
T o w a r d s t h e G l o b a l O p t i m i z a t i o n o f
F u n c t i o n a l L o g i c P r o g r a m s *

Michael Hanus

Max-Planck-Institut f/it Informatik
Im Stadtwald, D-66123 Saarbrficken, Germany.

michael@mpi-sb, mpg. de

Abst rac t . Functional logic languages amalgamate functional and logic
programming paradigms. They can be efficiently implemented by extend-
ing techniques known from logic programming. In this paper we show
how global information about the call modes of functions can be used to
optimize the compilation of functional logic programs. Since mode infor-
mation has been successfully used to improve the implementation of pure
logic programs and these techniques can be applied to implementations of
functional logic programs as well, we concentrate on optimizations which
are unique to the operational semantics of functional logic programs. We
define a suitable notion of modes for functional logic programs and present
compile-time techniques to optimize the normalization process during the
execution of functional logic programs.

1 I n t r o d u c t i o n
In recent years, a lot of proposals have been made to amalgamate functional and
logic programming languages [7, 17]. Functional logic languages with a sound and
complete operational semantics are based on narrowing (e.g., [10, 12, 26, 28]),
a combination of the reduction principle of functional languages and the resolu-
tion principle of logic languages. Narrowing, originally introduced in automated
theorem proving [29], is used to solve equations by finding appropriate values for
variables occurring in arguments of functions. This is done by unifying (rather
than matching) an input term with the left-hand side of some rule and then
replacing the instantiated input term by the instantiated right-hand side of the
rule.

Example 1. Consider the following rules defining the addition of two natural num-
bers which are represented by terms built from 0 and s :

o + (R1)
s(M) + N --, s(M + N) (R2)

The equation X + s (0) = s (s (0)) can be solved by a narrowing step with rule R2
followed by a narrowing step with rule R1 so that X is instantiated to s (0) and
the instantiated equation is reduced to s (s (0)) =s (s (0)) which is trivially true.
Hence we have found the solution X~-.s(0) to the given equation. []

* The research described in this paper was supported by the German Ministry for
Research and Technology (BMFT) under grant ITS 9103. The responsibility for the
contents of this publication lies with the author.

69

In order to ensure completeness in general, each rule must be unified with each
non-variable subterm of the given equation which yields a huge search space.
This situation can be improved by particular narrowing strategies which restrict
the possible positions for the application of the next narrowing step (see [17] for
a detailed survey). In this paper we are interested in an innermost narrowing
strategy where a narrowing step is performed at the leftmost innermost position.
This corresponds to eager evaluation in functional languages.

However, the restriction to particular narrowing positions is not sufficient to
avoid a lot of useless derivations since the uncontrolled instantiation of variables
may cause infinite loops. For instance, consider the rules in Example 1 and the
equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule
R2 produces the following infinite derivation (the instantiation of variables oc-
curring in the equation is recorded at the derivation arrow):

(X+Y)+Z = 0 "~{x~-*s(Xl)} s(Xl+Y)+Z = 0

"-+{Xl~s(X2)} s (s (X2+Y))+z = 0

" ~ { x 2 ~ s (x 3) } " "

To avoid such useless derivations, narrowing can be combined with simplification
(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-
ten to normal form w.r.t, the given rules [9, 10] (thus this strategy is also called
normalizing narrowing). The infinite narrowing derivation above is avoided by
rewriting the first derived equation to normal form:

s(XI+Y)+Z = 0 ---+ s((XI+Y)+Z) = 0

The last equation can never be satisfied since the terms s((Xl+Y)+Z) and 0 are
always different due to the absence of rules for the symbols s and 0. Hence we
can safely terminate the unsuccessful narrowing derivation at this point. The
integration of rewriting into narrowing derivations has the following advantages:

1. The search space is reduced since useless narrowing derivations can be de-
tected. As a consequence, functional logic programs are more efficiently exe-
cutable than equivalent Prolog programs [10, 13, 14]. 2

2. There is a preference for deterministic computations. Since we assume a con-
fluent and terminating set of rules, normal forms are unique and can be
computed by any simplification strategy. Hence normalization can be deter-
ministically implemented. Since rewriting is executed before each nondeter-
ministic narrowing step, the goal is computed in a deterministic way as long
as possible. The preference of deterministic computations can save a lot of
time and space ~ shown in [13].

