1 ~ ~ 1 1 ~ 1 1 ~ 1 ~ ~  
~ O ~ o ~ o ~ 1 o 1 ~ o ~ o ~ o ~ 1 ~ 1 ~ O ~ o ~ 1 ~ o ~ 1 o ~ o o o ~ 1 ~ o o ~  
~ o ~ o ~ 1 1 ~ 1 1 ~ 1 ~ o 1 G ~ 1 o o o ~ o ~ o ~ 1 ~ 1 ~ ~ ~ l o ~ o ~ o o ~ G ~ 1 ~  
~ 1 ~ 1 ~ ~ 1 ~ o ~ o ~ I ~ ~ o ~ o ~ o ~ 1 ~ 1 ~ ~  
~ o 1 ~ l ~ 1 ~ 1 ~ 1 ~ 1 1 ~ ~ 1 ~ ~ 1 ~ 1 ~ 1 ~ o o ~  
~ I ~ o ~ 1 ~ o ~ 1 ~ o o ~ 1 ~ 1 ~ o ~ o o 1 ~ 1 ~ o ~ o 1 ~ 1 o ~ o ~ o 1 o ~ 1 ~  
~ 1 ~ o ~ 1 ~ o ~ o ~ o ~ 1 ~ 1 ~ o ~ o ~ o o ~ 1 ~ 1 o ~ o ~ o o ~ o ~ o 1 o o ~ o ~ 1 ~ o o ~ 1 ~  
~ O ~ o i ~ 1 1 ~ 1 ~ 1 ~ G ~ 1 ~ 1 ~ o 1 o ~ 1 ~ o ~ o o ~ o ~ o ~ 1 ~ o ~ 1 ~ o ~ 1 o ~ o ~ G ~  
~ 1 o 1 ~ 1 ~ o ~ G ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 o o ~ I G ~ G ~ I ~ 1 1 o 1 ~ o ~ 1 ~ 1 ~  
~ ~ 1 ~ i ~ ~ 1 l ~ 1 ~ ~ 1 ~ 1 G ~ ~ 1 ~  
~ o ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ o ~ 1 ~ o ~ l ~ 1 1 o ~ ~ l ~ 1 ~  
1 1 ~ o ~ 1 ~ o o 1 1 ~ o 1 o ~ 1 ~ o ~ o ~ 1 ~ l ~ o ~ o 1 ~ o ~ o o ~ ~ o ~ I o ~ 1 ~ 1 ~ I o ~  
~ o ~ 1 ~ o ~ ~ o 1 1 ~ I ~ o ~ 1 ~ o ~ 1 ~ o o ~ o ~ o ~ o ~ 1 ~ ~ o ~ o 1 ~  
~ ~ Q ~ 1 1 ~ ~ G ~ 1 ~ o 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 o ~ o o ~ o o ~  
~ 1 ~ ~ O ~ ~ o 1 o ~ 1 1 ~ ~ 1 ~ ~ o 1 ~ ~ 1 ~ 1 ~  
~ 1 ~ 1 o o ~ 1 o 1 ~ 1 ~ 1 1 1 ~ o ~ 1 ~ o ~ 1 ~ ~ 1 ~ o ~ o ~ o o ~ 1 ~ 1 ~  
~ 9 ~ O ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 1 ~ o ~ 1 1 ~ 1 ~ 1 ~ 1 ~  
~ o l ~ o ~ 1 ~ I ~ o ~ 1 ~ 1 ~ o o ~ o ~ 1 o ~ O ~ ~ 1 ~ 1 ~  
~ ~ o ~ o 1 ~ 1 ~ 1 ~ o 1 ~ G ~ o ~ o o ~ 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ 1 ~ o 1 o ~  
~ o ~ 1 ~ 1 ~ 1 1 ~ l ~ ~ 1 ~ o o ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ o ~  
~ I ~ 1 ~ o ~ 1 ~ 1 1 ~ ~ G ~ 1 o ~ ~ 1 O ~ 1 ~  
~ o 1 ~ 1 ~ 1 ~ 1 1 ~ 1 ~ o ~ o ~ o ~ o ~ G ~ 1 ~ 1 o ~ G o ~ o ~ o ~ o o ~ o ~ o ~ G ~  
~ ~ o ~ o ~ 1 o ~ o ~ o o o ~ 1 ~ 1 ~ o o ~ o ~ o ~ o ~ 1 ~ 1 ~ 1 ~ o G 1 ~ o ~ o  
~ o ~ 1 ~ ~ ~ o ~ 1 o ~ 1 ~ 1 ~ 1 ~ 1 ~ o ~ I 1 1 ~ 1 ~ 1 ~ 1 1 ~ o ~ 1 ~ o ~ 1 1  
~ 1 ~ 1 1 o ~ 1 ~ 1 ~ 1 ~ ~ 1 ~ 1 o ~ o ~ 1 ~ 1 ~ ~ 1 ~ G ~ o ~ o o o ~ 1 ~  
~ o ~ 1 o ~ o o ~ o ~ o ~ 1 ~ 1 ~ O 1 1 ~ 1 ~ o ~ 1 ~ o ~ I ~ 1 ~ 1 ~ o 1 ~ 1 ~  
~ 1 ~ o ~ 1 ~ 1 ~ o o 1 ~ 1 ~ ~ o ~ ~ l o ~ o o 1 ~ 1 1 ~ 1 1  
1 ~ 1 ~ G O ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ o ~ o o o ~ 1 ~ 1 ~ o ~ 1 1 1 ~  
~ o ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ O ~ 1 ~ 1 ~ o o ~ 1 ~  
~ G ~ G ~ O ~ 1 1 ~ o ~ o ~ ~ 1 ~ 1 1 ~ 1 ~ o ~ 1 ~ 1 ~ o ~ o ~ I ~ o  
~ 1 1 ~ 1 ~ 1 ~ 1 1 ~ I 1 ~ o ~ 1 ~ ~ ~ 1 ~ o ~ 1 ~ 1 ~ 1 ~ 1 ~  
~ ~ 1 ~ ~ 1 1 ~ o ~ o ~ 1 l ~ 1 1 ~ 1 1 ~ O 1 1 ~ 1 ~ 1 ~ o ~ o G 1 1 ~ o o 1 ~ 1 ~ 1 ~  
11•••110o1oo•1•••1••1o••••1•o•1•11••111•oooo1•1••••1•1••1•o•11o1o11•1•11•0•••••1••1•1oooo111•111 ) 
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The linear complexity profile looks good as well: 

