
Clock-controlled pseudorandom generators on
finite groups*

Ulrich Baum 1 and Simon Blackburn 2

1 Institut fiir Informatik V, Universits Bonn,
RSmerstraBe 164, 53117 Bonn, Germany.

uli@leon.cs.uni-bonn.de
2 Department of Mathematics, Royal Holloway,

University of London, Egham, Surrey TW20 0EX, UK.
uhah058@vax.rhbnc.ac.uk

Abs t r ac t . As a generalisation of clock-controlled shift registers, we con-
sider a class of key-stream generators where a clocking sequence is used
to control a "pseudorandom" walk on a finite group.

1 I n t r o d u c t i o n

Cascades of clock-controlled shift registers have been extensively studied as can-
didates for secure key-stream generators [2]. It is possible to regard any clock-
controlled shift register used in this scheme as a finite state machine whose states
are the elements of a finite cyclic group of order equal to the period of the reg-
ister (see Section 2 for details). In this paper, we generalise this construction
to the case where an arbi trary finite group is used as state space of each com-
ponent of the cascade. Our motivat ion for this generalisation is twofold. Firstly
since many finite groups can be implemented efficiently in both hardware and
software, it is realistic to hope that some of the new generators constructed will
be useful in practice. Secondly, the broader perspective gained should improve
our understanding of the strengths and weaknesses of the generators currently
in use.

The rest of this paper is organised as follows. Section 2 contains a description
of our generalisation of a clock-controlled shift register. Sections 3 and 4 discuss
the design criteria for such generators when used in a cascade. Next, we present
some simple examples of our construction and discuss the statistical properties
and security of their output sequences. Finally, we set out our conclusions and
suggest areas for further research.

* This research was supported in part by Deutscher Akademischer Austauschdienst and
the British Council under the British-German Academic Research Collaboration pro-
gramme. Simon Blackburn is supported by E.P.S.R.C. Research Grant GR/H23719

Clock-controlled pseudorandom generators on finite groups 7

2 The basic setup

A (clock-controlled) group generator consists of the following three components:

(1) A control generator C producing a periodic binary clocking sequence (c~),_>0
of least period 7.

(2) A finite group G = (go, gl) generated by two elements go and gt.
(3) An output function f : G --~ GF(2).

The control generator may be any finite state machine which produces a binary
output, e.g., an LFSR or a cascade of clock-controlled group generators. This
allows us to build cascades from very simple group generators.

The clocking sequence is used to control a walk on the group G as follows.
In each step, we move from g E G to ggo if the next bit of the clocking sequence
is 0 or to ggl otherwise. Starting with the identity of G, this defines the state
sequence (qi)i>>_o of our generator:

q-1 := 1

qi := qi-lgc~ (i > O)

Hence qi = gco "gcl "" "gc~. In each step, the generator computes an output bit
si by applying f to the current state:

si := f(qi)

We note that clock-controlled LFSRs are a special case of our construction:
Let G = (g) be cyclic of order 2 t - 1 and choose a pair (go = 9~~ = g~)
generating G. For fixed 0 # fl, c~ E GF(21), where a is a primitive element of
GF(2I), define the output function f by

f(ge) := Tr(flae).

The resulting generator is a clock-controlled LFSR that is stepped by e0 or el
steps according to the clocking sequence. In particular, setting go = 1 yields the
well-known stop-and-go generator.

We will end this section by giving a simple example of a non-abelian group
generator: Let G = $3 = ((123), (12)) be the symmetric group of order 6 and
define the output function f by

{(1), (23), (12)} ~ 0, {(123), (132), (13)} ~ 1.

Clocked by the m-sequence 0111010... of period 7, we obtain the following
pseudorandom sequence of least period 21:

101000111110110000110...

This sequence has periodic linear complexity 18 and a good run length distribu-
tion.

8 U. Baum and S. Blackburn

3 T h e s t a t e s e q u e n c e

It seems hard to prove general properties of the output sequence (si) produced
by a clock-controlled group generator since these strongly depend on the chosen
output function f . In this section, we are going to analyse the state sequence
(qi) of a clock-controlled group generator, which does not depend on the output
function f .

PERIOD. First, we determine the least period p of the state sequence (qi). Recall
that 7 denotes the least period of the 'clocking sequence.

L e m m a 1. p = V �9 ord(q), where q := q7-t = go0 "gel ' �9 .. �9 g ~ - l .

Proof. Siffce the clocking sequence (ci) can be reconstructed from the state se-
quence (qi), p equals the least period of the sequence of pairs (ci, qi), which is
easy to determine: Obviously, it is a multiple of 7. By definition of q, we have
qkT-1 -~ qk for k E N. Hence the sequence (ci, qi) has minimal period 17, where
l = min{k [qk ._ 1} = ord(q).