Therefore we consider in this paper a normalizing innermost narrowing strategy
where the computation of the normal form between narrowing steps is performed
by applying rewrite rules from innermost to outermost positions, i.e., a rewrite
rule is applied to a term only if each of its subterms is in normal form. Such an
operational semantics can be efficiently implemented by extending compilation
techniques known from logic programming [12, 13].

2 It is easy to see that the Prolog program corresponding to the above example would
run into an infinite loop.

70

The integration of normalization into narrowing derivations has also one dis-
advantage. Since the entire goal must be reduced to normal form after each nar-
rowing step, the normalization process may be costly. Fortunately, it is possible
to normalize the terms in an incremental manner [15] since normalization steps
after a narrowing step can only be performed at positions where some variables
have been instantiated. However, better optimizations could be performed if the
evaluation modes for functions are known at compile time. In this paper we define
the notion of evaluation modes, which is different from logic programs [35], and
show possible compile-time optimizations using these modes. We are not inter-
ested in low-level code optimizations to improve primitive unification instructions
since such techniques, which have been developed for pure logic programs (e.g.,
[24, 25, 31, 32, 33, 34, 35]), can be applied to functional logic programs as well
due to the similarities between WAM-based Prolog implementations and imple-
mentations of functional logic languages [12, 13, 23]. We limit our discussion to
optimizations which are unique to functional logic programs based on an eager
evaluation strategy like ALF [12, 13], LPG [1], or SLOG [10]. The automatic
derivation of mode information for functional logic programs is a different topic
which will be addressed in a forthcoming paper [18].

After a precise definition of the operational semantics in Section 2, we define
the notion of modes for functional logic programs in Section 3. Section 4 discusses
the optimization techniques using particular mode information. Experimental
results for these optimization techniques are presented in Section 5, and some
peculiarities of the automatic mode derivation for functional logic programs are
discussed in Section 6.

2 N o r m a l i z i n g n a r r o w i n g

To define the operational semantics considered in this paper in a precise way, we
recall basic notions of term rewriting [8].

A signature is a set 2- of function symbols. Every f E 5 r is associated with an
arity n, denoted f i n . Let X be a countably infinite set of variables. Then the set
T(2-, X) of terms built from 2- and 2d is the smallest set containing X such that
f (t l , . . . , tn) E T(2-, X) whenever f E 2- has arity n and t l , . . . , tn E T(2-, X).
We write f instead of f 0 whenever f has arity 0. We denote by T(2-, X) n the
set { (t l , . . . , t , ~) i t i E T(2 - ,X) , i = 1 , . . . , n} of n-tuples of terms (n > 0). The
set of variables occurring in a term t is denoted by 12at(t). A term t is called
ground if Yar(t) -= 0.

Usually, functional logic programs are constructor-based, i.e., a distinction is
made between operation symbols to construct data terms, called constructors,
and operation symbols to operate on data terms, called defined functions or op-
erations (see, for instance, the functional logic languages ALF [12], BABEL [26],
K-LEAF [11], SLOG [10]). Hence we assume that the signature 2" is partitioned
into two sets 2- = C U :P with C M ~ = O. A constructor term t is built from
constructors and variables, i.e., t E T(C,X). An innermost term t [10] is an
operation applied to constructor terms, i.e., t = f (t l , . . . , t n) with f E D and
t l , . . . , tn E q'(C, X). A function call f (t l , . . . , tn) is an operation f E :P applied
to arbitrary terms. Such a term is also called f-rooted term.

71

A (rewrite) rule 1 --* r is a pair of an innermost t e rm 1 and a t e rm r sat isfying
];ar(r) C_];ar(l) where l and r are called left-hand side and right-hand side,
respectively. 3 A rule is called a variant of another rule ff it is obta ined by a
unique replacement of variables by other variables. A term rewriting system 7"4 is
a set of rules. 4 In the following we assume a given term rewriting system 7"4.

