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Abstract .  An Angle graph is a graph with a fixed cyclic order of edges 
around each vertex and an angle specified for every pair of consecutive 
edges incident on each vertex. We study the problem of constructing a 
drawing of an angle graph that preserves its angles, and present several 
new results. 

1 Introduction 
An angle graph is a graph with a fixed cyclic order of edges around each vertex 
and an angle (between 0 ~ and 360 ~ specified for every pair of consecutive edges 
incident on each vertex such that  the sum of angles around every vertex is 360 ~ A 
Rectilinear angle graph is an angle graph in which each angle is a multiple of 90 ~ . 

A graph drawing algorithm takes a graph as its input and constructs a draw- 
ing of the graph (see [3] for an extensive survey). Some well known algorithms 
such as Tamassia's bend-minimization algorithm [16] and the visibility repre- 
sentation algorithm by Tamassia and Tollis [17] use rectilinear angle graphs as 
intermediate stage products. Infact the bend-minimization algorithm has been 
found to give aesthetically pleasing drawings in practice [11]. Our hope is that  a 
good characterization of planar angle graphs may allow us to use the bend min- 
imization algorithm to construct aesthetically pleasing drawings of any planar 
graph, not just orthogonal planar graphs. 

A recent trend in the area of graph drawing is towards developing systems 
which allow user to specify arbitrary constraints on the positioning of vertices 
and edges in the drawings. See for example, [2, 6, 12]. Since a user may specify 
angle constraints, a study of angle graphs is important  for such systems. 

A very important aesthetic criteria for a straight line drawing (edges drawn as 
straight lines) is that  the angles between the consecutive edges incident on each 
vertex be large. This is formalized by defining angular resolution of a drawing [7, 
15]. Angular resolution of a straight line drawing of a graph is the minimum angle 
in the drawing between any two consecutive edges incident on the same vertex. 

Studying angle graphs can provide important clues in constructing drawings 
with large angular resolution. For example we use our result, that  testing an 
angle graph for planarity is NP-hard,  to show that,  given a trieonnected planar 
graph G and an angle c~, determining whether G admits a planar straight line 
drawing with angular resolution at least c~ is NP-hard.  

Angles have been found to be useful in characterizing planar graphs (see [5], 
for example). The study of angle graphs is also of theoretical interest in itself 
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because they require an extensive use of plane geometry in their analysis. Most 
of the known graph drawing algorithms use graph theoretic concepts such as 
orientation, coloring, flow etc. Recent results [9] however shows that plane ge- 
ometry is a useful tool by successfully applying geometric techniques in deriving 
many results on planar drawings with large angular resolution. A study of angle 
graphs can provide an invaluable insight into the use of plane geometry for graph 
drawing algorithms and stimulate research in this relatively unexplored area. 

We now give some definitions. Let A be an angle graph. A drawing of A is 
a mapping of its vertices to points in the plane and its edges to straight lines 
joining their endpoints so that the angles of A are preserved in the drawing. A 
planar drawing of A has no edge crossings. Unlike general graphs, an angle graph 
may not have a drawing at all. Fig l(a) shows such an angle graph (the angles 
between edges are as given in the figure). Fig l(b) shows an angle graph that has 
a drawing. A is called consistent if it has a drawing. A is called planar if it has 
a planar drawing.The graph isomorphic to A if we drop the angle constraints 
is called the underlying graph of A. An angle-cycle (outevplanar angle graph, 
series-parallel angle graph, resp.) is an angle graph whose underlying graph is a 
cycle (outerplanar graph, series-parallel graph, resp.). 

w w 

(a) (b) 

Figure 1: An angle graph (a) that is not consistent; (b) that is consistent. 