To apply this lemma, we have to find the order of q. In general, there seems
to be no better way than explicitly computing q from one cycle of the clocking
sequence. However, this is not necessary in some special cases: Modulo its derived
subgroup G', G is a two-generator abelian group�9 The coset of G ~ containing q
is uniquely determined by the number of zeroes and ones in one cycle of the
clocking sequence. Hence the minimum order of an element of this coset is a
lower bound on the ord(q). See Sections 5 and 6 for examples.

STATES REACHED. Next, we ask how many times each state occurs in one period
of (qi). In particular, we would like to know whether the sequence contains all
possible states. Our intuition is that for good statistical properties of the output
sequence, the state sequence should hit every element of G about equally often.

From the definition of q, it is clear that qi+7 = qqi for all i. It follows that
if we write a full period of the state sequence (q~) as (e • 7)-matrix , where
e := ord(q), we obtain

(qiT+j)O<_i < e,O<_j <.y ----

qo ql . . . q]
qqo qql q2

{ q~qo q2ql i 3 .

\q~-lqo qe-lqt

Each column of this matr ix contains a coset of the cyclic subgroup U := (q) of
G. Hence we have the following.

L e m m a 2. (a) The set Q := {qi l i >_ 0} c_ G of states reached by the generator
is a union of cosets of the cyclic subgroup U := (q).

(b) All elements of the same cose~ occur equally often in (qi).

Clock-controlled pseudorandom generators on finite groups 9

(c) Q = G iff (qo, q l , . . . , q~- l) contains a transversal of the cosets of U in G.
(d) (qi) contains every element of G equally often iff (qo,. . . , q7-1) contains the

same number of elements from each coset of U in G.

In general, one will have to construct the states (q0, . - . , q~-l) to check if the
condition in part (d) is satisfied. In some special cases however, this can be
easily seen a priori from simple conditions on the clocking sequence, see the
examples in Sections 5 and 6.

STATISTICAL PROPERTIES. One can expect the state sequence to have good
statistical properties if the clocking sequence has reasonable statistics. To see
why, suppose that our generator's clocking sequence consists of independent and
identically distributed random bits. Then the state sequence corresponds to a
random walk on G. By general Markov chain theory, the random walk converges
exponentially fast to a distribution that periodically cycles through the uniform
distributions on all cosets of the unique normal subgroup U of G of the form
U = {go,gl} k. For details and further reference on random walks, see [1]. This
indicates tha t the state sequence should still have good statistics if the generator
is clocked by a reasonable pseudorandom sequence.

4 T h e o u t p u t f u n c t i o n

The choice of the output function f is crucial for our generator's performance.
Of the 2 Icl possible output functions, we should choose one that

- is easy and fast to evaluate,
- guarantees high period and linear complexity of the output sequence,
- yields an output sequence with good statistical properties and
- disguises the group structure of the generator as much as possible.

For cryptographic applications, there should be a sufficient number of good out-
put functions for a given generator so the choice of f can be used as (part of) a
secret key.

Our ul t imate goal is to find an efficient algorithm which when given a suitable
group G and generators go,g1, finds a set of good output functions. As this
appears to be beyond our reach at the moment, we will discuss some properties
that we consider desirable.

Firstly, we consider how to choose f such that the output sequence has large
period c~. Obviously, cr divides the period p = 7ord(q) of the state sequence.
How can we make sure that ~ has the maximum possible value p? A counting
argument shows that if the set Q of states reached by the state sequence is large
enough, then c~ = p for most choices of f . However, this is not very helpful since
we have to construct a suitable output function that has additional properties.
Hence we will t ry to find (simple) conditions on f that guarantee the maximal
possible period cr = p.

PROPERTY 1. The least common multiple of the least periods of all sequences
(f(hqi))i>l, h E Q, should equal ord(q).

10 U. Baum and S. Blackburn

Since these sequences are all shifted decimations of (si) by 7, Property 1 is a
necessary condition for cr = p = 7ord(q) according to Lemma 6. Although it is
not sufficient in general, there are some special cases where Property 1 guarantees
O'~p:

L e m m a 3 . Suppose that 7 = pa and ord(q) = pb (a, b) 1) are powers of the
same prime p. Then Property 1 implies c~ = p.

Proof. As p is prime, cr[7ord(q) = pa+b must be a power of p as well: cr = pC.
Since b > 1, it follows from Lemma 7 that c > a and b = c - a.

PaOPEaTY 2. The function f should be nearly balanced (so I l f - l (0) l - I f - l (1) l [
should be small).

We want our output sequence to contain about same number of zeroes and
ones. Property 2 guarantees this if we assume that the state sequence hits every
element of G equally often.

If the output sequence is to be cryptographically secure, it is desirable that
deducing any information about the state sequence from the output sequence
should be difficult. Thus f should disguise the group structure as much as pos-
sible.

PROPERTY 3. For any proper normal subgroup N of G, f should not be constant
on every coset of N.

Otherwise, the generator is equivalent to one based on the smaller factor group
G / N . In particular, f or its complement should not be group homomorphisms.
In fact, if a close approximation to f fails Property 3, then f is also a poor choice
because then the generator can be approximated by a smaller one.

