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A b s t r a c t .  The design and anMysis of cost effective survivable teleeom- 
municatwn networks is a very important problem. We study techniques 
for visualizing survivable telecommunication networks. The visualization 
of telecommunication networks is very useful in aiding the design process 
of minimum cost networks and the management of network operations. 
We present several linear time algorithms for drawing telecommunication 
networks (with optimal area) so that important properties are displayed. 
Given a ring cover of a network, our algorithms display it in such a way 
that rings are easily identifiable and possible problems can be spotted 
by network designers. 

1 I n t r o d u c t i o n  

The problem of drawing a graph in the plane has received increasing attention 
recently due to the large number of applications [1]. Examples include VLSI 
layout, algorithm animation, visual languages, and CASE tools [2]. Vertices are 
usually represented by points and edges by simple open curves. In this paper we 
study techniques for visualizing telecommunication networks. The visualization 
of telecommunication networks is very useful in aiding the design process of min- 
imum cost networks and the management of network operations [7]. We present 
linear time algorithms for drawing survivable telecommunication networks (with 
optimal area) so that  important  properties are displayed. 

The design and analysis of cost effective survivable telecommunication net- 
works is a very important  problem [3, 5, 6, 9, 10, 12]. Most problems that aim 
towards minimizing the total cost of such a network are NP-hard [4]. For that  
matter,  computer tools to aid the design and analysis of telecommunication net- 
works are needed. A central problem of such tools is how to draw a network on 
the computer screen such that  important  aspects of the network can be easily 
captured and an improved solution can be obtained by a user interactively. 

The problem is defined as follows: Let G = (V, E)  be a telecommunication 
network with a set of nodes V (representing the sites of switches) and a set of 
links E (representing the electrical wires or optical fiber links between nodes). 
The traffic requirements between the nodes are defined by an n • n matrix T, 
where T ( i , j )  corresponds to the amount of traffic between nodes i and j .  We 
need to design a network which (a) satisfies the traffic requirements, (b) can 
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survive failures, and (c) the cost of the network is minimum. A network is 1- 
survivable if it can survive the failure of a link e, i.e., the removal of link e does 
not disconnect the network and the traffic that  originally travels through e can 
be accomodated on another path. The multi-ring architecture is considered as 
a cost-effective survivable network architecture due to its simplicity, improved 
survivability and bandwidth sharing [11, 12]. A ring cover of G is a set of rings 
(cycles) of G such that  the rings are connected and every node in V is included 
in at least one ring. Apparently, a network with a ring cover is 1-survivable since 
the switches automatically send the required traffic around the ring if a link 
failure occurs [10, 11, 12]. 

Since the nodes of the network correspond to sites, they have geographic co- 
ordinates. Hence, the network can be drawn naturally with little effort. However, 
the important  properties of the network that  designers are interested in (such 
as rings) are not displayed. In this paper, we present algorithms for drawing 
telecommunication networks in order to aid the d.esign of cost-efficient networks. 
Given a ring cover of a network, our algorithms display it in such a way that  
rings are easily identifiable and possible problems can be easily spotted by net- 
work designers. An example of a drawing of a ring cover is shown in Fig. 1. Our 
algorithms run in linear time and produce drawings that  require optimal area. 

Fig. 1. Example of a drawing of a ring cover. 

The rest of the paper is organized as follows: In Section 2, we discuss the 
criteria for drawing ring covers. Section 3 is devoted to the description of several 
algorithms that draw a telecommunication network, given a ring cover. In Section 
4 we summarize the results and discuss some open problems. 
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2 P r e l i m i n a r i e s  

Ideally, we would like to represent every ring as a cycle, see Fig. 1. However, due 
to the complexity of interactions among rings in a ring cover, it is not always 
possible to draw rings as cycles. For example, if three rings share a common 
node then it is impossible to draw three disjoint cycles. If such a case occurs, we 
shall use a geometric shape with a slight deviation from a cycle, called almost 
cycle, to represent rings. An almost cycle is a geometric shape that ,  except for 
a few nodes, all of its nodes are placed on the perimeter of a cycle. 

