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Abstract .  In this paper, we present two polynomial-time algorithms to 
determine if an outerplanar directed acyclic graph (odag) can be drawn 
upward planar, that is, drawn in planar straight-line fashion so that all 
arcs point up. The first algorithm checks if the odag has an upward planar 
drawing that is topologically equivalent to the outerplanar embedding of 
the odag. This algorithm runs in linear time (which is optimal), and is 
faster than any previous algorithm known. The second algorithm also 
checks whether an odag has an upward planar drawing but does not 
insist that the drawing be topologically equivalent to the outerplanar 
embedding. This is the first polynomial-time algorithm we know of to 
solve this problem. 

1 Introduction 

One can find, in the literature, many algorithms for checking planarity of undi- 
rected graphs and for computing planar embeddings of planar graphs. Both 
planarity checking and planar embedding can be done in linear time [7], [5], [11]. 

When one is concerned with directed acyclic graphs, the notion of upward 
planarity naturally arises and replaces the notion of planarity for undirected 
graphs. A directed acyclic graph is upward planar if it admits a planar draw- 
ing with the additional constraint that  all the edges point upwards (i.e., from 
a lower to a higher y-coordinate). There are many practical situations where 
upward drawings are required: drawing semantic networks and other knowledge 
representation diagrams, displaying call graphs in compiler optimization, obtain- 
ing E-R diagrams in database design, and any other occasion where a hierarchical 
structure must be represented. 

A combinatorial characterization of the directed acyclic graphs that  have an 
upward drawing is given in [9] and [4] where it is shown that  a directed acyclic 
graph admits an upward drawing if and only if it is a subgraph of a planar st- 
graph. It has been recently shown that  the general problem of testing whether 
a directed acyclic graph is upward planar is NP-complete [6]. 

The work described in the present paper is chiefly aimed at obtaining two 
efficient algorithms for checking upward planarity of outerplanar directed acyclic 
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graphs. We will see how we can check in linear time (which is opt imal)  whether an 
outerplanar embedding is upward. This is our first algorithm and it is described 
in Sect. 4. In the case that the outerplanar embedding is not upward, we will 
demonstrate how to obtain a non-outerplanar embedding that is upward planar 
(assuming one exists) in polynomial time. This is our second algorithm and it 
is presented in Sect. 5. This algorithm is also the first approach we know of to 
solve this problem. 

Section 2 contains some basic definitions and preliminaries. Section 3 surveys 
these families of directed acyclic graphs for which determining upward planarity 
can be done in polynomial time. The paper concludes with some open problems 
in Sect. 6 . 

2 P r e l i m i n a r i e s  

We assume that  the reader is familiar with basic terminology and results of 
graph theory. Most of the definitions given here are the same as in [1]. 

A graph G has a planar drawing if it has a drawing so that  no two edges 
intersect except, of course, at common endpoints. A graph is planar if it admits 
a planar drawing. A planar graph may have many different planar drawings. 
Two planar drawings of the same planar graph are equivalent if, for each vertex 
v, they have the same circular clockwise order of the edges incident to v. Two 
equivalent drawings have the same set of faces too. A planar embedding of a 
planar graph is a collection of planar drawings which are pairwise equivalent. 

A graph has an outerplanar embedding if it has a planar embedding in which 
all vertices reside on the same face (called exlernal face). Every outerplanar 
graph has a unique outerplanar embedding. 

The underlying graph of a directed acyclic graph (or dag) is the undirected 
graph obtained from the dag by considering the edges as undirected. Vertices 
of a dag which do not have any incoming edges are called sources, and vertices 
that do not have any outgoing edges are called sinks. Sources and sinks are also 
called switches. 

An upward drawing of a dag G is a planar drawing of G with the additional 
constraint that  each edge is a curve rising monotonically in the vertical direction. 
Given a drawing of a dag, we say that a vertex v is candidate if the outgoing 
(incoming) edges incident to v appear consecutively around v. If this happens 
for all vertices of the drawing then the drawing is a candzdate upward drawing. 
Every upward drawing of a dag is a candidate upward drawing. 