We now introduce a much stronger property, which is easily seen to imply
Property 3.

PROPERTY 4. The function f does not correlate with multiplication in G:

vg c \ {1}: I{x e G I/(xg) = = [GI/2.

To see why this requirement makes sense, suppose that for some g C G, f (z) =
f (z 9) for significantly more (or less) than half of all z E G. Then for all positions
i < j with qj = qig, sj can be predicted by si (resp. its complement), with high
probability. Such correlations could also be used to gain information about the
state sequence from the output sequence. Hence for cryptographic strength of
our generator, f should - at least approximately - have Property 4.

Functions satisfying Property 4 have been studied in the case when G is an
elementary abelian 2-group under the name of bent functions [5]. By analogy
with this case, we say a function f is bent if it satisfies Property 4.

Unfortunately, bent functions do not exist for all groups and are never com-
pletely balanced:

Clock-controlled pseudorandom generators on finite groups 11

T h e o r e m 4 . Let G be a group of order n. Suppose that f is a bent function on
G and define z := {f-l(O)l to be ~he number of zeroes o f f . Then n mus~ be an
even square and z = (n + v/-ff)/2.

Proof. For any elements z, y E G, define the integer t (z , y) by

1 if f (z) = f (zy) and
t (x ,y) := - 1 i f f (x) # f(xy)

We evaluate the sum ~ . e c)--~-yeG t(x, y) in two different ways: Firstly,

E
~eG yeG seG xEG yEG\ {1}

since because f is bent,)-'~zeG t(z, y) = 0 for any y # 1. Secondly,

~eG yeG :v6..: -I (0) yEG z6f -I (1) yEG

-- z (2 z - n) + (n - z) (n - 2z)

= (n - 2 z) 2.

Thus n = (n - 2z) 2 and hence n is a square and z = (n + v ~) / 2 . The theorem
follows, since clearly n must be even.

It is not clear whether bent functions exist for every group whose order is an
even square, nor do we know how to find them efficiently. If G is an elementary
abelian 2-group, efficient constructions of bent functions are well known, see
[5]. For small examples of non-abelian groups, we have found bent functions by
exhaustive search. However, this approach is not feasible unless G is very small,
say IGI _< 25. The fact that bent functions are not perfectly balanced does not
seem to be a problem in practice since if a balanced function is desired, we can
complement an appropriate number of bits to produce a balanced function which
still has reasonable correlation properties. Even if no bent function exists for a
given group, we can search for "approximately bent" functions.

Despite their good correlation properties, we are not sure that bent functions
are the ideal choice for cryptographically secure output functions. Because the
property of being bent is so strong, it may well force extra structure upon the
function which can be exploited in an attack. Some experimental evidence of
such phenomena is presented in Sections 5 and 6. However, the structures we
found would only exhibit themselves over long segments of the sequence, so they
might not be detectable in practical situations.

5 E x a m p l e 1: T h e q u a t e r n i o n g r o u p g e n e r a t o r

In this section, we will have a closer look at a group generator based on the
group of quaternions.

12 U. Baum and S. Blackburn

THE GENERATOR. In the notation of our basic setup, choose

G := (i , j l i 2 = j2 = i j i j = -1} = { 1 , - 1 , i , - i , j , - j , i j , - i j } ,

the quaternion group of order 8 with generators g0 := i and gl := j .

STATE SEQUENCE. Modulo the commutator subgroup G r = {1 , -1} , the gener-
ators commute and have order 2. Hence the coset of G r containing a state qi is
uniquely determined by the number of zeroes and ones in the first i bits of the
clocking sequence. Since all elements of G \ G ~ have order 4, we know that the
state q reached after a full period of the clocldng sequence has order 4 iff one
cycle of (ci) contains an odd number of zeroes or ones, or both. In this case, the
state sequence has period a = 47.

From now on, suppose that the clocking sequence has least period 7 = 2k
and odd weight. Then it is clear that q = +ij has order 4, so the state sequence
has period p = 47 = 2 k+2.

We claim that the state sequence hits every element of G the same number
of times in each cycle. To see this, look at the subgroup generated by q:

U = (q} = {1 , -1 , i j , - i j } .

Since U has index 2 in G and does not contain the generators go = i and gq = j ,
the state sequence alternates between elements of U and elements of the coset
iU = jU = G \ U. Since 7 is even, it follows by Lemma 2 that every group
element is reached exactly 7/2 times in one cycle of the state sequence.

OUTPUT FUNCTION. Next, we have to choose a suitable output function f sat-
isfying Properties 1-4 of Section 4. Since 8 is not a square, no bent functions on
G exist according to Theorem 4, so we have looked for functions that have Prop-
erties 1-3 and are approximately bent. By exhaustive search using the group
theory package GAP [3], we have found the following 8 best candidates for f
that look very much alike.

