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Abstract .  Let G be a planar graph and H be a subgraph of G. Given any 
convex drawing of H, we investigate the problem of how to extend the drawing 
of H to a convex drawing of G. We obtain a necessary and sufficient condition 
for the existence and a linear Mgorithm for the construction of such an extension. 
Our results and their corollaries generalize previous theoretical and algorithmic 
results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki. 

1 I n t r o d u c t i o n  

The problem of embedding of a graph in the plane so that the resulting drawing has 
nice geometric properties has received recently .significant attention. This is due to the 
large number of applications including circuit and VLSI design, algorithm animation, 
information systems design and analysis. The reader is referred to [1] for annotated 
bibliography on graph drawings. 

The first linear-time algorithm for testing a graph for planarity was constructed by 
Hopcroft and Tarjan [9]. A different linear time algorithm was developed by Booth and 
Lueker [3], who made use of PQ-trees and a previous algorithm of Lempel et al. [11]. 
Using the information obtained during the planarity testing, one can find in linear time 
a planar representation of the graph, if it is planar. Such an algorithm based on [3] has 
been described by Chiba et al. [4]. 

A classical result established by Wagner states that every planar graph has a planar 
straight-line drawing [18]. Since Wagner's result a lot of researchers have investigated 
various problems of finding straight-line drawings satisfying additional requirements, 
e.g., drawing the vertices of the graph on the points of a grid of small size, maximizing 
the minimum angle between adjacent segments of the drawing, upward straight-line 
drawings [1]. One of the oldest results in this field concerns straight-line drawings with 
the constraint that all the faces be convex polygons. Such drawings are called convex 
drawings. Stein [14] showed that a convex drawing always exists if the common boundary 
between any two faces is connected. Tutte [16] proved that every triconnected graph has 
a convex drawing and such a drawing can be constructed by solving a system of linear 
equations [17]. Linear algorithms that find grid convex drawings with quadratic area for 
triconnected graphs were given by Kant [10], Schnyder and Trotter [13], and Chrobak 
and Kant [6]. Di Battista et al. [2] consider the on-line version of the convex drawing 
problem. 

Thomassen [15] gives a necessary and sufficient condition for existence of a convex 
drawing of an arbitrary (i.e. not necessarily triconnected) planar graph, if a convex 
drawing of the outer face has been previously fixed. Based on the Thomassen's proof, 
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Fig. 1. A convex and a non-convex planar drawing. 

Chiba et al. [5] give a linear-time algorithm to construct such an extension if one exists. 
The choice of the outer face can, however, be crucial for the existence of a planar drawing. 
For example, the graph on Figure 1 has a convex drawing in the plane if the face 1-2-3- 
4-5-1 is chosen to be the outer face, but has no convex drawing with outer face 1-2-3-4-1. 
Chiba e ta] .  [5] reduce the problem of finding a suitable outer face (if one exists) to a 
planarity testing of a graph defined by the set of separation pairs of G. 

This paper contains some new theoretical and algorithmic results associated with 
the problem of drawing a planar graph convexly. More specifically, we investigate the 
problem of extending a partially drawn graph in the plane to a convex drawing of the 
whole graph. We solve this problem by giving a necessary and sufficient condition for a 
convex drawing ofa subgraph H of a planar graph G to be extendible to a convex drawing 
of G. This generalizes the previous results of Tutte and Thomassen who restrict H to 
be an outer facial cycle. We show how to convert our proofs into linear-time algorithms 
for constructing the corresponding convex extensions. Finally, we address the problem 
of convex testing: determine if a planar graph has a convex embedding and construct 
one if the answer is yes. Here we have no restrictions on the embedding (e.g. we have the 
freedom of choosing any cycle to be the outer face). We show that this problern can be 
solved using our main result for extending convex drawings. Our algorithm has the same 
asymptotic bound as the ol)timal algorithm due to Chiba et al., but ours is significantly 
simpler. 

The paper is organized as follows. Section 2 contains simple facts and definitions of 
terms used in the paper. Section 3 contains the formulation and the proof of our main 
theorem as well as some of its corollaries. Algorithmic problems associated with convex 
testing and convex drawing are discussed in Section 4. 