The execution of funct ional logic programs requires notions like subs t i tu t ion i
unifier, posi t ion etc. A substitution rr is a m a pp ing f rom X into T (F , X) such
tha t the set {x E X [cr(x) # x} is finite. We frequently identify a subst i tu t ion
cr with the set {x ~-+ or(x) I r # x}. Subst i tu t ions are extended to morph i sms
on T(5 c, X) by r tn)) = f (a (t l) , . . . , r for every t e rm f (t l , . . . , tn).
A unifier of two terms s and t is a subst i tu t ion a with a (s) = or(t). A unifier
is called most general (mgu) if for every other unifier ~ there is a subs t i tu t ion
r with or' = r ocr (concatenat ion of r and r Most general unifiers are unique
up to variable renaming. By int roducing a tota l ordering on variables we can
uniquely choose the most general unifier of two terms. A position p in a t e rm t
is represented by a sequence of na tura l numbers , tip denotes the subterm of t at
posi t ion p, and t[s]p denotes the result of replacing the subterm tip by the t e rm
s (see [8] for details).

A rewrite step is an appl icat ion of a rewrite rule to a term, i.e., t --*~ s if there
exist a posi t ion p in t, a rewrite rule l --+ r and a subst i tu t ion cr with tip = a(l)
and s = t[e(r)]p. In this case we say t is reducible (at posi t ion p). A t e rm t is
called irreducible or in normal form if there is no t e rm s with t --+n s.

~ denotes the transitive-reflexive closure of the rewrite relat ion ~ z . :E is
called terminating if there are no infinite rewrite sequences t l --*n t2 --+n t3 --*~
�9 ... 74 is called confluent if for all te rms t, t l , t2 with t ~ t l and t - ~ t2 there
exists a t e rm t3 with t l ~ z t3 and t2 --+~z t3. A te rmina t ing and confluent te rm
rewrit ing sys tem 74 is called convergent�9

If T~ is convergent, we can decide the validi ty of an equat ion s =7~ t (where
= n denotes validi ty w.r.t, the equat ions {l - r [I --+ r E 74}) by comput ing the
normal fo rm of bo th sides using an arb i t rary sequence of rewrite steps. In order
to solve an equation, we have to find appropr ia te ins tant ia t ions for the variables
in s and t. This can be done by narrowing�9 A te rm t is narrowable into a t e rm
t ' if there exist a non-variable posit ion p in t (i.e., tip ~ X), a var iant l --* r of a
rewrite rule and a subs t i tu t ion ~ such tha t r is a mos t general unifier of t]p and
l and t ' = ~(t[r]p). In this case we write t ~,~r t ' . I f there is a narrowing sequence

�9 * tn with cr = ~ , - 1 o �9 �9 �9 o ~2 o o" 1. t l ~'~al t2 " ~ 2 �9 " ' ~ _ ~ tn, we write t l " ~
Narrowing is able to solve equat ions w.r.t. T~. For this purpose we in t roduce

a new opera t ion symbol = and a new constructor t r u e and add the rewrite rule

3 For the sake of simplicity we consider only unconditional rules, but our results can
easily be extended to conditional rules.

4 We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in
narrowing steps to solve equations�9 Therefore we will sometimes distinguish between
rewrite rules and narrowing rules�9 Usually, the set of rewrite rules and the set of
narrowing rules are identical, but in some languages it is also possible to use some
rules only for rewrite steps or only for narrowing steps (e.g., in ALF [12, 13] or SLOG
[lo]).

72

x=x --* true to ~ . Then the following theorem states soundness and completeness
of narrowing.

T h e o r e m 1 [20]. Let Tr be a convergent term rewriting system.
1. I f s=t-,-**~ t rue , then a(s) =R or(t).

* true and 2. I f cr'(s) =T~ ~r'(t), then there exist a narrowing derivation s=t "*a
a substitution r with r =7~ cr'(x) for all x E]/ar(s) U ~ar(t) .

Thus to compute all solutions to an equation s=t, we apply narrowing steps to it
until we obtain an equation #=t I where g and t ~ are unifiable. Since this simple
narrowing procedure (enumerating all narrowing derivations) has a huge search
space, several authors have improved it by restricting the admissible narrowing
derivations (see [17] for a detailed survey). In the following we consider normal-
izing innermost narrowing derivations [10] where

- the narrowing step is performed at the leftmost innermost subterm, and
- the term is simplified to its normal form before a narrowing step is performed

by applying rewrite rules from innermost to outermost positions.
The innermost strategy provides an efficient implementation [12, 13, 21, 23] while
the normalization process is important since it prefers deterministic computa-
tions: rewriting a term to normal form can be done in a deterministic way since
every rewrite sequence yields the same result (because 7~ is convergent) whereas
different narrowing steps may lead to different solutions and therefore all admis-
sible narrowing steps must be considered. Hence in a sequential implementation
rewriting can be efficiently implemented like reductions in functional languages
whereas narrowing steps need costly backtracking management as in Prolog. For
instance, if the equation s =7~ t is valid, normalizing narrowing will prove it by
a pure deterministic computation (reducing s and t to the same normal form)
whereas simple narrowing would compute the normal form of s and t by costly
narrowing steps.