1 - 1 j - j i - i i j - i j
f l l 01 10 0 1 0
f20 11 10 0 1 0
f 3 1 00 01 1 1 0
f 4 0 10 01 1 1 0
f s 1 01 10 0 0 1
f 6 0 11 10 0 0 1
fT1 00 01 1 0 1
f s 0 10 01 1 0 1

If we use one of these output functions, the resulting binary output sequence of
our generator has least period ~r = p = 47 by Lemma 3. Since this is a power of
2, the linear complexity of the sequence is at least half the period according to
Lemma 8.

Clock-controlled pseudorandom generators on finite groups 13

IMPLEMENTATION. The quaternion group generator is very easy to implement
in hard- or software: If we represent the elements of G by three bits according
to

(a,b,c) ~ ~ (- -1)aibj c,

multiplication by i means (a, b, c) ~-* (a | b @ c, b, c) while multiplication by j
amounts to (a, b, c) ~ (a �9 b, b, ~). The output function can be implemented by
a lookup table or a few boolean gates. In this implementation, we can expect
our generator to be about as fast as a 3-bit LFSR.

CASCADES. Since one quaternion group generator is too small to be useful in
practice, we are interested in cascading them. If we can make sure that the
clocking input of each generator in the cascade has odd weight, we know that
the period and linear complexity of our sequence is increased by a factor of 4
in each stage. Unfortunately, the ~)utput of our generator has even weight since
the output function has weight 4 and every group element is reached the same
number of times. A simple (but cryptographically questionable) way to overcome
this difficulty is to change one output bit in each cycle of each stage.

When building cascades of LFSR, it is common to add the input of each
stage to its output. Our experiments indicate that that the sequences obtained
from cascades of quaternion group generators have better statistical properties
if we do this as well.

For cryptographic applications, a key of three bits per stage can be used to
choose one of the 8 output functions f l , - �9 fs in each stage.

EXPERIMENTS. We have implemented a cascade of quaternion group generators
in software using the group theory system GAP [3]. Each stage uses the output
function fl from the table above and adds its input to its output. Between the
stages, the first output bit is changed to guarantee that all clocking sequence in
the cascade have odd weight. Clocking a four-stage cascade with the sequence
(1, 0, 0, 0), we obtain the following sequences:

(1011110001101001)

(1010111111011100110100000110011101111010100010011000010100110010)

(1010000100001111111000010011001110010111001111001100011000000001
1100101110110000000010111101110000111601110001110110100010101010
0111010001011010101101000110011011000010011010011001001101010100
1001111011100101010111101000100101101100100100100011110111111111)

(1010010010111110111001001010101011001100000001010101001100010001
1010100000101011101111010000111110101100111111000011001111001001
1100001010001100100000101000100010101111001100100010000000110111
1100111000001000110110110011110011011111110010100101000011101110
1100111101000001000011110101010101110110101011111111110110111010
0101001011010100010001111011000001010111000001101101110001110010
0110110100110111001011010011001101010001110111001100101011011000
0111000010110011011001011100011101100000011101001111101100010001

14 U. Baum and S. Blackburn

0111000111101011101100011111111110011001010100000000011001000100
IIII110101111110111010000101101011111001101010010110011010011100
I001011111011001110101111101110111111010011001110111010101100010
I001101101011101100011100110100110001010100111110000010110111011
I001101000010100010110100000000000100011111110101010100011101111
0000011110000001000100101110010100000010010100111000100100100111
0011100001100010011110000110011000000100100010011001111110001101
0010010111100110001100001001001000110101001000011010111001000100)

The output sequence of the fourth stage has period and linear complexity
4 ~ = 1024. The graph below shows that its linear complexity profile is nearly
optimal, i.e. very close to the line y = x/2:

1024

/
/

/
/

/ / /
J

. / ' -
/

/
/

/
/

/ /
/ Jj

2'
/

J /
. /

/
i " /

/

J

2048

For all nonnegative integers k, the k-error linear complexity of a binary se-
quence is defined to be the smallest linear complexity that can be obtained by
changing at most k bits of the sequence. The k-error linear complexity is an im-
portant indicator for the security of pseudorandom sequences: a sequence that
has high linear complexity but is close to a sequence with low linear complexity,
such as (0n 1), is cryptographieally weak. See [6] for an algorithm which calcu-
lates the k-error complexity of a binary sequence of period 2 n. The k-error linear
complexity of our sequence looks as follows:

Clock-controlled pseudorandom generators on finite groups 15

0
1-254
255-256
257-510
511-512
> 513

k-error linear complexity
1024
514
513
257
1
0

Note that the linear complexity drops down to 514 if a single error is allowed.
This happens because we changed one bit of the output sequence in order to
give it odd weight. So in fact, the output sequence has linear complexity 514
which is quite close to the minimum value 512 from Lemma 8 and certainly far
from the expected value of 1023 for a random sequence. This indicates that the
sequence might have some hidden structure.

The sequence contains 511 zeroes and 512 ones with the following run length
distribution (compared to the ideal values for true random sequences):

l 11216 2 3 4 5 6 7 8 9 1 0 1 1
0-runs of length 71 31 13 8 4 2 0 1 0 1

~: 1-runs of length 1 131 61 36 12 8 5 2 0 0 2 0
ideal value 128 64 32 16 8 4 2 1 0 0 0

This run length distribution comes quite close to what might be expected from
a random sequence.