2 Pre l iminar ies  

A topologzcal embedding it = #((;) of a graph G in the plane is a mapping of (; onto 
the plane such that vertices are embedded onto distinct points and edges are embedded 
onto simple curves and no two different edges intersect except possibly at a common 
endpoint. A graph G is planar if there exists a topological embedding of G in the plane. 
The faces of the embedding are the boundaries of the connected regions obtained by 
deleting the embedding of G from the plane. The unbounded face is called outer face of 
tt(G) and will be denoted by OF(#(G)) (or simply OF(G), if the drawing #(G) is clear 
from the context). 

The topological definition of a graph embedding given above is not very convenient 
for computer representation of graph embeddings and for the analysis of algorithms. 
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Each topological embedding induces a combznatorial embedding which is defined as an 
assignment of a cycling ordering to the set of edges incident to each vertex. This ordering 
of the edges corresponds to the order in which the edges are embedded around each vertex 
clockwise. The planarity testing algorithms from [9] and [3] produce only combinatorial 
embeddings. To each combinatorial embedding of (7 an infinite number of topological 
embeddings of G correspond. In the context of this paper we will call any topological 
embedding of G a drawing of G. 

A convex drawing #(G) of a planar graph G is a drawing of G in the plane such that 
each face of G is a convex polygon and the outer face is a strictly convex polygon. If 
the drawing of a specific face of G is strictly convex, the drawing of the face is called a 
strictly convex drawing. Consider some (possibly non-convex) drawing tt(G) of G in the 
plane such that  the drawing It(H) of a specific subgraph H of G is convex. By convexly 
extending it(H) to p(G) we will mean defining a new drawing # ' (G)  of (; in the plane 
such that  #'(G) is a convex drawing of G, r contains the drawing it(H) of H, and 
it(G) and it'(G) correspond to the same combinatorial embedding of G. An embedding 
crab(H) of H is convexly exten&ble to G, if there exists a convex drawing of G whose 
combinatorial embedding induces crab(H). 

If G and (7' are any graphs, by G + G'  we will denote the graph with vertex set 
V((;) t2 V(G') and edge set E(G) t3 E(G').  Moreover, by G - G'  we will denote the 
subgraph of (7 induced by the set of vertices V(G) - V(G') .  If V* is any set of vertices 
of G, G - V* will denote the subgraph of G induced by the set of vertices V(G) - V*. 

Let H be a subgraph of G. A bridge of G - H is any subgraphs B of G induced by 
a maximal  set of edges such that any two different edges of B can be joined by a path 
containing no vertices of H. The edges of B with an endpoint in H are called attachment 
edges. We call H a chordless subgraph, if any edge joining two vertices of H belongs to 
H and we call H outer-chordless with respect to a given planar drawing of (7, if no edge 
joining two vertices of H is drawn in the outer face of H. A cycle c' is called a reduction 
of a cycle c (respectively an outer reductzon of c) if all vertices of c' belong to c and c ~ 
is chordless (respectively outer-chordless) cycle. 

For the standard graph theoretic definitions the reader is referred to any of the 
textbooks on graph theory. 

3 E x t e n d i n g  a C o n v e x  D r a w i n g  

In this section we obtain a necessary and sufficient condition for the existence of a convex 
extension of a planar drawing. 

T l m o r e m  1 Let G be a planar biconnected graph and H be a bwonnected subgraph of G. 
Let it(G) be a planar drawzng of G such that the induced drawing it(H) of H zs convex 
and OF(G)  contains OF(H) .  Then p(H)  can be convexly extended to #(G) if and only 
if the follow2ng four cond,tions are satzsfied (see Fzgure '2): 

(a) For each vertex v of G - OF(G)  of degree at least three in G, there exist three 
paths joining v to vertices of OF(G)  such that no two paths share a common vertex 
except v. 

(b) Any cycle of G with no edge 2n common with OF(G)  has at least three vertwes 
of degree greater than two in G. 

(c) Any connected component of G - H adjacent only to vertwes belonging to the 
same straight-line of p(H) is drawn outside O F ( H )  and is adjacent to two vertices of 
degree greater than two. 
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Fig. 2. Examples of drawings violating conditions (a)-(d). 