The pioneering work in the area of angle graphs was clone by Vijayan in [19]. 
Vijayan gave a linear program for testing an angle graph for consistency. Some 
necessary conditions for an angle graph to be planar, as well as necessary and 
sufficient conditions for some special angle graphs such as angle cycles, angle 
graphs with convex faces, outer planar angle graphs and rectilinear angle graphs 
have also been described in [19].Vijayan also posed some conjectures about the 
planarity of the angle graphs. A characterization of planar angle graphs with 
triangular faces by a set of non-linear equalities is given in [5]. [20] gives a linear 
time algorithm for testing a rectilinear angle graph for planarity and quadratic 
time algorithm for constructing a planar drawing if it is planar. 

1.1 O u r  R e s u l t s  

We give several new results concerning drawing of angle graphs. We first study 
the planarity of angle graphs. We disprove the conjectures of [19] by providing 
counter examples to them. We then show that testing a consistent angle graph 
for planarity is NP-hard. We also show that given a triconnected planar graph 
and an angle c~, determining whether it admits a planar straight line drawing 
with angular resolution at least ~ is NP-hard. Our result therefore strengthens 
a similar result given by Kant [13] that holds for biconnected planar graphs. 
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We study the problem of testing a series-parallel angle graph for consistency 
and provide a linear time algorithm for solving the problem. 

The study of area requirements of drawings of graphs has received a lot 
of attention (see, e.g., [1, 4, 8, 9]) and is motivated by the finite resolution of 
the graph drawing technologies and circuit-area optimization criteria of VLSI 
layouts [14, 18]. We study the area requirement of angle graphs and show that 
there exists a family of angle graphs requiring exponential area in drawing. 

Finally we consider the multiplanarity problem of angle graphs. A multilay- 
ered angle graph is an angle graph in which each edge is assigned to one of 
several layers. A multiplanar angle graph is a multilayered angle graph if it has 
a drawing in which edges assigned to the same layer do not cross. We show that 
very surprisingly testing even a bilayered rectilinear angle graph (edges assigned 
to only two layers) for biplanarity is NP-hard. This is in sharp contrast to the 
linear time complexity of testing a monolayer rectilinear graph for planarity [20]. 

2 P l a n a r i t y  T e s t i n g  o f  A n g l e  G r a p h s  

Vijayan [19] made following conjectures (see [19] for definitions of the terms used 
in the conjecture. We do not describe them here for the lack of space): 
Con j ec tu r e  1 (Vi jayan [19]) A consistent angle graph A that does not con- 
tain any angle-cycle which is a subdivision of a triangle is planar if and only if  
(a) the faces of each biconnected component are consistent angle-cycles, (b) no 
two biconnected components interlace at an articulation vertex of A, and (c) the 
force inside relation among the biconnected components is a partial order. 

Con jec tu re  2 (Vi jayan [19]) The conditions stated in the Conjecture 1 are 
necessary and sufficient for consistent angle graphs that do not contain subdivi- 
sions of triangles and whose biconnected components have convex interior faces. 

We give a counter example to Conjecture 2, which in turns disproves Conjec- 
ture 1. Consider the angle graph A shown in Fig. 2(a). u is an articulation vertex 
of A. A has two biconnected components B1 and B2. Both B1 and B2 have con- 
vex interior faces and angle graph A does not contain subdivisions of triangles. 
By simple geometric considerations we can show that A is not planar. 

W3 ~ _. A 16'2 
V7 

V6 

B1 

U 135 ~ %  WI 
V2 4~ 

I D  
v 5 

Figure 9.: Counter example to Conjecture 2: Angle graph A. 

2.1 NP-Hardness  of Planarity Testing 
We now show that testing a consistent angle graph for planarity is NP-hard by 
reducing the following version of the 3SAT  problem to it: 
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given a set X = { x l , x 2 , . . . , z n }  of variables and a set C = 
{cl, c2 , . . . ,  Cm} of clauses over X such that  every clause has three lit- 
erals, each variable occurs in at most five clauses either negated or us- 
negated [10] and in none of them both as negated and us-negated, is 
there a satisfying truth assignment for C ? 

We construct an angle graph A such that  there is a satisfying t ru th  assign- 
ment of C if and only if A is planar. We need the following gadgets (which are 
angle graphs) for our construction. We denote the distance between two vertices 
u and v in a drawing of A by d(u, v). 