Finally, we look at the autocorrelation function of the sequence. For a true
random sequence, this should be constant at about 512 (half the length of the
sequence):

1024

512
.'. "..-'.;'," q " . ' . ' f ' , " ' " , ": . �9 - : .." - . . , " ' " . - ' (. ' . ",:" ','k ::,,,," "..

Q Q

I I ' - I

0 256 768 1024

16 U. Baum and S. Blackburn

From the distinctive low values at shifts of 256 and 768, it can bee seen that the
sequence has some global structure. In fact, we found the following symmetries:
If the first half of the sequence is XORed to the second, we obtain (except for
the first bit which was changed in the output) the alternating sequence 0101
This problem is caused by the output function: A shift of 512 = 27 in the state
sequence is equivalent to multiplication by q2 = _ 1. Since f (- g) equals f (g) if
g E (q) and f (g) otherwise, the sequence (s~ | s~+512)i>0 ~ alternates between 0
and 1.

CRYPTOGRAPHIC STRENGTH. Our sequence has sufficiently large period and
linear complexity, a good local linear complexity profile and a good run length
distribution. Unfortuflately, it shows some strong correlations over large dis-
tances, and will thus be cryptographically weak if large portions of the sequence
are used. However, the experiments indicate that the sequence is quite secure if
only segments up to length 256 are used.

6 E x a m p l e 2: T h e q u a t e r n i o n g r o u p o f o r d e r x 6

In a similar way, we can define a group generator using the quaternion group of
order 16.

THE GENERATOR. We use the

a:=(h, kl

and the generators go := h and

STATE SEQUENCE. Modulo the
ators commute and have order

quaternion group of order 16 defined by

k 4 = h 2 'h 4 = l , (h , k) = k -2)

gl := kah.

derived subgroup G p = (k ~, h2}, the two gener-
2. The group G contains four elements of order

8, which form the coset goglG' = {k, kh 2, k 3, k3h2}. Hence q has order 8 iff one
period of the clocking sequence contains an odd number of zeroes and an odd
number of ones. In this case, the state sequen~ e has least period 87.

The same argument as in Section 5 can be used to show that the state
sequence hits every element of G the same number of times in one cycle.

OUTPUT FUNCTION. Again, we used GAP to search for a suitable output func-
tion. As the order of G is a square, bent functions on G may exist. By Theorem
4, such bent functions will not be balanced, but have either 6 or 10 zeroes. By
exhaustive search, we have found 128 bent functions on G with 10 zeroes. The
complements of these functions are the bent functions of G with 6 zeroes. Of
these bent functions, we used the following as output function for the experi-
ments:

1 h ~ h h 3 k2h k2h 3 k~h 2 k S k kh 2 kh kh 3 k3h k3h3k3h 2 k 3
10 10] 0 1 0 11 0 0 0 0 0 0

IMPLEMENTATION. There is an efficient four-bit representation of G similar to
the one of the quaternion group of order 8 given in Section 5:

Clock-controlled pseudorandom generators on finite groups 17

The choice of 256 possible output functions will give us up to 8 bits of key for
each stage of a cascade.

CASCADES. The comments in the previous section apply.

EXPERIMENTS. We have also implemented a cascade of these generators in GAP.
Each stage uses the output function from the table above. As with the Qs-
generator, we add the input of each stage to its output and change the first
output bit to make sure that all sequences in the cascade have odd weight.
Clocking a three-stage cascade with the sequence (1, 1, 1, 0, 0, 0, 0, 0), the output
of the third stage is the following sequence of period and linear complexity
84 = 4096.