As is the case in most graph drawing algorithms, the existence of unnecessary 
crossings is viewed as harmful to the readability of the drawing. This is also true 
in our ring cover drawings, since unnecessary crossings may visually create rings 
that  do not exist in the original ring cover. Thus, minimizing such crossings is 
central to our approach. We also assume the existence of a resolution rule, that  
is, in the final drawing, any two nodes of the network must be kept far enough 
so that  the human eye can tell them apart.  This implies that  the drawing cannot 
be arbitrarily scaled down. If we honor such a rule in our drawings and represent 
each ring as a cycle, there is a trivial lower bound of f l (N  2) on the area required 
for the drawing, where N is the number of nodes in the network. This happens 
when there is only one ring in the ring cover. 

Drawing ring covers in general is rather difficult. Even if we relax the con- 
straint of using cycles to represent rings, and allow ourselves to use any convex 
polygon to represent a ring, not all ring covers admit such representation. In 
order to capture the complexity of interactions among rings, a new graph G t is 
introduced. Given a network G and its ring cover C, a contact node is a node 
of G that is contained in at least two rings. Let V' be the collection of contact 
nodes, G' = (V'  U C,E~), where E ~ -- {(R,c) ] R E C,c  E V ~ and c is in R }. 
Graph G' is called ring-contact node graph. The definition of a ring cover implies 
that  G t is a connected graph. 

Denote a ring as an ordered sequence of its nodes R = {nl ,n2, . . . ,np} in 
clockwise order. Let R1 = {nl ,n2 , . . . ,np}  and R2 = {ml ,m2 , . . . ,mq}  be two 
rings, and suppose that  they have k contact nodes, say {cl,c2,.. .ck}, where ci 
appears before c~+1 in the clockwise order around R1. We say that R1 and 
R2 are compatible if and only if there is a cyclic shift of the nodes of R2, so 
that  contact nodes {Cl,C2,...ck} appear in this order, or in the reverse order 
(i.e.,{Ck, ...,c2, cl}). The following lemma describes a necessary condition for a 
ring cover that  admits a convex polygon representation. 

L e m m a l .  Given a ring cover C = {R1,R2,.. .}, if C has a convex polygon 
representation then all rings in C are pairwise compatible. 

As pointed out earlier, ring cover drawing is very difficult or even impossible 
when G ~ is an arbitrary graph. So, we focus our attention to some special cases. 
In the rest of the paper, we assume that G ~ is a tree, which is often the case in 
practice. If G ~ is a' tree then any two adjacent rings share exactly one contact 
node. 
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3 D r a w i n g  T r e e - S t r u c t u r e d  R i n g  C o v e r s  

In this section we present algorithms for drawing tree-structured ring covers of 
networks. The ring-contact node graph is a tree, which will be called T. We 
propose three standards for drawing ring covers: 

1. Outside Drawings: Each ring is drawn outside of the other rings. 
2. Inside Drawings: Each ring (except for the root) is drawn inside some other 

ring(s). 
3. Mixed Drawings: A ring may be drawn outside or inside other rings. 

We will show that there are advantages and disadvantages to each technique. 

3.1 Outside Drawings 

It is natural to draw two rings next to (and outside of) each other when they 
share a contact node. Since the structure of the ring-contact point tree T may 
vary, and the number of nodes contained in different rings could be drastically 
diverse, it is important  to position each cycle in a proper place. Otherwise, there 
will be some crossings. 

For a ring node u and all its subtree in the ring-contact node tree T, define 
a cycle R~, called the enclosing cycle of u, such that  R~ is large enough that  we 
can place the drawing of u and its subtree inside Ru. Our intention is to draw 
u and its subtree in a confined area, so that  it does not intersect rings of other 
subtrees of T. 