Two upward drawings of the same dag are equwalen~ if their underlying pla- 
nar drawings are equivalent. A collection of pairwise equivalent upward drawings 
of a dag is an upward embedding of the dag. A planar embedding of a dag in 
which every vertex is candidate is a candidate upward embeddzng of the dag. 
Clearly, every upward embedding is a candidate upward embedding. 

A dag is upward planar if it admits an upward drawing. Candidacy is only a 
necessary condition for the existence of an upward embedding. Figure la  shows 
an upward embedding and Fig. lb shows a candidate upward embedding which 
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is not upward. From here on, n will denote the number of vertices in a planar 
dag. 

(a) (b) 

Fig. 1. (a) an upward embedding, (b) a candidate upward embedding which is not 
upward 

3 U p w a r d  P l a n a r i t y  of  S o m e  F a m i l i e s  o f  D a g s  

There are algorithms to test upward planarity of some families of dags. One of 
these families is the family of directed trees for which it is easy to show that 
they are upward planar. 

Di Battista et al [3] showed that a bipartite dag is upward planar iff its under- 
lying graph is planar. Plat t  [10] showed that single-source and single-sink dags 
are upward planar iff the underlying graph with a source-to-sink added edge is 
planar. Hutton and Lubiw [8] developed a O(n 2) algorithm for testing upward 
planarity of single-source dags. This result was improved by Bertolazzi, Di Bat- 
tista, Mannino and Tamassia [2] who showed that upward planarity testing of a 
single-source digraph can be done optimally in O(n) time. 

We are going to associate a capacity (see [1] for a formal definition of capac- 
ity) with every face (internal and external) of a candidate upward embedding. 
Switches are assigned to faces in whose boundary they appear. A switch can be 
assigned only to one of the faces that  share it, and there cannot be switches that 
are not assigned to any face. 

We call a face satisfied if it is assigned precisely as many switches as its 
capacity. It is proved [1] that: 

T h e o r e m  1. A candidate upward embedding of a dag is upward iff there exists 
an assignment which satisfies all the faces. 

If we apply this technique for every embedding of a triconnected dag [1] we can 
check whether it is upward planar in O(n + r 3 log r) time (r is the number of 
switches). 

An embedded dag whose internal faces are triangles is a triangular dag. We 
can easily show the following proposition: 
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Proposition 2. A candidate triangular dag is upward planar iff no internal ver- 
tex is a switch. 

A single-source or single-sink outerplanar dag (odag for short) is clearly upward 
planar. Circuits are odags whose underlying graph is a simple cycle. Circuits are 
known to be upward planar [1]. Also, we can see that the following holds: 

P ropos i t ion3 .  Every odag whose outerplanar embedding consists of a circuit 
with a single chord inside it is upward planar. 

Outerplanar dags can be classified into the following three groups: 

1. odags whose outerplanar embedding is an upward embedding, and therefore 
they are upward planar (Fig. 2). 

2. odags which are upward planar but their outerplanar embedding is not up- 
ward. Figure 3a shows an outerplanar embedding that is not candidate up- 
ward (and therefore not upward), and Fig. 3b shows a non outerplanar em- 
bedding of the same odag which is upward planar. 

3. odags that are not upward planar (Fig. 4). 

Fig. 2. An outerplanar upward embedding 

If we apply Proposition 2 to the case of triangulated outerplanar dags it is 
clear that every triangulated outerplanar candidate upward embedding is upward 
planar. 

4 T e s t i n g  U p w a r d  P l a n a r i t y  o f  O u t e r p l a n a r  E m b e d d i n g s  

In this section we will present a linear time algoritm for testing whether an 
outerplanar candidate upward embedding is upward. Recall that the general 
way for testing whether a candidate upward embedding is upward (described 
in [1]) takes O(n + r 2 log r) time (r is the number of switches). Note that we 
can easily check in linear time whether an outerplanar embedding is candidate 
upward. 
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(a) (b) 

Fig. 3. (a) an outerplanar embedding which is not upward, (b) an upward and non 
outerplanar embedding of the same odag 

Fig. 4. A non upward planar odag 

The dual of an outerplanar embedding is a tree, if we exclude the dual vertex 
which corresponds to the external face and its incident edges. Our technique 
is based on a DFS performed on the dual tree and on appropriate coloring of 
switches of the odag taking place during the search process. The switches are 
assigned colors during the algorithm as follows: 

- red: the switch has not been assigned yet to any face, and is thus still available 
for assignment. 

