
Upward Planarity Testing of Outerplanar Dags
(Extended Abstract)

Achilleas Papakostas*

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688

Abstract . In this paper, we present two polynomial-time algorithms to
determine if an outerplanar directed acyclic graph (odag) can be drawn
upward planar, that is, drawn in planar straight-line fashion so that all
arcs point up. The first algorithm checks if the odag has an upward planar
drawing that is topologically equivalent to the outerplanar embedding of
the odag. This algorithm runs in linear time (which is optimal), and is
faster than any previous algorithm known. The second algorithm also
checks whether an odag has an upward planar drawing but does not
insist that the drawing be topologically equivalent to the outerplanar
embedding. This is the first polynomial-time algorithm we know of to
solve this problem.

1 Introduction

One can find, in the literature, many algorithms for checking planarity of undi-
rected graphs and for computing planar embeddings of planar graphs. Both
planarity checking and planar embedding can be done in linear time [7], [5], [11].

When one is concerned with directed acyclic graphs, the notion of upward
planarity naturally arises and replaces the notion of planarity for undirected
graphs. A directed acyclic graph is upward planar if it admits a planar draw-
ing with the additional constraint that all the edges point upwards (i.e., from
a lower to a higher y-coordinate). There are many practical situations where
upward drawings are required: drawing semantic networks and other knowledge
representation diagrams, displaying call graphs in compiler optimization, obtain-
ing E-R diagrams in database design, and any other occasion where a hierarchical
structure must be represented.

A combinatorial characterization of the directed acyclic graphs that have an
upward drawing is given in [9] and [4] where it is shown that a directed acyclic
graph admits an upward drawing if and only if it is a subgraph of a planar st-
graph. It has been recently shown that the general problem of testing whether
a directed acyclic graph is upward planar is NP-complete [6].

The work described in the present paper is chiefly aimed at obtaining two
efficient algorithms for checking upward planarity of outerplanar directed acyclic

* Part of this work was done while the author was at the University of Massachusetts.

299

graphs. We will see how we can check in linear time (which is opt imal) whether an
outerplanar embedding is upward. This is our first algorithm and it is described
in Sect. 4. In the case that the outerplanar embedding is not upward, we will
demonstrate how to obtain a non-outerplanar embedding that is upward planar
(assuming one exists) in polynomial time. This is our second algorithm and it
is presented in Sect. 5. This algorithm is also the first approach we know of to
solve this problem.

Section 2 contains some basic definitions and preliminaries. Section 3 surveys
these families of directed acyclic graphs for which determining upward planarity
can be done in polynomial time. The paper concludes with some open problems
in Sect. 6 .

2 P r e l i m i n a r i e s

We assume that the reader is familiar with basic terminology and results of
graph theory. Most of the definitions given here are the same as in [1].

A graph G has a planar drawing if it has a drawing so that no two edges
intersect except, of course, at common endpoints. A graph is planar if it admits
a planar drawing. A planar graph may have many different planar drawings.
Two planar drawings of the same planar graph are equivalent if, for each vertex
v, they have the same circular clockwise order of the edges incident to v. Two
equivalent drawings have the same set of faces too. A planar embedding of a
planar graph is a collection of planar drawings which are pairwise equivalent.

A graph has an outerplanar embedding if it has a planar embedding in which
all vertices reside on the same face (called exlernal face). Every outerplanar
graph has a unique outerplanar embedding.

The underlying graph of a directed acyclic graph (or dag) is the undirected
graph obtained from the dag by considering the edges as undirected. Vertices
of a dag which do not have any incoming edges are called sources, and vertices
that do not have any outgoing edges are called sinks. Sources and sinks are also
called switches.

An upward drawing of a dag G is a planar drawing of G with the additional
constraint that each edge is a curve rising monotonically in the vertical direction.
Given a drawing of a dag, we say that a vertex v is candidate if the outgoing
(incoming) edges incident to v appear consecutively around v. If this happens
for all vertices of the drawing then the drawing is a candzdate upward drawing.
Every upward drawing of a dag is a candidate upward drawing.

Two upward drawings of the same dag are equwalen~ if their underlying pla-
nar drawings are equivalent. A collection of pairwise equivalent upward drawings
of a dag is an upward embedding of the dag. A planar embedding of a dag in
which every vertex is candidate is a candidate upward embeddzng of the dag.
Clearly, every upward embedding is a candidate upward embedding.