- H o r s e  s h o e :  We use the horse shoe to represent the variables. A horse shoe 
H is shown in Fig. 3(a). The vertices { x 0 , x l , . . . , x g }  and {Y0,Yl,.. . ,Yg} 
are called the output vertices of the faces Fx and F u respectively. Vertices xi 
and Xi+l (Yi and Yi+l) for even values of i are siblings of each other. Edges 
ex, ey and et are called the left attachment, right attachment and top edge 
respectively of the horse shoe. In any planar drawing A of H. 
O b s e r v a t i o n  1: the attachments of H have same length as its top edge. 
O b s e r v a t i o n  2: if the top edge of H has unit length then at most one of 
d(xo, xg) and d(yo, Y9) is at least one unit. H is left heavy in A if d(x0, xg) _> 1 
(Fig. 3(b)) and is right heavy in zl if d(yo, Yg) _> 1 (Fig. 3(c)). 

. . e t - c O  -el c.2 ~3 c4 c 5  
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e x /  ~ / - - ~  / \ ey  90 2 90 
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_//60 6~ ( /60  6 ~ 0  6~.  L90 180 180 l" 4 180 18_0 90 [ 

.... ~,120 x 6~"~ , ~  YI2~)~I'Y 1 
x9 . . . .  YO 

( a )  5 4 4 

et e t ~ 
e ~ X , x  / / / ~  / / / ~ y  e ~ x , x  / / f ~  / / ~ e y  (d) 

x 9 xI~'x F ; - ~ / F y  .~00 ly xO~'-x8~_~/'F'~ /Y,~Fy . ")'8"@Y9 
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(b) (c) 

Figure  3: (a) A horse shoe H; (b) Left heavy horse shoe; (c) Right heavy horse shoe; 
(d) A Crown. 

- C r o w n :  We use the crown to represent the clauses. Fig. 3(d) shows a crown. 
Edges et and er are called the left attachment and right attachment respec- 
tively of the crown. Edge e is the base of the crown. 
O b s e r v a t i o n  3: If the base has unit length then ~0<i<2 d(c2i, C2i+l) = 5. 

-- B e a m :  A Beam B is shown in Fig. 4(a). A beam consists of 123 equilateral 
triangles. Edges el and er are called the left attachment and rigM attachment 
respectively of the beam. In any planar drawing of B, 
O b s e r v a t i o n  4: All its edges are of equal length. 
O b s e r v a t i o n  5: d(u, v) = 61 if the length of an at tachment is one unit. 

- Wigg le :  A wiggle W is shown in Fig. 4(b). Vertices ul and us (Vl and v2) are 
called the input (output) vertices of the wiggle. In any planar drawing of W, 
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Observat ion 6: The horizontal distance between its output vertices equals 
the vertical distance between its input vertices. 
Observat ion  7: The structure of this gadget does not place any restrictions 
on the horizontal distance between its input and output vertices. 

- r  -~al l  " 

(a) 

Figure 4-" 

ul -- ~ u2 ul ~ , 3 5  ,3~y~.' 

" 35 e l  
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(b) (c) (d) 

(a) A Beam; (b) A Wiggle; (c) A Connector; (d) A Holder. 
- Connector :  A connector C is a subdivision of the angle graph shown in 

Fig. 4(c). Vertices ul and u2 (vl and v2) are called the input (output) vertices 
of C. In any planar drawing of C, 
Observat ion 8: The horizontal distance between its output vertices equals 
the horizontal distance between its input vertices. 
Observat ion  9: Same as Observation 7. 

- Holder:  A holder H is shown in Fig. 4(d). Edges el and e2 are called its 
upper clamp and lower clamp respectively. In any planar drawing of H, 
Observat ion 10: The upper and lower clamps of H are of same length. 

Fig 5(a) gives a high level view of A. We can identify three important subgraphs 
of A, namely variable subgraph, connection subgraph and clause subgraph. The 
variable and connection subgraphs are "connected" through some wiggles, the 
connection and clause subgraphs are "connected" through some wiggles. The 
variable and clause subgraphs are "connected" through a single holder R. 