Normalizing innermost narrowing is complete if ~ is convergent and all func-
tions are totally defined, i.e, reducible on all appropriate constructor terms [10].
This is a reasonable class from the functional programming point of view. But it
is also possible to extend this strategy to incompletely defined operations. In this
case a so-called innermost reflection rule must be added which skips an innermost
function call that cannot be evaluated [19]. For the sake of simplicity we assume
in the following that all functions are totally defined, i.e., normalizing innermost
narrowing is sufficient to compute all solutions.

3 M o d e s f o r f u n c t i o n a l l o g i c p r o g r a m s

In pure logic programs, the mode for a predicate is a description of the possible
arguments of a predicate when it is called [35]. E.g., the mode p(g, f , a) specifies
that the first argument is a ground term, the second argument is a free variable,
and the third argument is an arbitrary term for all calls to predicate p. The
mode information is useful to optimize the compiled code, i.e., to specialize the
unification instructions and indexing scheme for a predicate [24, 25, 32, 34, 35].
Since functional logic languages are usually based on narrowing which uses unifi-
cation to apply a function to a subterm, mode information could also be useful to

73

optimize functional logic programs. However, the notion of "mode" in functional
logic programs is different from pure logic programs if normMization is included
in the narrowing process because functions are evaluated by narrowing as well as
by rewriting. In the following we discuss this problem and define a new notion of
modes for functionM logic programs which will be used in Section 4 to optimize
functional logic programs.

Example 2. In this example we discuss a derivation w.r.t, our narrowing strategy.
Consider the rules of Example 1 together with the following rewrite rules:

double(0) ---+ 0 (R3)
double(s(N)) ---+ s(s(double(N))) (/~4)

quad(N) ---+ (N+N)+double(N) (Rb)

We want to compute solutions to the initial equation quad(X)=4 by our strategy,
where 4 denotes the term s (s (s (s (0)))). Before applying any narrowing step,
the equation is reduced to its normal form by rewrite steps. Hence we apply rule
R5 to the subterm quad(X):

quad(X) =4 ---~Tz (X+X) +double (X)=4

Then the resulting equation is normalized by trying to apply rewrite rules to the
three operation symbols, but no rewrite rule is applicable due to the free variable
X. Hence the equation is already in normal form. Now a narrowing step is applied
at the leftmost innermost position, i.e., the subterm X+X. Both rules R1 and R2
are applicable. We choose rule R2 so that X is instantiated to s (Y):

(X+X)+double(X)=4 ~.Z{X~.,s(y)} s(Y+s(Y))+double(s(Y))=4

The resulting equation must be reduced to its normal form by trying to apply
rewrite steps from innermost to outermost positions. A rewrite rule is not appli-
cable to the leftmost innermost subterm Y+s (u since the first argument Y is a
free variable. But we can apply rule R4 to the subterm double(s(V)) and rule
R2 to the outer occurrence of +:

s(Y+s(Y))+double(s(Y))=4 ---+~ s(Y+s(Y))+s(s(double(Y)))=4
--+7~ s ((Y+s (Y)) +s (s (double(Y)))) =4

The latter equation is in normal form. Therefore we apply a narrowing step to the
leftmost innermost subterm Y+s (u We choose rule R1 so that Y is instantiated
to 0:

s((Y+s(Y))+s(s(double(Y))))=4 "-*{Y~-~O} s(s(O)+s(s(double(O))))=4

We normalize the resulting equation by applying rule Ra to double (0) and rules
R2 and R1 to the remaining occurrence of +:

s (s (O)+s (s (double (0)))) =4 --+T~ s(s(O)+s(s(O)))=4
~ s(s(O+s(s(O))))=4
~ s (s (s (s (O))))=4

Thus we have computed the solution {X ~-~ s(0)} since the left- and right-hand
side of the final equation are identical. A closer look to the narrowing and rewrite
attempts in this derivation yields the following facts:

1. The operation + is evaluated both by narrowing and rewrite steps.

74

2. If a narrowing step is applied to +, the first argument is always free and the
second argument may be partially instantiated.

