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Abs t rac t .  Linear cryptanalysis is an attack that derives a linear ap- 
proximation between bits of the plaintext, ciphertext and key. This global 
approximation is constructed from the linear approximation tables of the 
nonlinear mappings used by the cipher, usually the S-boxes, as in the 
case of DES. In this paper we will describe the distribution of these 
tables for bijective mappings (permutations), concentrating on the ex- 
pected value of the largest entry, and use our results to construct Feistel 
ciphers provably resistant to linear cryptanalysis. 

1 Introduct ion 

Linear cryptanalysis [11, 10] is a recently proposed attack due to M. Matsui. 
When successful, the attack recovers information about the secret key K used by 
approximating several nonlinear components of the cipher. For DES, the S-boxes 
can be approximated by deriving linear relations between the inputs and outputs  
to each S-box, where each relation is true with some probability p~. We will call 
each such approximation a linearization. Matsui has shown that  it is possible to 
derive linearizations to the S-boxes of DES at various rounds such that  when 
these linearizations are added modulo 2, the remaining linearization involves 
bits of the key, plaintext and ciphertext only. The probability p of this 'global' 
linearization being correct is determined directly from the probabilities Pi of the 
'local'  linearizations when it is assumed that  the subkeys are independent. One 
bit of information concerning the key can be recovered using maximum likelihood 
estimation when approximately I P -  }1.2 plaintext-ciphertext pairs are known. 
The quanti ty I P -  �89 -~ is referred to as the (data) complexity of the attack. The 
attack can be modified to obtain more information about the key. 

There have been several responses to the introduction of linear cryptanalysis. 
Kim et al. [8] have given a list of conditions for DES-like S-boxes to satisfy where 
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the probability p of the best global approximation based on these S-boxes will 
have the property that ] p -  �89 > 22s, implying that the complexity of the attack 
exceeds the cost of exhaustive key search. More general ciphers resistant to 
linear cryptanalysis have been proposed by Knudsen [9] and Heys and Tavares 
[7]. Also, several similarities between linear cryptanalysis and the more familiar 
differential cryptanalysis [2] have been noted [1, 3, 9]. 

The main result of this paper is to derive an upper bound on the largest entry 
in the linear approximation table of a bijective mapping, which when combined 
with a bound on the number of rounds that must be linearized, yields a lower 
bound on the complexity of linear cryptanalysis. 

2 L i n e a r  a p p r o x i m a t i o n  t a b l e s  

Let Ir : Z~ ---* Z~ be a bijective/~-bit mapping, and let $2~ be the set of all such 
mappings, known as the symmetric group. For an n-bit vector X E Z~ let X[i] 
denote the ith bit of X. The linear approximation table for 7r, denoted LAT~, is 
a 2 '~ • 2 '~ table such that 

where a, ~ E Z~ and '.' denotes bitwise logical AND. Thus LAT,~ (~, fl) gives the 
number of equal parity checks between a linear combination of the input bits 
(specified by a) and a linear combination of the output bits (specified by/3). 

T h e o r e m  1. Let A(a,/3) be a random variable describing LAT~ (a,/3) when 7r 
is selected uniformly from $2~, and a,/3 are nonzero. Then A(a,/3) only assumes 
even values ~nd 

pr(A(a,fl) = 2 k ) =  ( 2n-1!)2 (2nk- 1) 2" 
2,,! " (2) 

for 0 < k < 2 n-1. [] 

In linear cryptanalysis we are interested in those entries in the linear approx- 
imation table that differ from 2 ~-1 as this represents the correlation between 
linear combinations of the inputs and outputs. Matsui [10] calls this the effec- 
tiveness of the linearization. For this reason we define the 'normalized' linear 
approximation table, denoted by LAT*, as 

"LAT* (a,/3) = ]LAT~ (c~, fl) - 2'~-~[. (3) 

The distribution of LAT* (a, fl) follows directly from Thearem 1. 

Coro l la ry  2.1 Let A* (a,/3) be a random variable describing LATer (a, fl) when 
~r is selected uniformly from $2., and a, fl are nonzero. Then A*(a,~) only 
assumes even values and 

( 2 -  [k = 0] ) .  . ( 2 
Pr(A* (a,/~) 2k) (4) 2n! ' \2  n-2 + k ] 
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for 0 < k < 2 ~-2, where [k = 0] evaluates to zero or one. [] 

Using Stirling's approximation, it can be shown that  the expected number of 
zero entries in the table is 4 / x / ~  �9 2 ~ , which is tending to zero with n. However, 
our main goal is to determine a bound on the largest entry in LAT* which is 
useful in the design of ciphers that  are to be resistant to linear cryptanalysis. To 
this end let ),(~r) be the largest entry in LATTr for the mapping 7r taken over all 
nontrivial c~, fl, 

~(~) def= max LAT* (~, fl). (5) 
a,Z#0 

In the next section we derive an upper bound on )~(~r). 