A dag is upward planar if it admits an upward drawing. Candidacy is only a
necessary condition for the existence of an upward embedding. Figure la shows
an upward embedding and Fig. lb shows a candidate upward embedding which

300

is not upward. From here on, n will denote the number of vertices in a planar
dag.

(a) (b)

Fig. 1. (a) an upward embedding, (b) a candidate upward embedding which is not
upward

3 U p w a r d P l a n a r i t y of S o m e F a m i l i e s o f D a g s

There are algorithms to test upward planarity of some families of dags. One of
these families is the family of directed trees for which it is easy to show that
they are upward planar.

Di Battista et al [3] showed that a bipartite dag is upward planar iff its under-
lying graph is planar. Plat t [10] showed that single-source and single-sink dags
are upward planar iff the underlying graph with a source-to-sink added edge is
planar. Hutton and Lubiw [8] developed a O(n 2) algorithm for testing upward
planarity of single-source dags. This result was improved by Bertolazzi, Di Bat-
tista, Mannino and Tamassia [2] who showed that upward planarity testing of a
single-source digraph can be done optimally in O(n) time.

We are going to associate a capacity (see [1] for a formal definition of capac-
ity) with every face (internal and external) of a candidate upward embedding.
Switches are assigned to faces in whose boundary they appear. A switch can be
assigned only to one of the faces that share it, and there cannot be switches that
are not assigned to any face.

We call a face satisfied if it is assigned precisely as many switches as its
capacity. It is proved [1] that:

T h e o r e m 1. A candidate upward embedding of a dag is upward iff there exists
an assignment which satisfies all the faces.

If we apply this technique for every embedding of a triconnected dag [1] we can
check whether it is upward planar in O(n + r 3 log r) time (r is the number of
switches).

An embedded dag whose internal faces are triangles is a triangular dag. We
can easily show the following proposition:

301

Proposition 2. A candidate triangular dag is upward planar iff no internal ver-
tex is a switch.

A single-source or single-sink outerplanar dag (odag for short) is clearly upward
planar. Circuits are odags whose underlying graph is a simple cycle. Circuits are
known to be upward planar [1]. Also, we can see that the following holds:

P ropos i t ion3 . Every odag whose outerplanar embedding consists of a circuit
with a single chord inside it is upward planar.

Outerplanar dags can be classified into the following three groups:

1. odags whose outerplanar embedding is an upward embedding, and therefore
they are upward planar (Fig. 2).

2. odags which are upward planar but their outerplanar embedding is not up-
ward. Figure 3a shows an outerplanar embedding that is not candidate up-
ward (and therefore not upward), and Fig. 3b shows a non outerplanar em-
bedding of the same odag which is upward planar.

3. odags that are not upward planar (Fig. 4).

Fig. 2. An outerplanar upward embedding

If we apply Proposition 2 to the case of triangulated outerplanar dags it is
clear that every triangulated outerplanar candidate upward embedding is upward
planar.

4 T e s t i n g U p w a r d P l a n a r i t y o f O u t e r p l a n a r E m b e d d i n g s

In this section we will present a linear time algoritm for testing whether an
outerplanar candidate upward embedding is upward. Recall that the general
way for testing whether a candidate upward embedding is upward (described
in [1]) takes O(n + r 2 log r) time (r is the number of switches). Note that we
can easily check in linear time whether an outerplanar embedding is candidate
upward.

302

(a) (b)

Fig. 3. (a) an outerplanar embedding which is not upward, (b) an upward and non
outerplanar embedding of the same odag

Fig. 4. A non upward planar odag

The dual of an outerplanar embedding is a tree, if we exclude the dual vertex
which corresponds to the external face and its incident edges. Our technique
is based on a DFS performed on the dual tree and on appropriate coloring of
switches of the odag taking place during the search process. The switches are
assigned colors during the algorithm as follows:

- red: the switch has not been assigned yet to any face, and is thus still available
for assignment.

- brown: the switch has been assigned permanently to a face, and is thus not
available for assignment.

The face of the outerplanar embedding that the DFS is currently visiting
is called the current face. Only the switches which appear around the current
face can be colored at a given time. All switches are originally colored red. The
adjusted capacity of each internal face is originally equal to its capacity. When
we describe the algorithm, we will see how the adjusted capacity is computed.