Clearly, any ring node u (except for the root) of T has a parent. In the 
drawing of u, we place u's contact node with its parent on the top half of the 
cycle, and place all other nodes (including all other contact nodes) at the bottom 
half of the cycle. By doing so, we avoid intersections between the ancestors of 
u and the children of u, see Fig. 2. The cycle drawn with dotted line is the 
enclosing cycle. Assume that  ring node u, has i children, ul ,u2,  ..., u~ in T. If 
all the rings R 3 of u3, for j = 1,2, ...,i, have been drawn, we can draw cycle R, 
corresponding to u, and place R and R 3 in the following fashion: 

First we draw a cycle R ~ and we place all the nodes of u and all the cycles 
of Rj,  j = 1, 2, ..., i, evenly so that the center of each Rj lies on the perimeter of 
R'.  The distance among the nodes and the cycles is the distance required by the 
resolution rule. It is easy to see that  the diameter of R I should be larger than 
the diameter of any R 3. 

Next, we draw a new cycle R with radius twice the radius of R f, and place all 
Rj ,  j = 1,2, . . . , i ,  as well as all the nodes of u, except u's contact node with its 
parent,  on the bottom half perimeter of R. This can be achieved easily by cutting 
the perimeter of R I at the point of u's contact node with its parent, and using 
that  as the bottom half of perimeter of R. This is possible since the radius of R is 
equal to the diameter of R ~. Finally, we pull each Rj downward until it touches R 
at their common contact node. Note that the resolution rule is preserved during 
this process. It is shown in [8] that  a convex polygon with n vertices needs 
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J?(n 3) area to be drawn with integer coordinates. The coordinates of the nodes 
are naturally computed using a polar coordinate system, and they are stored as 
floating point numbers. This is the case for the other drawing techniques as well. 
Using the procedure described above, we obtain the following lemma. 

e I 
! i 

i I 
i ; 
\, 

% 

Fig. 2. Drawing of a ring node and its enclosing cycle. 

L e m m a  2. For any given ring node u and all its subtree in T, the enclosing 
cycle R~ of u has radius O(N), where N is the number of nodes in u and its 
subtree. 

In the above description, we implicitly assume that  no more than two rings 
share a contact node. This is not t rue in general. If three or more rings share a 
contact node, we could pretend that  they have distinguished contact nodes, but 
in our final drawing, instead of drawing them as cycles, we can draw them as 
almost cycles. The handling of such a case is illustrated in Fig. 3. 

The algorithm that  produces an outside drawing of a ring cover essentially 
traverses T in postorder, while drawing each ring as it visits the corresponding 
node. 

A l g o r i t h m  OutDraw (v) 
Input: Ring cover C and ring-contact node graph G ~ with root v. 
Output:  Outside drawing of C. 
b e g i n  

1 if  v is a leaf, t h e n  draw the ring corresponding to v; return; 
2 if  v is a node representing a ring, t h e n  

�9 for  all its children u, d o  OutDraw (ui); 
�9 draw v and its corresponding enclosing cycle as described in Lemma 2; 
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Fig. 3. Drawing almost cycles. 

3 i f  v is a node representing a contact node t h e n  
�9 for  all its children uj do  OutDraw (u3); 

e n d  

There are two modifications to the above algorithm that  could result in a 
bet ter  utilization of the area. If v is a ring node and v has only one child, we 
could draw it as shown in Fig. 4(a); if v is the root of T, we could relax the 
constraint that  all nodes be placed at the bot tom half of the cycle, and we can 
place them evenly around the cycle of the root, as shown in Fig. 4(b). 

T h e o r e m  3. Given a ring cover C and its corresponding ring-contact node tree 
T, Algorithm OutDraw produces an outside drawing for ring cover C, such that: 

1. all the rings are drawn as cycles or almost-cycles; 
2. there are no crossings; 
3. the area of the produced drawing is at most O(N2), where N is the number 

o] nodes in ring cover C; 
4. the time complexity of Algorithm OutDraw is O(N). 

3.2 I n s i d e  D r a w i n g  

In this section we consider inside drawing as an alternative to outside drawing. 
Instead of placing two rings side by side when they share a contact node, we 
place one ring inside the other. In other words, we always place rings of children 
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Fig. 4. (a) v has only one child; (b) v is the root of T. 

inside the ring of their parent. Thus, the enclosing cycle for a ring node u is 
actually the ring for u itself, since all of its children are placed inside u. 