The variable subgraph V, of A can be described recursively: V1 is a horse shoe 
X1; Vn is constructed from Vn-1 by "connecting" the horse shoe Xn-1 (present 
in V~-I) with a horse shoe Xn using a beam B as shown in Fig 6(a). We say 
that horse shoe Xi represents variable xi. 

The clause subgraph Sm of A can be described recursively: $1 is a crown 
C1; Sm is constructed from S,~-1 by "connecting" the crown Cm-1 (present in 
S,n-1) with a crown C,n using a beam B and two edges e' and e" as shown in 
Fig 6(b). We say that crown Cj represents clause cj. 

The connection subgraph D is constructed in following steps: 

1. Let G be a bipartite graph whose vertices can be partitioned into two sets P 
and Q. There is a vertex zi,j in P if literal zi occurs in clause cj. There is a 
vertex yij in P if literal ~i occurs in clause ej. zi,j (Yij) is called an image 
of the literal zi (ii). Q has a vertex cj,i if either literal xi or i i  occurs in 
clause cj (notice that both of them can not occur simultaneously in cj). cj,i 
is cMled an image of clause cj. There is an edge in G between xij  (or Yi,j) 
and cj,i. Construct a drawing A as shown in Fig. 7(a) in which the vertices 
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(a) (b) 
Figure  5: (a) A High Level View of the Angle Graph A; (b) Constructing angle 
graph A: "connecting" siblings xk and Xk+l in horse shoe X, with N(i, jk) by wiggle 
wm(i, jk), "connecting" co and cl in crown C 3 with N(i, jk) by wiggle W2(i, jk) and 
'connecting" Horse shoe X, with Crown C 3 with a Holder R. 

of P are placed on the same horizontal level and so are the vertices of Q. 

2. Replace each line-segment (x:,j, cLi ) or (Yij, cj,~) in A by the drawing of a 
connector N(i,  j) (this also means replacing xLj and cj,~ by the input and 
output  vertices resp. of N(i, j)). Fig. 7(b) shows the resultant drawing A'. 

3. Construct a planar angle graph D by replacing the crossings in A'  by vertices. 

C m 

x. e ' J "  " \ e -  
(a) (b) 

Figure  6: (a) Attaching Vn-1 and a Horse shoe Xn to Construct Variable Subgraph 
Vn; (b) Attaching Sm-I and a Crown Cm to Construct Clause Subgraph Sin. 

A n g l e  G r a p h  A We now complete the description of angle graph A. 

- Suppose literal li where l = x or l = y = $ occurs in clauses Cjo, cjl , . . . ,  cjr , 
where jk < jk+l and r < 5. "Connect" siblings lk and lk+l in horse shoe 
Xi (recall that Xi represents variable xi) with connector N(i,  jk) using a 
wiggle w l ( i ,  jk) (see Fig. 5(b) which shows connection of xk and xk+l). 
Edge (lk, lk+l) is called the image of clause cjk in Xi. 

- Suppose variables Xio, xil, and xi2 where i0 < il < i2 occur in a clause cj 
either negated or un-negated. "Connect" c~k and c2k+l in crown Cj with 
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Figure 7: Bipartite graph G: (a) A drawing A of G; (b) Drawing A'. 

connector N(i, jk) using a wiggle W2(i, jk) (Fig. 5(b) shows connection with 
co and cl). Edge (ck, ek+l) is called the image of variable zik in Cj. 

- Now choose any horse shoe Xi and crown Cj, and "connect" Xi with Cj by 
identifying the upper clamp of a holder R with the top edge of Xi and the 
lower clamp of R with the base of Cj (see Fig. 5(b)). 

T h e o r e m  l .  There is a satisfying truth assignment of C if and only if A is 
planar. 