(d) Any edge e from E(G) - E(H) joining two vertzces of H has endpomts belonging 
to d~fferent strazght-lines of lt(H ) and is drawn inside the face containing ~ts endpomts. 

Proofi Necessity. Let us prove the necessity of (a). Suppose that  #(G) is a convex 
drawing and that  there exists a vertex v of G -  OF(G) of degree at least three for which 
(a) is not satisfied (Figure 2 (a)). Then there exists a pair of vertices u, w such that 
any path joining v to vertices of OF(G) contains u or w. Then {u, w} divides G into 
two graphs Gt and (;2 (both containing u and w), where G1 contains v. At least one 
vertex, z, of OF(G1) different from u and w has a strictly convex angle on OF(G1), 
because otherwise the drawing of G1 would have been a straight-line. (The lat ter  is not 
possible since the degree of v is _> 3.) Therefore z belongs to a non-convex face of it(G) 
- a contradiction. The necessity of conditions (b), (c), and (d) is established in a similar 
way (see Figure 2 (b),(c),(d)). 

Sufficiency. Assume now that  conditions (a)-(d)  are satisfied. We will prove by in- 
duction on the number of vertices of G - H that  # (H)  can be convexly extended to 
/t(G). We consider the following cases. 

Case 1: OF(H) # OF(C;). 
There exists a path p of vertices of OF((7) - OF(H) whose endpoints are the end- 

points of an edge e of OF(H) (Figure 3 (a)). Denote by F* the cycle of (; that  results 
after replacing e by p in OF(H). Extend the drawing of H to a strictly convex drawing 
p (H  + F*) of H + F*. It is easy to show that  the conditions (a)-(d)  are satisfied for 
#(~ + F*). 

Case 2: OF(H) = OF((_7). 
Denote by y any vertex of H adjacent to a vertex, say q, of G-H.  Let Q be the face of 

it(H) that  contains q. By assumption #(Q) is a convex polygon. Denote by Pl, P2 , . . . ,  Pk 
the paths corresponding to the sides of#(Q) .  Let y be incident to Pl and Pk and y / a n d  
!/" be the other endpoints of Pl and pk respectively (Figure 3 (b), (c)). 

Denote by G I the subgraph of G that is drawn inside Q including Q. We can assume 
without loss of generality that  (_71 contains no vertex z of degree 2 because otherwise we 
can replace z and its two adjacent edges by a single edge. (Note that  this replacement will 
not create parallel edges because of condition (b).) Consider the following two subcases: 
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Fig. 3. Cases in the sufficiency proof. 

Case 2.I: (71 - y is not biconnected. 

There exists a vertex t such that  G - {y,t} is disconnected. We will show that t 
belongs to Q. For the sake of contradiction assume that  t does not belong to Q. Then, 
according to condition (a), any component of G - {y, t} that  contains no vertices from 
Q - y will have vertices of degree < 2. This contradicts to the assumption that G I 
contains no vertex of degree 2. Thus t belongs to Q. Moreover, t is not on Pl or Pk since 
this will contradict to condition (c) or to the assumption on the minimum degree of G I. 
Therefore t belongs to some of the paths p2 , . . .  ,Pk-1 and t :fi yl, y , .  We can define an 
edge (y, t) if it is not in G and draw (y, t) as a straight-line segment in Q, dividing Q 
into two convex faces (Figure 3 (b)). The validity of the theorem in this case follows by 
induction on the number of biconnected components of (;I _ y. 

Case 2.2: G ~ - y is biconnecled. 

Let Q~ be the face that  results when all faces that  are incident to y are removed 
from Q. Q' is bounded by the paths p 2 , . . . , p k - 1  and a path p~ that  contains vertices 

! I I belonging to the same faces as y (Figure 3(c)). Partition p' into paths p l , p 2 , . . . ,  P) by 
the neighbors of y as in Figure 3 (c). Draw pl convexly inside the triangle y, yl, y ,  so 
that  each of the paths p~, p~, . . . ,p~  is on a straight-line. Then the cycle F* consisting 
o f  I 1 I Pl, P2, �9 �9 Pj, P2, �9  Pk-1 is convexly drawn. Thus the corresponding extension of 
the drawing of #(H)  to drawing, p (H + F*), of H + F* is convex. It is easy to see 
that conditions (a)-(d)  are satisfied for p (H + F*) and, by the inductive assumption, 
#(H + F*) can be convexly extended to I,(G). m 

From Theorem 1 the next statement follows. 