- brown: the switch has been assigned permanently to a face, and is thus not 
available for assignment. 

The face of the outerplanar embedding that  the DFS is currently visiting 
is called the current face. Only the switches which appear around the current 
face can be colored at a given time. All switches are originally colored red. The 
adjusted capacity of each internal face is originally equal to its capacity. When 
we describe the algorithm, we will see how the adjusted capacity is computed. 

Figure 5 shows the situation when the current face is c. In the same fig- 
ure, subgraphs G1, G 2 , . . ' ,  Gm which appear around c, in clockwise order, have 
already been visited. When at the current face c, we always try to satisfy its ad- 
justed capacity using the existing red switches around it. We distinguish among 
the following cases: 

1. If the number of red switches around c is equal to the adjusted capacity of c, 
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then c and all the faces in subgraphs G1, G 2 , " . ,  Gm are satisfied and these 
red switches become brown. 
If  the number  of red switches around c is less than the adjusted capacity of c, 
then c and G1,  G2, �9 �9 ", G m  cannot be satisfied so we stop and the embedding 
is declared not upward. 
If  the number  of red switches is more than the adjusted capacity of c then: 

- if neither X nor Y (Fig. 5) is a red switch, then c and G 1 , G 2 , ' . . , G , n  

are satisfied (notice that  if there are excess red switches then they will be 
assigned to the external face). All red switches around c become brown. 

- if exactly one of X and Y is a red switch, then it maintains  its color 
(it might  be needed later when DFS visits b), whereas all the other red 
switches around c become brown, c and G1, G 2 , ' " ,  Gm are satisfied (the 
same observation as above holds for excess red switches). 

- if both X and Y are red switches, then we compute the difference between 
the number  of red switches around c and the adjusted capacity of c. 
If  the difference is 2 or more, then X and Y maintain their color, the 
rest of the red switches around c become brown, c and G1, G 2 , - " ,  Gm 
are satisfied. 
If  the difference is 1, then this means that  c needs only one of X and 
Y but we can not currently determine which. So we move one unit of 
c's adjusted capacity to b, that  is the adjusted capacity of b increases 
by 1. c and G1, G2 , - - - ,  Grn will be satisfied when b is satisfied. X and 
Y mainta in  their color and all the other red switches around c become 
brown. 

3 0 3  

Fig. 5. DFS performed on the dual tree of an outerplanar embedding: c is the current 
face 
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L e m m a 4 .  An outerplanar embedding is upward iff all switches become brown 
at the end of the DFS. 

The basic observation here is that we always try to satisfy the capacities of the 
faces with switches that cannot be used by faces which the DFS will visit later. 
In this way we keep "pushing" as many switches as possible up the tree. 

Using appropriate data structures we ensure that the time spent on each 
current face is order of the number of angles in the interior of the face. There- 
fore, the algorithm runs in time which is order of the number of angles of the 
embedding. From the discussion above it follows that: 

T h e o r e m 5 .  Testing whether an odag has an upward embedding which is topo- 
logically equivalent to the outerplanar embedding of the odag can be done in O(n) 
time. 

5 F o l d i n g  F a c e s  t o  A c h i e v e  a n  U p w a r d  E m b e d d i n g  

Consider a planar embedding of an outerplanar graph and an edge e of the 
embedding which does not appear on the boundary of the external face (Fig. 6). 
Edge e partitions the embedding into two subembeddings A and B on the two 
different sides of e so that every path from a vertex in A to a vertex in B goes 
through one of the two vertices to which e is incident. 