3. If a rewrite step is applied to +, both arguments may be partially instantiated.
4. At the time when a narrowing step could be applied to double (i.e., ff all

functions to the left of double are evaluated), its argument is ground. Hence
double is evaluated by rewriting and not by narrowing.

5. If a rewrite step is applied to double, its argument may be partially instan-
tiated.

6. If a rewrite or narrowing step is applied to quad, its argument is always a
free variable. Hence no rewrite rules can be applied to any function call in
the right-hand side of rule R5 immediately after the application of these rule,
i.e., the rewrite attempts for these function calls can be skipped.

In order to have a formal representation of these properties, we assign to each
operation a narrowing mode (+ (f , a) , double(g), quad(f) in this example)
and a rewrite mode (+(a,a), double(a) , quad(f)) . Using this kind of mode
information it is possible to avoid unnecessary rewrite attempts, compile rewrite
derivations in a more efficient way, delete unnecessary rewrite or narrowing rules
etc. (see Section 4). []

In the following we give a precise definition of the possible modes for functional
logic programs w.r.t, a normalizing narrowing semantics. In this definition we
consider a mode as a (possibly infinite) set of term tuples. Such a set contains all
possible parameters which may occur in a function call. In subsequent sections
we abstract such a set to a finite representation like g, f or a. Since there are
also other useful abstractions (e.g., type approximations [4]), we do not restrict
the general definition of modes.

Def in i t ion2 . Let f /n be an operation symbol and N,/~ C T(:T, X) ~.
(a) g is called N-mode (narrowing mode) for f in whenever (t l , . . . , tn) e g if a

narrowing step should be applied to the subterm f (t l , . . . , t~) during program
execution.

(b) R is called 9~-mode (rewrite mode) for f lu whenever (tl,...,t~) e R if a
rewrite step should be applied to the subterm f(t l , . . . , tn) during program
execution. []

We have defined modes w.r.t, arbitrary program executions. However, for the
sake of good program optimizations it is desirable to consider only executions
w.r.t, a given class of initial goals. In this case the modes are computed by a
top-down analysis of the program starting from the initial goals.

4 O p t i m i z a t i o n o f f u n c t i o n a l l o g i c p r o g r a m s u s i n g m o d e s

As mentioned in the previous section, we are not interested in the precise term
sets contained in the modes, but we abstract these term sets into a finite number
of abstract values. For the optimizations techniques we have in mind the abstract
values g, f and a are sufficient, where g denotes the set T(~', 0) of ground
terms, f the set X of free variables and a the set T(:T, X) of all terms. Hence
the N-mode (g, a, f) for the operation f /3 specifies that the first argument is

75

ground and the third argument is a free variable if a narrowing rule should be
applied to this operation. Such modes can be specified by the programmer, but it
is more reliable to derive the modes automatically from the given program (w.r.t.
a mode for the initial goal). Automatic mode inference has been investigated for
pure logic programming (e.g., [3, 5, 6, 25, 30]) and similar schemes for functional
logic programs are under development [18]. In the following we show possible
optimization techniques w.r.t, given modes for a functional logic program.

4.1 Us ing f r e e n e s s i n f o r m a t i o n
We have seen in Example 2 that rewrite steps cannot be applied to function calls
if some arguments are not sufficiently instantiated. Hence we can omit all rewrite
a t tempts to a function call if an argument that is required in all rewrite rules has
~R-mode f .

We say an operation f requires argument i if t~ ~ .%' for all rewrite rules
f (t l , . . . , t n) -+ r, i.e., ti has a constructor at the top. Our optimization w.r.t.
freeness is based on the following proposition.

P r o p o s i t i o n 3 . I f an operation f has :R-mode Ira1,...,ran I with mi = ~ and
requires argument i, then no rewrite step can be applied to an f-rooted term
during execution.