Figure 5 shows the situation when the current face is c. In the same fig-
ure, subgraphs G1, G 2 , . . ' , Gm which appear around c, in clockwise order, have
already been visited. When at the current face c, we always try to satisfy its ad-
justed capacity using the existing red switches around it. We distinguish among
the following cases:

1. If the number of red switches around c is equal to the adjusted capacity of c,

.

.

b

then c and all the faces in subgraphs G1, G 2 , " . , Gm are satisfied and these
red switches become brown.
If the number of red switches around c is less than the adjusted capacity of c,
then c and G1, G2, �9 �9 ", G m cannot be satisfied so we stop and the embedding
is declared not upward.
If the number of red switches is more than the adjusted capacity of c then:

- if neither X nor Y (Fig. 5) is a red switch, then c and G 1 , G 2 , ' . . , G , n

are satisfied (notice that if there are excess red switches then they will be
assigned to the external face). All red switches around c become brown.

- if exactly one of X and Y is a red switch, then it maintains its color
(it might be needed later when DFS visits b), whereas all the other red
switches around c become brown, c and G1, G 2 , ' " , Gm are satisfied (the
same observation as above holds for excess red switches).

- if both X and Y are red switches, then we compute the difference between
the number of red switches around c and the adjusted capacity of c.
If the difference is 2 or more, then X and Y maintain their color, the
rest of the red switches around c become brown, c and G1, G 2 , - " , Gm
are satisfied.
If the difference is 1, then this means that c needs only one of X and
Y but we can not currently determine which. So we move one unit of
c's adjusted capacity to b, that is the adjusted capacity of b increases
by 1. c and G1, G2 , - - - , Grn will be satisfied when b is satisfied. X and
Y mainta in their color and all the other red switches around c become
brown.

3 0 3

Fig. 5. DFS performed on the dual tree of an outerplanar embedding: c is the current
face

304

L e m m a 4 . An outerplanar embedding is upward iff all switches become brown
at the end of the DFS.

The basic observation here is that we always try to satisfy the capacities of the
faces with switches that cannot be used by faces which the DFS will visit later.
In this way we keep "pushing" as many switches as possible up the tree.

Using appropriate data structures we ensure that the time spent on each
current face is order of the number of angles in the interior of the face. There-
fore, the algorithm runs in time which is order of the number of angles of the
embedding. From the discussion above it follows that:

T h e o r e m 5 . Testing whether an odag has an upward embedding which is topo-
logically equivalent to the outerplanar embedding of the odag can be done in O(n)
time.

5 F o l d i n g F a c e s t o A c h i e v e a n U p w a r d E m b e d d i n g

Consider a planar embedding of an outerplanar graph and an edge e of the
embedding which does not appear on the boundary of the external face (Fig. 6).
Edge e partitions the embedding into two subembeddings A and B on the two
different sides of e so that every path from a vertex in A to a vertex in B goes
through one of the two vertices to which e is incident.

Fig. 6. Folding subgraph B around edge e

A folding of B with respect to e is a rotation of subgraph B around e so that
B maintains its structure, and is embedded inside that face of A with e on its
boundary. This results in a new planar embedding. It is easy to see that for any
planar embedding of an outerplanar graph there is a sequence of foldings which
will yield this embedding if we start with the outerplanar embedding.

Suppose that an odag does not have an upward embedding which is topolog-
ically equivalent to its outerplanar embedding. In that case, we have to check
whether there exists a sequence of foldings which, if applied on the outerplanar
embedding of the odag, they produce an upward embedding. This is the topic
of this section.

305

A DFS on the dual tree of the outerplanar embedding will be employed
again. The current face c along with subgraphs G1, G 2 , . - . , Gm is called the
current flower fc (Fig. 5). Subgraphs G1, G 2 , . " , G,n are called the petals of re.
Each one of the Gi's has already been embedded in an upward planar fashion.
We will check whether some of the Gi's have to be folded inside c so that the
flower fc has an upward embedding.

Now consider graph cUGi. Let (Xi, 1~) be the edge shared by c and G~ (Fig.
5), and consider all upward embeddings of c t3 Gi. In any such embedding, Gi is
either outside c, or has been folded inside c, and some local conditions hold on c
with respect to vertices Xi and Y/. These local conditions are the different ways
that the angles formed by the edges of c on vertices Xi and Y~ are assigned (see
[1]) to the internal or external face of c.