3 A n  u p p e r  b o u n d  

Let E[)~(rc, 2k)] denote the expected number of entries in LAT* of size 2k. Con- 
sider the following bound on A(r), 

Pr(~(Tr) : 2k) < Pr(LAT* has at least one entry of size 2k) < E[)~(r, 2k)I6 ) 

which is valid since 

E[~(~r, 2k)] : E t .  Pr(LAT* has t entries of size 2k). (7) 
t>0 

If E[A(~r, 2k)] is tending rapidly to zero as a function of k, then we are likely to ob- 
tain a useful bound on ~r()~). From Corollary 2.1, we can derive E[s 2k)], k > 0 
as  

2 .  (2~ - 1) 2 �9 (2~-1!)  2 " ( 2 ~ - 1  ~ 2 .  
E[A(% 2k)] (s)  

2 ~ ! ~,2 ~-2 + k / 

In the next theorem we derive an approximation for the tail of the E[A(~r, 2k)] 
distribution using a well-known bound on the sum of consecutive binomial coef- 
ficients. 

T h e o r e m 2 .  For t > 0, 

r ' - "  

Ep,(~,, 2k)] < ~/~. 22~176 (9) 
k=2,~-2+t 

where m = (2 '~-2 - t)/2 ~-1 and g ( ~ )  = - x  logx - (1 - ~) log(1 - x). [] 

From Theorem 2 we are now able to derive a bound on the probability that  )~(~r) 
is at most 2t since 

2n--1 

Pr(:k(~r) < 2t) > 1 - E E[A(Tr, 2k)]. (10) 
k=2n-2+t  
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In particular, we will determine the smallest value of t  (according to our bounds) 
for which Pr(A(~r) _< 2t) > �89 which we will denote as tn. Here tn is referred 
to as the median of the distribution [6]. The practical implication of t~ is that  
when a bijective n-bit mapping 7r is selected uniformly, with odds better than 
50/50 the mappings will have &(lr) _< 2tn. 

Our results are shown in Table 1. The second column shows the actual tail 
computation for E[&(~r, 2k)] using (8), while the third column shows the tail 
computation using the approximation of (9). The last column shows the results 
of generating random bijective mappings and determining tn from this sample. 
That  is, if there were k mappings generated, t~ is determined to be the minimum 
value for which at least half the mappings had the largest entry bounded by tn. 
The sample k actually used was relatively small (several hundred) because of 
the time required to determine tn. For example, it requires half an hour of clock 
time to determine tl0 for one 10-bit mapping. 

n tn via (8) t,~ via (9) t,~ via experiment 
6 9 10 8 
7 13 15 12 
8 19 22 18 
9 28 33 26 
10 41 49 40 
11 61 72 59 
12 90 106 88 

1 Table 1. Upper bounds on tn where Pr(A(zr) _< 2t.) > ~. 

Note that  the bound on tn derived from (9) is consistently higher than the 
bound derived from (8). Of course this is expected as various approximations are 
used to derive the bound in (9). The advantage however is that  the expression 
in (9) is easy to evaluate and can give useful information about the best approx- 
imation for large mappings. On the other hand, the expression in (8) can only 
be evaluated for relatively small n. For example, using (9), we have determined 
that  the largest entry in the linear approximation table of a 64-bit mapping is 
at most 16057555882 for more than half the possible such mappings, giving a 
best possible linear approximation of 

1 16057555882 
I p -  < 264 - o .87o48 x 10 2 -3~ (11) 

We may then assume that  the probability of the best (global) linear approxima- 
tions for 64-bit mappings such as DES and FEAL would be close to 2 -3~ i f  the 
mappings were random and not derived from an iterative process. However, using 
the fact that  the nonlinear components of the round function are fixed, Matsui 
has derived an approximation for 16-round DES that  has I P -  �89 = 1.19 • 2 -21. 
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4 Conclusion 

The success of linear cryptanalysis depends on the nonlinearity of the round 
function F, which for ciphers such as DES reduces to the nonlinearity of the 
S-boxes. It is clear that  if this nonlinearity can be made sufficiently large then 
the complexity of the attack will exceed the cost of exhaustive key search. Our 
approach has been to bound the largest value in the linear approximation table 
of a bijective mapping, which can now be used to construct ciphers resistant 
to linear cryptanalysis using similar methods to those employed by Knudsen [9] 
and Hays and Tavares [7]. Similar observations have been used by O'Connor [13] 
to show that  sufficiently large S-boxes will also defeat differential cryptanalysis, 
as the largest value in the XOR table can be bounded asymptotically. 
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