4096 / 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

o /  
"~ 8192' 

Its k-error linear complexity looks similar to the one of the sequer/ce in Sec- 
tion 5: 

k k-error linear complexity 
0 4096 
1-1022 2561 
1023-1534 
1535-1790 
1791-1918 
1919-1982 
1983-1984i 
> 1985 

1026 
321 
41 
T 
2 
0 

Again, one might argue that the relatively low linear complexity of 2561 ob- 
tained when changing the first bit back to its original value hints at some global 
structure. 

The sequence contains 2111 zeroes and 1985 ones with the following run 
length distribution, which is close enough to the ideal distribution for true r~n- 
dom sequences: 

l I 1 2 3 4 5 6 7 8  
# 0-runs of length 1t522 269 114 61 33 12 8 2 1 1 1 
# 1-runs of length/1486 267 137 66 32 15 11 4 3 3 0 
ideal value 1512 256 128 64 32 16 8 4 2 1 0 

Finally, we have computed the autocorrelation function of the sequence. Over 
all shifts # 0, its minimum is 1920 and its maximum is 2222. All values being 
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CRYPTOGRAPHIC STRENGTH. So far, the test results indicate that  we have found 
a good pseudorandom sequence. However, there are global correlations: When 
we change the first bit back to its original value, divide the sequence into four 
even parts and bitwise XOR them together, we obtain the all-zero sequence. In 
other words, 

8i ~ 8i+1024 ~ 8i-t-2048 ~ 8i+3072 : 0 

for all i. Again, this shows that  using large portions of the sequence should be 
avoided. This behaviour is caused by regularities in the output  function similar 
to those discovered at the end of Section 5. 

7 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

In this paper, we have generalised the notion of a clock controlled shift register 
to that  of a register based on a finite group. We have shown how these registers 
can be cascaded to produce sequences of high period and linear complexity. Are 
the sequences produced by these cascades cryptographically secure ? 

As pointed out in the sections above, the sequences produced by our gen- 
erators do exhibit some structure. This structure certainly makes the use of 
especially long segments of the sequences unwise. However, if we suppose that  
only a portion of a period of the output  sequence is used, the structures detailed 
in the previous sections do not seem to affect the security of the sequence since 
they involve terms of the output  sequence that  are very widely spaced. Since 
the local linear complexity profiles and run length distribution of the output  
sequences seem good, we have an indication that  the sequences are secure when 
segments of reasonable length are used. 

How can we maximise the assurance of security that  our system gives ? The 
system depends on a careful choice of the output  function of each generator in 
our cascade. We need to develop and expand the criteria given in Section 4. In 
particular, should we choose the output  function to be bent? Maybe a function 
which only approximately satisfies the bent property but which performs better 
under other criteria is more appropriate. Further research - both experimental 
and theoretical - is needed on this matter.  Is the form of the cascade we have 
used the most secure possible ? For example, we assume that  the input to each 
stage is XORed with the output  of the register. This operation seems to greatly 
improve the run length distribution of final output  over that  of a similar cascade 
with the XOR operation removed. Why is this, and can a different operation be 
introduced which increases the security of the output  of the cascade ? 