(•••1•••••••••1••••••••••••••••••••••••••••••••
~ ~ 1 ~ o ~ 1 ~ 1 ~ o ~ 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~
~ ~ G ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ 1 1 ~ o o ~ 1 1 ~ 1 ~ 1 ~ o ~ o ~ 1 ~
~ 1 ~ o ~ o ~ l o ~ o ~ O ~ 1 ~ 1 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 ~ o o ~ o ~ 1 ~ o o ~ o 1 ~ 1 ~ 1 ~
~ 1 1 1 ~ 1 ~ o ~ ~ 1 ~ 1 ~ 1 ~ 1 ~ O ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ 1 ~ ~ o ~ 1 ~
o ~ ~ o ~ o ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ o ~ o 1 ~ o ~ o ~ 1 o ~ o ~ o o o ~ o 1 ~ o ~ o ~ 1 ~ o ~ o ~ o
~ G ~ 1 ~ ~ o ~ G 1 ~ o ~ o ~ o ~ 1 ~ o o ~ o o ~ o 1 I o ~ 1 1 ~ 1 ~ 1 ~
~ o ~ G ~ ~ 1 ~ 1 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ 1 1 ~ o o 1 1 1 ~ 1 o ~
~ 1 ~ 1 ~ o ~ o o ~ o ~ o o ~ o ~ o o o ~ 1 ~ 1 ~ 1 1 ~ ~ 1 1 ~ 1 1 ~ 1 ~ ~
~ O ~ o ~ o ~ 1 o 1 ~ o ~ o ~ o ~ 1 ~ 1 ~ O ~ o ~ 1 ~ o ~ 1 o ~ o o o ~ 1 ~ o o ~
~ o ~ o ~ 1 1 ~ 1 1 ~ 1 ~ o 1 G ~ 1 o o o ~ o ~ o ~ 1 ~ 1 ~ ~ ~ l o ~ o ~ o o ~ G ~ 1 ~
~ 1 ~ 1 ~ ~ 1 ~ o ~ o ~ I ~ ~ o ~ o ~ o ~ 1 ~ 1 ~ ~
~ o 1 ~ l ~ 1 ~ 1 ~ 1 ~ 1 1 ~ ~ 1 ~ ~ 1 ~ 1 ~ 1 ~ o o ~
~ I ~ o ~ 1 ~ o ~ 1 ~ o o ~ 1 ~ 1 ~ o ~ o o 1 ~ 1 ~ o ~ o 1 ~ 1 o ~ o ~ o 1 o ~ 1 ~
~ 1 ~ o ~ 1 ~ o ~ o ~ o ~ 1 ~ 1 ~ o ~ o ~ o o ~ 1 ~ 1 o ~ o ~ o o ~ o ~ o 1 o o ~ o ~ 1 ~ o o ~ 1 ~
~ O ~ o i ~ 1 1 ~ 1 ~ 1 ~ G ~ 1 ~ 1 ~ o 1 o ~ 1 ~ o ~ o o ~ o ~ o ~ 1 ~ o ~ 1 ~ o ~ 1 o ~ o ~ G ~
~ 1 o 1 ~ 1 ~ o ~ G ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 o o ~ I G ~ G ~ I ~ 1 1 o 1 ~ o ~ 1 ~ 1 ~
~ ~ 1 ~ i ~ ~ 1 l ~ 1 ~ ~ 1 ~ 1 G ~ ~ 1 ~
~ o ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ o ~ 1 ~ o ~ l ~ 1 1 o ~ ~ l ~ 1 ~
1 1 ~ o ~ 1 ~ o o 1 1 ~ o 1 o ~ 1 ~ o ~ o ~ 1 ~ l ~ o ~ o 1 ~ o ~ o o ~ ~ o ~ I o ~ 1 ~ 1 ~ I o ~
~ o ~ 1 ~ o ~ ~ o 1 1 ~ I ~ o ~ 1 ~ o ~ 1 ~ o o ~ o ~ o ~ o ~ 1 ~ ~ o ~ o 1 ~
~ ~ Q ~ 1 1 ~ ~ G ~ 1 ~ o 1 ~ 1 ~ o ~ 1 ~ 1 ~ 1 o ~ o o ~ o o ~
~ 1 ~ ~ O ~ ~ o 1 o ~ 1 1 ~ ~ 1 ~ ~ o 1 ~ ~ 1 ~ 1 ~
~ 1 ~ 1 o o ~ 1 o 1 ~ 1 ~ 1 1 1 ~ o ~ 1 ~ o ~ 1 ~ ~ 1 ~ o ~ o ~ o o ~ 1 ~ 1 ~
~ 9 ~ O ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 1 ~ o ~ 1 1 ~ 1 ~ 1 ~ 1 ~
~ o l ~ o ~ 1 ~ I ~ o ~ 1 ~ 1 ~ o o ~ o ~ 1 o ~ O ~ ~ 1 ~ 1 ~
~ ~ o ~ o 1 ~ 1 ~ 1 ~ o 1 ~ G ~ o ~ o o ~ 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~ o ~ 1 ~ 1 ~ o 1 o ~
~ o ~ 1 ~ 1 ~ 1 1 ~ l ~ ~ 1 ~ o o ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ o ~ o o ~ o ~
~ I ~ 1 ~ o ~ 1 ~ 1 1 ~ ~ G ~ 1 o ~ ~ 1 O ~ 1 ~
~ o 1 ~ 1 ~ 1 ~ 1 1 ~ 1 ~ o ~ o ~ o ~ o ~ G ~ 1 ~ 1 o ~ G o ~ o ~ o ~ o o ~ o ~ o ~ G ~
~ ~ o ~ o ~ 1 o ~ o ~ o o o ~ 1 ~ 1 ~ o o ~ o ~ o ~ o ~ 1 ~ 1 ~ 1 ~ o G 1 ~ o ~ o
~ o ~ 1 ~ ~ ~ o ~ 1 o ~ 1 ~ 1 ~ 1 ~ 1 ~ o ~ I 1 1 ~ 1 ~ 1 ~ 1 1 ~ o ~ 1 ~ o ~ 1 1
~ 1 ~ 1 1 o ~ 1 ~ 1 ~ 1 ~ ~ 1 ~ 1 o ~ o ~ 1 ~ 1 ~ ~ 1 ~ G ~ o ~ o o o ~ 1 ~
~ o ~ 1 o ~ o o ~ o ~ o ~ 1 ~ 1 ~ O 1 1 ~ 1 ~ o ~ 1 ~ o ~ I ~ 1 ~ 1 ~ o 1 ~ 1 ~
~ 1 ~ o ~ 1 ~ 1 ~ o o 1 ~ 1 ~ ~ o ~ ~ l o ~ o o 1 ~ 1 1 ~ 1 1
1 ~ 1 ~ G O ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ o ~ o o o ~ 1 ~ 1 ~ o ~ 1 1 1 ~
~ o ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ O ~ 1 ~ 1 ~ o o ~ 1 ~
~ G ~ G ~ O ~ 1 1 ~ o ~ o ~ ~ 1 ~ 1 1 ~ 1 ~ o ~ 1 ~ 1 ~ o ~ o ~ I ~ o
~ 1 1 ~ 1 ~ 1 ~ 1 1 ~ I 1 ~ o ~ 1 ~ ~ ~ 1 ~ o ~ 1 ~ 1 ~ 1 ~ 1 ~
~ ~ 1 ~ ~ 1 1 ~ o ~ o ~ 1 l ~ 1 1 ~ 1 1 ~ O 1 1 ~ 1 ~ 1 ~ o ~ o G 1 1 ~ o o 1 ~ 1 ~ 1 ~
11•••110o1oo•1•••1••1o••••1•o•1•11••111•oooo1•1••••1•1••1•o•11o1o11•1•11•0•••••1••1•1oooo111•111)