Sketch of  Proof :  
If: Suppose A is planar. Let A be a planar drawing of A. Let the clamps of 

the holder have unit length in A. Every Xi is either left heavy or right heavy 
in A (Observation 2). Set variable xi to t rue  if Xi is left heavy and to f a l s e  
otherwise. Suppose variable xi occurs in clause cj. From Observations 6 and 8, 
the length of the image of zi in Cj is equal to x/~/2 times the length of the 
image of cj in Xi. Therefore the image of xi in Cj has at least vr3/2 units length 
only if literal zi or $i that occurs in cj is t rue .  From Observation 3 at least one 
of the images of the variables occurring in Cj has length at least v~ /2  units. 
Consequently Cj is satisfiable. 

Only  If: It is easy to see that because the length of a beam is at least 61 
units in any drawing of A, (the length of the clamps of the holder is taken to 
be one unit), the greater of d(zo, Zg) and d(yo, Y9) in any Xi can be 5(2/v~) 
units without creating any crossings. Wiggles (Observation 7) provide enough 
flexibility to construct a planar drawing for A. [:] 
T h e o r e m 2 .  The problem of testing whether a consistent angle graph is planar 
is NP-hard. 

All the angles used in our reduction were multiples of 150 . Therefore, 

Coro l l a ry3 .  The problem of testing whether a consistent angle graph is planar 
is NP-hard even if the angles specified for every pair of consecutive edges incident 
on a vertex in the angle graph is a multiple of some integer ~ ~s O. 

3 Testing Triconnected Planar Graphs for High Angular 
Resolution 
We now consider the problem of constructing planar straight line drawings of 
planar graphs with high angular resolution and show that the following problem 
is NP-hard: 



91 

Given a triconnected planar graph G and an angle a, determine whether 
G has a planar straight line drawing with angular resolution at least c~. 

We use the consistent angle graph A described in Section 2.1 to show that this 
problem is NP-hard. Let H be the underlying graph of A. Our approach is to 
convert H into a triconnected planar graph G in polynomial time by adding 
some special gadgets called fans that are described by Kant in [13], such that G 
has a planar straight line drawing with angular resolution at least 5 ~ if and only 
if A is planar. Details are provided in the full paper. 

T h e o r e m 4 .  Given a triconnected planar graph and an angle a, determining 
whether it admits a planar straight line drawing with angular resolution at least 
a is NP-hard. 

4 D r a w i n g  a S e r i e s - P a r a l l e l  A n g l e  G r a p h  

A series-parallel directed graph G with a source and a sink [1] is defined recur- 
sively as follows: A series-parallel directed graph is either a single directed edge 
or a series composition or a parallel composition of two series-parallel directed 
graphs G1 and G2. G1 and G2 are called the series-parallel components of G. 

We show that a series-parallel can be tested for consistency in linear time. 
Our approach is bottom up: We assume a cartesian coordinate system in which 
left, right, above and below have their usual meanings. Hence assuming that the 
source of the series-parallel graph is placed at the origin, we compute the range 
over all the possible drawings of the graph, of the angles made with the x-axis 
by an imaginary line-segment joining its source and sink. This information is 
encoded in form of two tuples (c~, ~) and (7,/i). c~ and ~ (7 and 6) are the lower 
and upper bounds on the angles made by this imaginary line-segment in all the 
drawings in which the sink is placed to the left (right) of the source. These tuples 
are computed for a series-parallel graph G in constant time from the tuples of its 
series-parallel components, giving a linear time testing algorithm. This approach 
can be easily modified to give a linear time algorithm for drawing a series-parallel 
angle graph. The details of this approach are provided in the full paper. 
T heo rem 5. Given a series-parallel angle graph w~th n vertices, we can test if 
~t admits a drawing or not and construct a drawing if it does in O(n) time. 

5 A r e a  R e q u i r e m e n t  o f  A n g l e  G r a p h s  

We now investigate the area requirement of angle graphs. Our main theorem is: 

T h e o r e m  6. For every m >_ 1, there exzsts an angle graph Am with 3m vertices 
that requires area J)(4 m) for any drawing. 