We record all valid pairs (i.e., < Gi is inside c, "local condition" on c >) that
correspond to an upward embedding of c U Gi. Let Li be the set of these pairs.
We do this for each i = 1, 2 , . . . , m. Next, we build the condition graph in the
following way.

We introduce a vertex for each pair in Li. We make a directed edge go from
vertex u ELi to vertex v E Li+l if all the following conditions hold:

1. there is a vertex which is shared between Gi and Gi+l, and let's call this
vertex Y/.

2. the local conditions with respect to Y~ on the two pairs are the same.
3. ~ is candidate.

We can prove the following theorem:

T h e o r e m 6 . There is an upward embedding of flower fc iff the corresponding
condition graph has a directed cycle.

The procedure we described above is repeated for every flower ft . This pro-
cedure will find an upward embedding of the flower, if one exists. Notice that
any upward embedding of the current flower will do since we can show that:

L e m m a 7. Consider current flower fc, and let G be the original outerplanar
graph. I f G is upward planar, then for every upward embedding of fc there is an
upward embedding of G whzch respects the embedding of f~.

If no upward embedding can be found for the current flower, then the original
outerplanar graph is not upward planar. Otherwise, DFS will continue with
visiting the next face b (Fig. 5), and the same procedure will be applied. Notice
that f~ with its petals are now a petal of current face b.

T h e o r e m 8. We can check in O(n ~) time whether an odag has an upward em-
bedding which is not topologically equivalent to the outerplanar embedding of the
odag.

P r o o f . Follows easily from the discussion above, and the fact that checking for
a directed cycle in a condition graph has to be done at every current flower of
the DFS process.

306

6 Conclusion and Open Problems

In this paper we solved the problem for testing upward planarity of odags. Our
first algorithm che~ks whether an odag has an upward embedding which is equiv-
alent to the outerplanar embedding of the odag. This is a linear t ime algorithm,
and it is faster than any previously known technique. Our second algorithm
checks whether an odag has an upward embedding which is not topologically
equivalent to the outerplanar embedding. This algorithm is the first that deals
with this problem, and solves it in polynomial time.

Our second algorithm is also the first work in this area that takes an approach
of folding faces. It is open whether we can use a similar approach for other
families of dags.

Since the general problem for checking upward planarity has been proved to
be NP-complete , solving upward planarity efficiently for specific families of dags
becomes interesting and important.

Acknowledgements

The author wishes to thank Seth Malitz for a variety of helpful discussions and
especiMly for his comments on earlier drafts of the paper.

References

1. P. Bertolazzi and G. Di Battista, On upward drawing testing of triconnected di-
graphs, Proc. 7th ACM Syrup. on Computational Geometry, pp. 272-280, 1991.

2. P. Bertolazzi, G. Di Battista, C. Mannino and R. Tamassia, Optimal upward pla-
narity testing o] single-source digraphs, In 1st Annual European Symp. on Algo-
rithms, Lecture Notes in Comp. Sci., Springer-Verlag, 1993.

3. G. Di Battista, W.P. Liu, I. Rival, Bipartite graphs, Upward drawings and Pla-
narity, Information Processing Letters, vol. 36, pp. 317-322, 1990.

4. G. Di Battista and R. Tamassia, Algorithms for plane representations o] acyclie
digraphs, Theoretical Computer Science, vol. 61, pp. 175-198, 1988.

5. H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Com-
binatorica, vol. 10, pp. 41-51, 1990.

6. A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rec-
tilinear Planarity Testing, to appear in Proc. of Graph Drawing 1994.

7. J. Hopcroft and R. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach.,
vol. 21, pp. 549-568, 1974.

8. M.D. Hutton and A. Lubiw, Upward planar drawing o] single source acyclic di-
graphs, Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 203-211, 1990.

9. D. Kelly, On the dimension of partially ordered sets, Discrete Math., vol. 63, pp.
197-216, 1987.

10. C. Platt, Planar lattices and planar graphs, J. Combin. Theory Ser. B, vol. 21, pp.
30-39, 1976.

11. W. Schnyder, Embedding planar graphs on the grid, Proc. 1st ACM-SIAM Symp.
on Discrete Algorithms, pp. 138-147, 1990.