Fig. 6. Folding subgraph B around edge e 

A folding of B with respect to e is a rotation of subgraph B around e so that 
B maintains its structure, and is embedded inside that face of A with e on its 
boundary. This results in a new planar embedding. It is easy to see that for any 
planar embedding of an outerplanar graph there is a sequence of foldings which 
will yield this embedding if we start with the outerplanar embedding. 

Suppose that an odag does not have an upward embedding which is topolog- 
ically equivalent to its outerplanar embedding. In that case, we have to check 
whether there exists a sequence of foldings which, if applied on the outerplanar 
embedding of the odag, they produce an upward embedding. This is the topic 
of this section. 
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A DFS on the dual tree of the outerplanar embedding will be employed 
again. The current face c along with subgraphs G1, G 2 , . - . ,  Gm is called the 
current flower fc (Fig. 5). Subgraphs G1, G 2 , . " ,  G,n are called the petals of re. 
Each one of the Gi's has already been embedded in an upward planar fashion. 
We will check whether some of the Gi's have to be folded inside c so that  the 
flower fc has an upward embedding. 

Now consider graph cUGi. Let (Xi, 1~) be the edge shared by c and G~ (Fig. 
5), and consider all upward embeddings of c t3 Gi. In any such embedding, Gi is 
either outside c, or has been folded inside c, and some local conditions hold on c 
with respect to vertices Xi and Y/. These local conditions are the different ways 
that  the angles formed by the edges of c on vertices Xi and Y~ are assigned (see 
[1]) to the internal or external face of c. 

We record all valid pairs (i.e., < Gi is inside c, "local condition" on c >)  that  
correspond to an upward embedding of c U Gi. Let Li be the set of these pairs. 
We do this for each i = 1, 2 , . . . ,  m. Next, we build the condition graph in the 
following way. 

We introduce a vertex for each pair in Li. We make a directed edge go from 
vertex u ELi  to vertex v E Li+l if all the following conditions hold: 

1. there is a vertex which is shared between Gi and Gi+l,  and let's call this 
vertex Y/. 

2. the local conditions with respect to Y~ on the two pairs are the same. 
3. ~ is candidate. 

We can prove the following theorem: 

T h e o r e m 6 .  There is an upward embedding of flower fc iff the corresponding 
condition graph has a directed cycle. 

The procedure we described above is repeated for every flower ft .  This pro- 
cedure will find an upward embedding of the flower, if one exists. Notice that 
any upward embedding of the current flower will do since we can show that: 

L e m m a  7. Consider current flower fc, and let G be the original outerplanar 
graph. I f  G is upward planar, then for every upward embedding of fc there is an 
upward embedding of G whzch respects the embedding of f~. 

If no upward embedding can be found for the current flower, then the original 
outerplanar graph is not upward planar. Otherwise, DFS will continue with 
visiting the next face b (Fig. 5), and the same procedure will be applied. Notice 
that  f~ with its petals are now a petal of current face b. 

T h e o r e m  8. We can check in O(n ~) time whether an odag has an upward em- 
bedding which is not topologically equivalent to the outerplanar embedding of the 
odag. 

P r o o f .  Follows easily from the discussion above, and the fact that  checking for 
a directed cycle in a condition graph has to be done at every current flower of 
the DFS process. 
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6 Conclusion and Open Problems 

In this paper we solved the problem for testing upward planarity of odags. Our 
first algorithm che~ks whether an odag has an upward embedding which is equiv- 
alent to the outerplanar embedding of the odag. This is a linear t ime algorithm, 
and it is faster than any previously known technique. Our second algorithm 
checks whether an odag has an upward embedding which is not topologically 
equivalent to the outerplanar embedding. This algorithm is the first that deals 
with this problem, and solves it in polynomial time. 

Our second algorithm is also the first work in this area that  takes an approach 
of folding faces. It is open whether we can use a similar approach for other 
families of dags. 

Since the general problem for checking upward planarity has been proved to 
be NP-complete ,  solving upward planarity efficiently for specific families of dags 
becomes interesting and important.  
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