Sketch of Proof:  Angle graph Am can be described recursively: Angle graph A1 
is shown in Fig. 8(a). Angle graph Am is constructed from A,~-I (see Fig 8(b)) 
by introducing vertices urn, vm and wm and edges (Um-l,u,~), (vm-l,u,~),  
(Vm-1, Urn), (Wm-1, Vm), (Win-l, Win) and (urn-a, win) in the exterior of the angle 
graph Am-1. 

Using plane geometry we show that Area(Am) = 4Area(A,~_l) and conse- 
quently Area(Am) --- f2(4m). [] 
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u 1 v 1 Urn ~ ~ V m  
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(b) (a)  

F i g u r e  8 :  Angle graph Am: (a) A1; (b) Constructing angle graph Am from Am-1. 

6 M u l t i l a y e r e d  A n g l e  G r a p h s  

Recall the definition of multilayered angle graphs and multiplanar angle graphs 
from Sec. 1.1. We now show that  even if we consider only rectilinear graphs and 
restrict the number of layers to two, the problem of testing them for biplanarity 
is NP-hard. 

We reduce the 3SAT problem with restriction that  a variable can not occur 
both negated and un-negated in the same clause, to an instance of this problem. 
Suppose we are given a set X = {x l ,x~ , . . . ,Xn}  of variables and a set C = 
{cl, c2 , . . . ,  c,n} of clauses. We construct a bilayered rectilinear angle graph A 
with two layers called the red and blue layers such that there is a satisfiability 
assignment of C if and only if A is biplanar. We call the edges of A belonging 
to the red (blue) layer as red (blue) edges. We use the following gadgets (which 
are bilayered angle graphs) for constructing A: 

- Subcour se :  A subcourse S is shown in Fig 9(a). Vertex uj, where 1 _< j < 
2m is called the jth input vertex of S. Vertex vj, where 1 < j < 2m is called 
the jth output vertex of S. Edge (tj, t j+l) ,  where 1 _< j _< m is called the jth 
reference edge of S. Edge (sj,sj+l), where 1 < j _< m is called the jth value 
edge of S. Each reference as well as value edge of S can either be blue or 
red (as will be described later). Similarly edges (dl, d2) and (d3, d4), called 
the top clamping and bottom clamping edges of S respectively, can be either 
blue or red. Edge (a2j-1, a2j) for 1 < j _ m is called the jth inner edge of 
S and is blue. Edge (v2j-1, v2j) for 1 < j < m is called the jth outer edge 
of S and is red. Each edge (u~j, a2j) as well as each edge (a2j, v2j), where 
1 < j _< m is red. Other edges of the subcourse are blue. 
Let A be a drawing of S. The vertical line segment (sl, sin+l) is called the 
value line segment of S in A. The vertical line segment (tl,tm+l) in A is 
called the reference line segment of S in A. The value line segment is either 
to the right of the reference line segment (Fig. 9(b)) or it is to the left of 
the reference line segment(see Fig. 9(c)) or both overlap. If the value line 
segment is to the left (right) then S is said to be left heavy (right heavy ) 
in A. If value and reference line segments overlap then S is balanced in A. 
As we will see later, each subcourse corresponds to a variable and the left 
heavy (right heavy) "state" corresponds to the variable being true ( f a l se ) .  

- S t a r t i n g  a n d  E n d i n g  Loca t ion :  Fig. 10(a) shows a starting location L 
and Fig. 10(b) shows an ending location L'. Vertex cj (c~), where 1 <_ j _< m 
is called the jth starting (ending) vertex of L (L'). Vertex wj, where 1 
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Figure 9: (a) A subcourse S; (b) A left heavy subcourse; (c) A right heavy subcourse. 

j < 2m is called the jth separation vertex of L (U) .  Vertices Cl, c~, . . . ,  c,~ 
(c~, c~ , . . . ,  c ' )  are called the starting (ending) vertices of the starting (end- 
ing) location. All the edges of both starting and ending locations are blue. 