Let u be a ring node in T and assume that u has i children, ul,u2, ...,u~. If 
all the rings R 3 of uj,  for j --- 1 ,2, . . . , i ,  have been drawn, we can draw a cycle 
R, corresponding to node u, and place all the Rj 's  in R in the following fashion. 

First, we draw a cycle R I, and place all the nodes of u and all the cycles R 3 
evenly on the perimeter of R t. The distance between the nodes and the cycles 
is equal to the minimum distance required by the resolution rule. Each R 3 is 
placed so that  its center is placed on the perimeter of R, see Fig. 5. Clearly, the 
diameter of R ~ is chosen to be larger than the maximum diameter of the Rj 's.  

Next, we draw R using as center the center of R ~ and with radius large enough 
to enclose R' and the Rj's.  Notice that  the radius of R may be as large as two 
times the radius of R ~. 

Finally, we move each R 3 towards the perimeter of R, such that ,  each R~ has 
one point of contact with R. This is their common contact point. Note that the 
resolution rule is preserved during this process. 

By the above procedure we have the following !emma: 

L e m m a  4. For any ring node u and its subtree in T,  the radius o] the corre- 
sponding cycle R is O(N), where N is the number of nodes in u and its subtree. 

In outside drawing, if more than three rings share a contact node, we have 
to use an almost cycle to represent them. In inside drawing, we draw all of 
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Fig. 5. (a) Placing the centers of rings Rj  on the perimeter of R'; (b) Drawing R that 
encloses the R ~ and the Rj's. 

them as cycles, and place one inside another.  The following algorithm is used 
to draw a ring cover in inside fashion. Essentially, the algorithm travels the tree 
in postorder; after drawing all the children of a node recursively, the algorithm 
draws the parent node. 

A l g o r i t h m  InsideDraw (v) 
I n p u t :  Ring cover C, and its ring-contact node tree T with root v. 
O u t p u t :  An inside Drawing of C. 
b e g i n  

1 i f  v is a leaf t h e n  draw a cycle corresponding to v; return; 
2 i f  v is a node representing a ring t h e n  

�9 for  all its children u~ do  InsideDraw (u0; 
�9 Draw v as in the previous discussion or as shown in Fig. 6(a); 

3 i f  v is a node representing a contact node and v has only one child u ~ t h e n  
InsideDraw (u'); 

4 i f  v is a node representing a contact node and v has more than one children 
t h e n  

�9 perform a transformation as shown in Fig. 6 (b); 
�9 InsideDraw (T1); 

e n d  

If  there are more than three rings that  share a contact node, the transfor- 
mation performed in Step 4 of the algorithm will draw a cycle that  corresponds 
to a subtree inside the cycle that  corresponds to another  subtree so that  they 
share the common contact point. 
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Fig. 6. Illustration of algorithm InsideDraw. 

We have following theorem. 

T h e o r e m  5. Given a ring cover C and its corresponding ring-contact node tree 
T Algorithm InsideDraw produces a ring cover drawing such that: 

1. each ring is represented by a cycle; 
P. there are no crossings; 
3. the area required by the drawing is O(N2), where N is the number of nodes 

in C; 
4. the time complexity o] the algorithm is O(N).  

It is interesting to observe that the order of the area occupied by the drawing 
does not depend on the starting point. In other words, the order of the area 
remains unchanged no matter which node is considered as the root of the tree. 

So far, we have introduced two kinds of drawings for ring covers. On certain 
occasions, one kind of drawing is better than the other in terms of area. Fig. 
7 shows an example where an inside drawing outperforms an outside drawing. 
Since the original ring R0 is removed from the inside drawing, the actual drawing 
can be shrunk. Thus the area needed for the inside drawing is far less than that 
needed for the outside drawing. Fig. 8 shows an example containig five rings, 
where using an outside drawing is far better than an inside drawing. Clearly, 
an inside drawing of this example will take as much as O(N 2) area, while an 
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Fig. 7. An exaznple where inside drawing is better than outside drawing. 