T h e o r e m  2 Let G be a planar bzconnected embedded graph and H be a biconnected 
subgraph of G whose embedding can be extended to a convex drawing of H. There exists 
a convex drawing of G such that lhe induced drawing of H is convex, if and only if and 
G and H satisfy the conditions (a)-(d) of Theorem I and any vertex of G embedded 
outside OF(H)  can be connected to OF(G) by a path containing no vertices from H. 
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P r o o f  (sketch):  Consider the embedded graph G* resulting, after deletion from G 
all vertices embedded inside OF(H)  excluding the vertices on OF(H) .  Thus, in G', H 
corresponds to a single face. If there exists a vertex v of G embedded outside O F ( H )  such 
that any path joining v with OF(G) contains a vertex of H, then v violates condition 
(a) of Theorem 1 with respect to the graph G'. In this case no convex drawing of G' and 
consequently of G exists, which proves the necessity of the conditions of the theorem. 
If G satisfies the conditions of Theorem 2 then it is easy to check that G ~ satisfies the 
conditions of Theorem 1 with respect to any strictly convex drawing of OF(G).  Consider 
any convex drawing it(G ~) of G ~ and extend it to a convex drawing of G ~ + H. Now G and 
the drawing of G ~ + H satisfy the conditions of Theorem 1. Thus there exists a convex 
drawing of G that induces a convex drawing of H. [] 

Another question of interest is whether one can always extend a convex drawing of 
a subgraph H of G, where the drawing of O F ( H )  is arbitrary. In the full version of 
the paper we show that this, in general, is not possible and give the conditions which 
O F ( H )  should satisfy, in addition to those of Theorem 1, so that the drawing of H.is 
extendible to a convex drawing of (;. 

We will make use of the following claim which directly follows from Theorems 1 and 
2. 

Co ro l l a ry  1 Let G be a planar embedded biconnecled graph and c be any chordless cycle 
of G such that any vertex of G embedded outside c can be connected to OF(G)  by a path 
containing no vertices from c. There exists a convex drawing of G such that the induced 
drawing of e zs convex ~f and only zf there exists (any) convex drawing of G. 

4 C o n v e x  t e s t i n g  

In this section we investigate the problems of testing if a given planar graph G has a 
convex drawing in the plane and constructing the drawing if it exists. We use the fact 
that our proof of Theorem 1 is a constructive one and leads to a linear algorithm for 
finding a suitable convex extension, if one exists. 

T h e o r e m  3 If G and H are graphs satisfying Theorem 1, then a convex extension of 
G can be found zn 0(72) l~me, where n 2s the number of verlwes of(; .  

Proof :  Apply to (; the algorithm outlined below. 

A l g o r i t h m  E X T E N D ( G ,  H, #(H))  

1. If G contains 3 vertices, then the drawing of G is convex. So assume that G 
contains at least 4 vertices. Determine which case from the proof of Theorem 1 applies 
(see Figure 3). 

If Case 1 applies, find a path p and a cycle F* as in the proof of Theorem 1. Extend 
the drawing of OF(H)  to a strictly convex drawing of O F ( H  + F*) and call the procedure 
EXTEND((;, n + F*, p(H + F*)). 

If Case 2 applies, pick any vertex y of H adjacent to a vertex q of G - H. Let Q 
be the face of/ t (H) that contains q and (; '  the subgraph of G that is drawn inside Q 
inchlding Q. Denote by B any biconnected component of G t - y. Construct the path p' 
that contains all vertices of B sharing a face with y. Draw p' convexly in the triangle 
determined by y and the endpoints of p, as described in the proof of Theorem I. Call 
recursively EXTEND((;, H + p', I~(H + p')). 
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The correctness of this algorithm follows from the proof of Theorem 1. The algorithm 
can be easily implemented in linear t ime and space as in [5, 12]. 13 