In this case all rewrite rules for f can be deleted in the compiled program and all
a t tempts to rewrite f - rooted subterms can be immediately skipped. However, in
practice this case rarely occurs since rewrite steps are always applied to the entire
goal before each single narrowing step. Therefore function arguments are usually
not definitely free for all rewrite at tempts but become more and more instantiated
while narrowing steps are performed. But we can see in Example 2 that there is an
interesting situation where unnecessary rewrite at tempts occur. After applying
a narrowing step with rule l -~ r to the leftmost innermost subterm, due to
the eager normalization strategy, applications of rewrite rules are tried to all
functions occurring in r. Since a narrowing step is only applied because of the
insufficient instantiation of arguments (otherwise the subterm would be evaluated
by rewriting), it is often the case that the function calls in r are not sufficiently
instantiated to apply rewrite rules. Hence the rewrite a t tempts immediately after
a narrowing step could be avoided.

In order to give a precise definition of this optimization, we define a special
kind of rewrite mode which is valid immediately after a narrowing step.

D e f i n i t i o n 4 . Let f (Q , . . . , t n) --* r be a narrowing rule and N be a N-mode
for f / n . Let g(s l , . . . , sin) be a function call in r and Ry C_ T(J z, X) m. Then
Ry is called 9~/N-mode (w.r.t. to N) (rewrite mode w.r.t, narrowing) for the
function call g(s l , . . . , sin) if[a((s l , . . . , sn)) G R l for each most general unifier

of (t l , . . . , tn) and some (t~ , . . . , gn) G g . []

Note that suitable 9~/N-modes can be easily derived from a given N-mode of
an operation. Since Proposition 3 is also valid w.r.t. :R/N-modes and the imme-
diate rewrite a t tempts after a narrowing step, we can use :R/N-modes to avoid
unnecessary rewrite attempts. For instance, consider Example 2 and the rule

s (~) + N --+ s(M + N) (R2)

76

Since + has :N-mode (f , a), a suitable :R/2ff-mode ,,f the function call M+N in the
right-hand side is (f , a). Therefore no rewrite rule is applicable to M+N immedi-
ately after a narrowing step with R2 because + requires its first argument.

In the case of nested function calls, we can also skip rewrite a t tempts to
function calls which contain function calls in normal form at a required argument
position. For instance, if (X+Y)+Z occurs in the right-hand side of a narrowing rule
and the N-mode implies that X is always a free variable, then rewrite a t tempts
to both occurrences of + can be neglected.

The realization of this optimization in a compiler-based implementation of
normalizing innermost narrowing is easy.: In order to avoid a dynamic search in
the current goal for the leftmost innermost subterm, it is useful to manage an oc-

c u r r e n c e s t a c k at run t ime [13]o This stack contains references to all functions calls
in a goal in leftmost innermost order, i.e., the top element refers to the leftmost
innermost subterm. If a narrowing rule l --~ r is applied, the top element of the
occurrence stack is deleted, references to all function calls in r are added, and the
application of rewrite rules are tried to all subterms referred by the occurrence
stack. 5 The management of the occurrence stack provides an efficient implemen-
tat ion and causes nearly no overhead (see [13] for benchmarks). Moreover, it
provides a simple realization of the freeness optimization. To skip unnecessary
rewrite a t tempts in the right-hand side of a narrowing rule, the occurrences of
the corresponding subterms are not pushed onto the occurrence stack. Although
this optimization is simple, it has measurable effects on the execution t ime if the
port ion of narrowing steps in the computation is not too low (see Section 5 for
benchmarks). In extreme cases all unnecessary rewrite a t tempts are avoided by
this optimization.

4.2 U s i n g g r o u n d n e s s i n f o r m a t i o n

An implementat ion of normalizing narrowing requires the application of rewrite
rules to all function calls in a goal before a narrowing step is performed. Therefore
function calls cannot be represented by pieces of code similarly to predicate calls
in the WAM [36], but they must be explicitly represented as a term structure. For
instance, if the quad rule R5 of Example 2 is applied in a narrowing or rewrite
step, the term representation of the right-hand side (N+N)+doubS.e(N) is created
in the heap area (which contains all term structures during program execution [13,
36] .)6 This implementation has the disadvantage that many terms are created on
the heap which are garbage after the evaluation of the function calls. The situation
can be improved if it is known that some functions are completely evaluable by
rewriting. A sufficient criterion is the groundness of some arguments. 7

5 This explanation is slightly simplified. In the concrete implementation, a second so-
called c o p y o c c u r r e n c e s t a c k is used in the rewrite process. See [13] for more details.

6 It is not necessary to create a term representation for all functions calls. Since the
leftmost innermost function call N+N is evaluated in the next step, a representation
of this term is only necessary if no rewrite rule is applicable to it. Therefore the
creation of this term is delayed in [13]. This results in an implementation similar to
WAM-based Prolog systems.
Note that we assume that all narrowing rules are also used for rewriting, otherwise
the proposition does not hold.