18 U. Baum and S. Blackburn

The linear complexity profile looks good as well:

4096 /

/
/

/

/
/

/

/
/

o /
"~ 8192'

Its k-error linear complexity looks similar to the one of the sequer/ce in Sec-
tion 5:

k k-error linear complexity
0 4096
1-1022 2561
1023-1534
1535-1790
1791-1918
1919-1982
1983-1984i
> 1985

1026
321
41
T
2
0

Again, one might argue that the relatively low linear complexity of 2561 ob-
tained when changing the first bit back to its original value hints at some global
structure.

The sequence contains 2111 zeroes and 1985 ones with the following run
length distribution, which is close enough to the ideal distribution for true r~n-
dom sequences:

l I 1 2 3 4 5 6 7 8
0-runs of length 1t522 269 114 61 33 12 8 2 1 1 1
1-runs of length/1486 267 137 66 32 15 11 4 3 3 0
ideal value 1512 256 128 64 32 16 8 4 2 1 0

Finally, we have computed the autocorrelation function of the sequence. Over
all shifts # 0, its minimum is 1920 and its maximum is 2222. All values being

Clock-controlled pseudorandom generators on finite groups 19

CRYPTOGRAPHIC STRENGTH. So far, the test results indicate that we have found
a good pseudorandom sequence. However, there are global correlations: When
we change the first bit back to its original value, divide the sequence into four
even parts and bitwise XOR them together, we obtain the all-zero sequence. In
other words,

8i ~ 8i+1024 ~ 8i-t-2048 ~ 8i+3072 : 0

for all i. Again, this shows that using large portions of the sequence should be
avoided. This behaviour is caused by regularities in the output function similar
to those discovered at the end of Section 5.

7 C o n c l u s i o n s a n d O p e n P r o b l e m s

In this paper, we have generalised the notion of a clock controlled shift register
to that of a register based on a finite group. We have shown how these registers
can be cascaded to produce sequences of high period and linear complexity. Are
the sequences produced by these cascades cryptographically secure ?

As pointed out in the sections above, the sequences produced by our gen-
erators do exhibit some structure. This structure certainly makes the use of
especially long segments of the sequences unwise. However, if we suppose that
only a portion of a period of the output sequence is used, the structures detailed
in the previous sections do not seem to affect the security of the sequence since
they involve terms of the output sequence that are very widely spaced. Since
the local linear complexity profiles and run length distribution of the output
sequences seem good, we have an indication that the sequences are secure when
segments of reasonable length are used.

How can we maximise the assurance of security that our system gives ? The
system depends on a careful choice of the output function of each generator in
our cascade. We need to develop and expand the criteria given in Section 4. In
particular, should we choose the output function to be bent? Maybe a function
which only approximately satisfies the bent property but which performs better
under other criteria is more appropriate. Further research - both experimental
and theoretical - is needed on this matter. Is the form of the cascade we have
used the most secure possible ? For example, we assume that the input to each
stage is XORed with the output of the register. This operation seems to greatly
improve the run length distribution of final output over that of a similar cascade
with the XOR operation removed. Why is this, and can a different operation be
introduced which increases the security of the output of the cascade ?