If we can determine a cycle c of G that  can be an outer facial cycle of a convex 
drawing of G, then we can draw c as a strictly convex polygon and then use Algorithm 
EXTEND described above to extend the drawing of c to a convex drawing of G. How- 
ever, a planar graph G can have an exponential number of cycles that  can be faces of 
some drawing of G and we have no obvious way of finding an extendible one. Chiba et 
al. [5] construct a linear algorithm that  finds an extendible outer faciM cycle of G by 
applying the algorithms for finding the triconnected components of G [8] and for pla- 
narity testing [9] on a graph that  contains structural information about  G provided by 
the triconnectivity algorithm. Their algorithm for finding a suitable outer facial cycle, 
however, is rrmch more complex than the algorithm for drawing the rest of the graph. 

Our results presented above give the advantage that  one can s tar t  with a convex 
embedding of any cycle of G satisfying the conditions of Corollary 1, not necessarily a 
facial one. The consequence is, as we show below, that  we can test if a graph has a 
convex drawing by a conceptually simple algorithm and with a relatively little amount 
of extra  work with respect to the extending algorithm. 

T h e o r e m  4 Given any biconnecled planar n-vertex graph (7, one can lest zf there exists 
a convex drawing of G and construct such a drawing, i f  one exists, m O(n) time and 
space. 

P r o o f  ( s k e t c h ) :  Assume that  a biconnected planar graph G has a convex drawing. 
(If G has no convex drawing then some of the subsequent steps will fail.) First we will 
construct a combinatorial embedding of G that  corresponds to some convex drawing of 
G and then we will transform the combinatorial embedding into such a drawing. 

Find an initial planar embedding of G by using the linear algorithm of [9]. Let H 
be a chordless biconnected subgraph of G and let B be any bridge of (7 - H. Assume 
that  there exists an embedding of B in the outer face hour of H and an embedding of 
B in an internal face him of H. We have to choose in which of the two faces to embed 
B. Note that,  by our assumption that  a convex drawing of G exists, there is always an 
embedding of B in ho,,t that  is convexly extendible to B + H (by Corollary 1), and the 
same embedding of B (as well as any embedding of B,) with B moved in him, is convexly 
extendible to B + H (by conditions (a)-(d)  of Theorem 1). 

This observation motivates the following algorithm for updating the embedding of 
G. 

A l g o r i t h m  U P D A T E  (H)  

1. Initially let H be the empty graph. Construct a path p containing at least one 
vertex of G - H  and such that  H + p  is outer-chordless and biconneeted. Let H := H + p .  
Repeat the following steps for any bridge B of G - H. 

2. If there exists an embedding of B in hour, then recursively find a convexly ex- 
tendible embedding of B in hour. During this step, determine if some vertices of B have 
to be placed on the outer face of G (call such vertices anchored) in order to satisfy 
conditions (a)-(c)  of Theorem 1. 

3. If B contains exactly two at tachment edges and either: (i) B contains a vertex not 
in H of degree three or more, or (it) B and some other bridge of G -  H are both simple 
paths  sharing the same endpoints and B is not a single edge, or (iii) B is marked as 
containing an anchored vertex, then mark B + H as containing an anchored vertex too. 
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4. If B contains anchored vertices and B is embedded in hin, then move B into ho=t, 
possibly forcing other bridges to be moved in order to preserve the planarity of the 
current embedding of G. 

It is easy to show that the total time needed for moving all bridges by Algorithm 
EXTEND is proportional to the number of edges of G which is O(n). Thus the only 
nontrivial step in the linear implementation of Algorithm EXTEND is the fast construc- 
tion of the path p in Step l, which can be done in time O(Ip] ) plus time that, for all 
iterations of the algorithm, adds up to O(n). For the efficient implementation of this step 
we preprocess G by finding an st-numbering [7] of its vertices and defining a spanning 
tree T of G, where the parent of each vertex v ~ s of G is the vertex adjacent to v 
with the lowest st-number. Since any path in T from a vertex to the root of the tree 
is chordless, it is easy to show that all paths p can be constructed in the desired time 
bounds. 

Finally, we obtain a convex drawing of G corresponding to the embedding found by 
Algorithm UPDATE by applying Algorithm EXTEND with H := OF(G)  and choosing 
It(H) to be any strictly convex drawing of OF(G).  [] 
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