- H u r d l e :  A hurdle H is shown in Fig. 10(c). Vertex gj where 1 < j < 2m, 
is the jth input vertex of H. Vertex hi, where 1 < j < 2m is the jth output 
vertex of H. Each edge (hi, hi+t)  is red. Other edges of the hurdle are blue. 

- R u n n e r :  A runner R(Fig. 10(d)) is a connected sequence of 14 alternating 
red and blue edges. The angle between consecutive edges is 180 ~ Vertex a is 
the first end point of R and vertex a ~ is its last end point. The edge incident 
on a and a ~ are called the first and last edges of R respectively. The first 
edge of R is blue. As we will see later each runner corresponds to a clause. 

b Wl �9 w'l 

P Cl i C'l W 2 w~2 
w 3 W, 3 
~c2 c 2 

i 2m-2 
~ W2m_2 : W' 

2m-1 !~W2m_ 1 W' 

~ C 2 m  Clm 
2m 

gl ~ h 1 

g2 h 2 
g3 h 3 

blue red 
g 2 m - 2 ~ ) - - ~ h 2 m _ 2  

g 2 m - l ~ - ~ ) h 2 m - 1  

g 2 m ~ h 2 m  

(a) (b) (c) 

Figure  10: 
Runner. 
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(d) 
(a) A Starting Location; (b) An Ending Location; (c) A Hurdle; (d) A 
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6.1 C o m p l e t e d  C o u r s e  

Let Si be a subcourse whose edges are assigned to the layers as follows: If variable 
xi does not occur in clause cj then both the jth reference and value edges are red 
and both the clamping edges of Si are blue. If variable xi occurs negated in cj 
then the jth reference edge is red, jth value edge is blue and both the clamping 
edges are blue. If variable xi occurs un-negated in cj then the jth reference edge 
is blue, jth value edge is red and both the clamping edges are red. 

A course Ki is constructed recursively as follows: 

1. K1 is the subcourse $1. S1 is called the f i rs t  subcourse of KI. 

2. Ki is constructed from Ki-1 by identifying the k th output  vertex of the 
i - 1 th subcourse Si-1 of Ki-1 with the k th input vertex of subcourse Si. Si 
is called the i th subcourse of Ki. For every j such that  1 g j < i, the jth 
subcourse of Ki is the jth subcourse of Ki-1 

A completed course G is constructed from a course Kn, a hurdle H,  a starting 
location L and an ending location L ~ as follows: Join the jth separation vertex 
of L with the jth input vertex of the first subcourse of Kn by a blue edge. Join 
the jth output  vertex of the n th subcourse of K,~ with the jth input vertex of H 
by a blue edge. Join the jth output  vertex of H with the jth separation vertex 
of L' by a blue edge. Fig. l l ( a )  shows a high level view of G. 

L . S1 __ $2 S n _ _ / - / _ _ L '  

mmm mnmmm 

SI S2 S n 

(a) (b) 

Figure  11. A high level view of (a) Completed Course G; (b) angle graph A. 

6 .2  A n g l e  g r a p h  A 

Angle graph A has a completed course G as its (angle) subgraph. Let K,  H,  L 
and L ~ be the course, hurdle, starting location and ending location respectively 
in G. In addition to G, for each clause cj, graph A has a runner Rj with the 
jth starting and ending vertices of L and L' respectively as its first and last 
end points. Rj is called the representative of clause cj in A. This completes the 
construction of A. Fig. l l (b)  shows a high level view of A. 

Following correspondence exists between a biplanar drawing A of A and a 
satisfiability assignment r of C: A variable xi is t r u e  in r if and only if the 
subcourse Si is left heavy. 
T h e o r e m  7. C has a satisfiability assignment if and only if the bilayered angle 
graph A is biplanar. 

T h e o r e m  8. The problem of testing whether a bilayered angle graph is biplanar 
is NP-hard. 

C o r o l l a r y  9. The problem of testing whether a multilayered angle graph is mul- 
tiplanar is NP-hard. 
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