Fig. 8. An example where outside drawing is better than inside drawing. 

outside drawing will take O(N • nmaz), where n ,~x  is the number of nodes in 
the maximum ring. These facts motivate us to blend the two drawing techniques 
in order to obtain a mixed drawing. 

3.3 M i x e d  D r a w i n g  

In this section we present a simple technique that a t tempts  to break a given ring 
cover into smaller parts, such that each of the smaller parts will be drawn using 
the inside drawing technique. Observing Fig. 8, we realize that  if the centers of 
all the rings are aligned on a straight line, the outside drawing will require less 
area than an inside drawing. So, we a t tempt  to break a given ring cover into k 
subcovers, and draw each subcover using our inside drawing algorithm. Next we 
align all the centers of the outermost cycles of each subcover on a straight line. By 
our inside drawing algorithm, we know that  the radius of each outermost cycle 
is proportional to the number of nodes contained in its corresponding subcover. 
Thus the  final area required is O(k • nma=2), where nma= is the number of nodes 
contained by the subcover with maximum number of nodes. 
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In order to obtain a better  area utilization, we try to minimize nmax. In the 
following, we propose a heuristic to break a given cover into several subcovers, 
and then draw them separately using Algorithms InsideDraw and OutDraw. 

A l g o r i t h m  MixDraw 0 
Input: A ring cover C and its ring-contact node tree T. 
O u t p u t :  Mixed drawing of C. 
b e g i n  

1 Assign a weight to each node in T,  if node u is a ring node, the weight of u 
is equal to the number of nodes in the ring corresponding to u; otherwise, 
the weight is zero; 

2 Find a longest path i in T; 

3 Pa th  I obtained in Step 2 has the form 1 = {rl,  cl, r2, c2, ...., rk}, where ri is a 
ring node and c~ is a contact node. Construct a partit ion P = {C1, C2, ..., Ck} 
of C as follows: 

1. C~ contains r~ and its subtrees excluding the ones which are on l, for 
i -- 1, 2, ..., k; 

2. suppose c~ has children ql,q2,...,q,~ ~ r~+l; w.l.o.g, assume w(ql) >_ 
w(q2) >, .,.,W(qm). 

3. f o r j = l t o m d o  
if  (w(r,) > w(ri+l)) t h e n  Ci+l = Ci+l U%, w(C,+l) = w(C,+l)+w(%); 
else C, = u q j ,w(CJ  = w(C ) + w(qj). 

4 Use Algortihm InsideDraw to draw subcovers C1, C2, ..., Ck respectively. 

5 Place outermost cycles of C1, C2, ..., Ck on a straight line so that  their centers 
are horizontally aligned and their contact points coincide. 

end. 
It is easy to see that  every ring is represented by a cycle in a mixed drawing. 

There are no crossings, since we use only inside and outside drawings. In the 
worst case, the area required is O(N2), but the algorithm should be able to do 
bet ter  than that  on the average. The time complexity is dominated by the ring 
cover partition, which takes linear time. Hence the time complexity is O(N). By 
the above discussion we have following theorem. 

T h e o r e m  6. Given a ring cover C and its corresponding ring-contact node tree 
T, Algorithm MixDraw produces a mixed drawing for ring cover C, such that: 

1. the required area is O(N2), where N is the number of nodes in ring cover C; 
2. there are no crossings; 
3. all rings are drawn as cycles; 
4. the time complexity o] the algorithm is O(N). 
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4 Conclusions  and Open Problems 

We have presented three techniques for drawing ring covers of survivable telecom- 
munications networks. Our algorithms run in linear t ime and they produce draw- 
ings that  require O ( N  2) area. There are many  open problems remaining: 

1. Are there other reasonable ways to draw ring covers? 
2. How can we draw ring covers when two rings share more than one contact 

node? 
3. Are there other conditions that  describe when a given ring cover does not 

admit  such drawings? 
4. How can we draw ring covers if the ring-contact node graph is not a tree? 
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