We believe that  the concept of a bent function over a finite group is of interest 
in its own right, irrespective of its application in the situation outlined here. Do 
bent  functions exist over any group whose order is an even square ? Certainly 
plenty of bent functions exist over the groups we have examined. Can large 
families of bent functions be constructed over certain families of groups ? The 
only constructions known so far apply only when the group is an elementary 
abelian 2-group. 
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In summary, the sequences produced by cascades of generators based on fi- 
nite groups provide an interesting generalisation of the standard cascades of shift 
registers which can often be efficiently implemented. The output  of such gener- 
ators can have guaranteed minimum period and linear complexity. Experiments 
indicate that the sequences also have good linear complexity profiles and au- 
tocorrelation properties. However, further work is needed to establish that  the 
sequences produced by cascades of this type are secure. 

8 Appendix:  well-known facts on period and linear 
complexity 

For the convenience of the reader, this section contains a collection of well-known 
facts about period and linear complexity of binary sequences. These have been 
used in the proofs throughout this paper. 

L e m m a 5 .  Let (si)i>_o be a periodic sequence of least period p. For d, j E N,  de- 
fine the (shifted) d-decimation (~ri)i>o of (si) by ~i := Sid+j. Then the following 
holds: 

(1) The least period ~r of (cri) divides p/(p, d). 
(2) I f  (p,d) = 1 then 7r = p. 
(3) For (p, d) > 1, 7r may be strictly less than p/(p, d). 
(4) I f  (si) has an irreducible minimal polynomial, then either re = p/(p, d) or 

(~ri) is the zero sequence. 

Proof. (1) For all i, we have 

O'i+p/(p,d) = S ( i + p / ( p , d ) ) d T j  ---- 8 i d T j  % lcm (p,d) = 8 i d T j  --" O'i, 

hence ~rlp/ (p, d). 
(2) For all i, we have 

8( idTj )TTrd  ~ 8(i+Tr)dTj ~ O'iTTr ~ O'i ~ S i d T j .  

As (p,d) = 1, { i d + j  m o d p  ] i _> 0} = { 0 , . . . , p -  1}, hence si+~4 = si for all 
i _> 0. It follows that p]~rd. Since (p, d) = 1, we have pier. Together with (1), our 
claim follows. 

(3) Example: Decimating the sequence 100010 by d = 2, we obtain 101 for 
j = 0 and 000 for j = 1. 

(4) [4, Ex. 9.5,p. 364]. 

L e m m a 6 .  Let (si)i~o be a periodic sequence of least period rod. For j >_ O, 
let kj denote the least period of the decimated s e q u e n c e  ( S i d + j ) i > o .  (Obviously, 
kj = kj rood d') Then m = lcm(ko, . . . ,kd_l) .  

Proof. Let 1 := lcm(k0, . . . ,  kd-1) = lcm({kj}j>o). For all j > 0, we have Std+j = 
sj since l is a multiple of the period kj. It follows that (si) is/d-periodic, hence 
m d ] l d  and m l l .  

On the other hand, kj I m for all j by Lemma 5(1), hence 1 [m. 
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L e m m a  7. Let (si)i>o be a sequence of least period pk. I f  we decimate this se- 
quence by pn, the least common multiple l of the least periods of all such deci- 
mations equals pk-n for k > n and 1 otherwise. 

Proof. Follows from the previous lemma and Lemma 5(1). 

L e m m a S .  The linear complexity of a sequence (si)i>_o of, least period p '~ over a 
finite field of characteristic p is at least p~- i  It equals pn iff s o + s 1 + . . . + s p ~ _ l  ~k 
O, 

Proof. Since x v~ - 1 = (x - 1) v~ in characteristic p, the minimal polynomial of 

s has the form (x - 1) l for some I <_ p~. For l < p~- l ,  it would divide x v~-1 - 1, 
and the minimal period would be a divisor of p n - 1  contradicting our initial 
assumption. Hence I >_ pn-1. 

Let s(x) := }-']i>0 six'  denote the generating function of s. Since l < p~, we 

have (x - 1)V"s(x) = 0. It follows that  I = p~ iff 

x p~ - 1 . (X p'~-I "Ji- X p ' ~ - 2  1)8(g) ( X - - 1 ) P " - l s ( x ) =  X--1  S(X) = + . . . + X +  # 0 ,  

which proves the second claim. 
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