We believe that the concept of a bent function over a finite group is of interest
in its own right, irrespective of its application in the situation outlined here. Do
bent functions exist over any group whose order is an even square ? Certainly
plenty of bent functions exist over the groups we have examined. Can large
families of bent functions be constructed over certain families of groups ? The
only constructions known so far apply only when the group is an elementary
abelian 2-group.

20 U. Baum and S. Blackburn

In summary, the sequences produced by cascades of generators based on fi-
nite groups provide an interesting generalisation of the standard cascades of shift
registers which can often be efficiently implemented. The output of such gener-
ators can have guaranteed minimum period and linear complexity. Experiments
indicate that the sequences also have good linear complexity profiles and au-
tocorrelation properties. However, further work is needed to establish that the
sequences produced by cascades of this type are secure.

8 Appendix: well-known facts on period and linear
complexity

For the convenience of the reader, this section contains a collection of well-known
facts about period and linear complexity of binary sequences. These have been
used in the proofs throughout this paper.

L e m m a 5 . Let (si)i>_o be a periodic sequence of least period p. For d, j E N, de-
fine the (shifted) d-decimation (~ri)i>o of (si) by ~i := Sid+j. Then the following
holds:

(1) The least period ~r of (cri) divides p/(p, d).
(2) I f (p,d) = 1 then 7r = p.
(3) For (p, d) > 1, 7r may be strictly less than p/(p, d).
(4) I f (si) has an irreducible minimal polynomial, then either re = p/(p, d) or

(~ri) is the zero sequence.

Proof. (1) For all i, we have

O'i+p/(p,d) = S (i + p / (p , d)) d T j ---- 8 i d T j % lcm (p,d) = 8 i d T j --" O'i,

hence ~rlp/ (p, d).
(2) For all i, we have

8(idTj)TTrd ~ 8(i+Tr)dTj ~ O'iTTr ~ O'i ~ S i d T j .

As (p,d) = 1, { i d + j m o d p] i _> 0} = { 0 , . . . , p - 1}, hence si+~4 = si for all
i _> 0. It follows that p]~rd. Since (p, d) = 1, we have pier. Together with (1), our
claim follows.

(3) Example: Decimating the sequence 100010 by d = 2, we obtain 101 for
j = 0 and 000 for j = 1.

(4) [4, Ex. 9.5,p. 364].

L e m m a 6 . Let (si)i~o be a periodic sequence of least period rod. For j >_ O,
let kj denote the least period of the decimated s e q u e n c e (S i d + j) i > o . (Obviously,
kj = kj rood d') Then m = lcm(ko, . . . ,kd_l) .

Proof. Let 1 := lcm(k0, . . . , kd-1) = lcm({kj}j>o). For all j > 0, we have Std+j =
sj since l is a multiple of the period kj. It follows that (si) is/d-periodic, hence
m d] l d and m l l .

On the other hand, kj I m for all j by Lemma 5(1), hence 1 [m.

Clock-controlled pseudorandom generators on finite groups 21

L e m m a 7. Let (si)i>o be a sequence of least period pk. I f we decimate this se-
quence by pn, the least common multiple l of the least periods of all such deci-
mations equals pk-n for k > n and 1 otherwise.

Proof. Follows from the previous lemma and Lemma 5(1).

L e m m a S . The linear complexity of a sequence (si)i>_o of, least period p '~ over a
finite field of characteristic p is at least p~- i It equals pn iff s o + s 1 + . . . + s p ~ _ l ~k
O,

Proof. Since x v~ - 1 = (x - 1) v~ in characteristic p, the minimal polynomial of

s has the form (x - 1) l for some I <_ p~. For l < p~- l , it would divide x v~-1 - 1,
and the minimal period would be a divisor of p n - 1 contradicting our initial
assumption. Hence I >_ pn-1.

Let s(x) := }-']i>0 six' denote the generating function of s. Since l < p~, we

have (x - 1)V"s(x) = 0. It follows that I = p~ iff

x p~ - 1 . (X p'~-I "Ji- X p ' ~ - 2 1)8(g) (X - - 1) P " - l s (x) = X--1 S(X) = + . . . + X + # 0 ,

which proves the second claim.

R e f e r e n c e s

1. P. DIACONIS, Group Representations in Probability and Statistics, Institute of
Mathematical Statistics Lecture Notes - Monograph Series, 11, Hayward (CA),
1988.

2. D. GOLLMANN, W.G. CHAMBERS, Clock-Controlled Shift Registers: A Review,
IEEE J-SAC 7/4 (1989), 525-533.

3. M. SCHONERT et at., GAP: Groups, Algorithms and Programming, RWTH Aachen,
1992.

4. R. LIDL, H. NIEDERREITER, Introduction to finite fields and their applications,
Cambridge University Press, 1986.

5. R.A. RUEPPEL, Analysis and Design of Stream Ciphers, Springer, 1986.
6. M. STAMP, C.F. MARTIN, An Algorithm for the k-Error Linear Complexity of

Binary Sequences with Period 2 n, IEEE Trans. Inform. Theory 39/4 (1993), 1398-
1401.