77

P r o p o s i t i o n b . I f an operation f has 9~-mode (g , . . . ,g), then all f-rooted sub-
terms are completely evaluated by rewriting during execution.

This property holds since a narrowing step is only performed at an innermost
position if some arguments are not sufficiently instantiated, but the lat ter con-
dition can never be satisfied if it is a ground function call. Consequently, ground
function calls can be implemented by a fixed sequence of function calls which do
not require a representation on the heap. For instance, if quad has :R-mode (g),
then the rewrite rule quad(N)--+ (N+N)+double(N) could be translated similarly
to functions in imperat ive or functional languages according to the following code
sequence:

N := hl '/, Register h l contains the actual argument of quad
N1 := N+N '/, call operation +
N2 := double(N) '/, call operation double
N3 := NI+N2 '/, call operation +
r e t u r n (N 3) '/, return the computed value

The intermediate values could be stored in an environment on the local stack
which can be deleted after the r e t u r n (or before, if last call optimization is
implemented). Thus, if groundness information is available, we could optimize
the code such that function calls need not be represented on the heap and in-
termediate results are stored on the local stack instead of the heap. This has
the advantage that the used memory space on the local stack is automatical ly
released after deterministic computat ions while the heap is cleaned up only af-
ter a garbage collection phase. Some results to this optimization are shown in
Section 5.

4.3 C o d e e l i m i n a t i o n u s i n g m o d e i n f o r m a t i o n
Rewrite steps and narrowing steps differ in the application of the left-hand side
to a subterm: while the subterm is matched with the left-hand side in a rewrite
step, it is unified with the left-hand side in a narrowing step. Due to this dif-
ferent behavior (and some other reasons, cf. [13]), rewrite rules and narrowing
rules are compiled into separate instructions. In particular, if the program rules
defining operations are used both as narrowing rules and rewrite rules, each rule
is compiled in two ways. This has a positive effect on the t ime efficiency of the
compiled code, but it doubles the code space. On the other hand, only a few rules
are actually used both for narrowing and rewriting in practical programs. Some
rules are only used in rewrite steps, while others are exclusively used in narrowing
steps. Informat ion about modes can help to detect these cases at compile t ime
so tha t unnecessary code can be avoided in the target program. The following
conditions are sufficient criteria to omit rules in the target program:
1. If f has :R-mode (ml , . . . , m,~) with mi = f , then rewrite rules of the form

f (t l , . . . , t,~) ~ r with tl ~ X are superfluous (by Proposit ion 3).
2. Narrowing rule f (t l , . . . , t~) ~ r is superfluous i f f has N m o d e (ml, . . . , m.}

and for each ti ~ X and each t~ E];ar(tj) (for some j • i) mi = g holds
(since in this case the rule is always applicable in a preceding rewrite step.) s

s Note that the case ti E Var(tj) is necessary since we allow multiple occurrences of the
same variable in the left-hand side of a rule. E.g., the rule f (X, X)--*X is not applicable
to the term f (g, Z) in a rewrite step, thus this rule must be kept as a narrowing rule.

78

Extreme cases of 2 are rules of the form f (X 1 , . . . , X ,) --* r where X 1 , . . . , X ,
are pairwise different variables, or all narrowing rules for a function f which has
~/-mode <~/,..., g).

For instance, in Example 2 we can delete R3, R4, R5 as narrowing rules. These
rules are only used in rewrite steps, while rules R1 and R2 are used both in rewrite
and narrowing steps.

5 Experimental results
In order to obtain results about the practical usefulness of the optimizations
discussed so far, we have applied these optimizations to some functional logic
programs. These optimizations were performed with the ALF system [12, 13]
which uses normalizing innermost narrowing as the operational semantics. We
have not introduced any new low-level instructions into the abstract machine
A-WAM on which the ALF system is based. All the optimizations discussed
in Section 4 are implemented using the standard instruction set of the A-WAM
which is the simplest, but not the most efficient way to implement these optimiza-
tions. Therefore it is obvious that bet ter results can be obtained if the A-WAM
would be redesigned according to the availability of mode information.

Table 1 shows the difference of the execution t ime between programs com-
piled without and with the optimizations w.r.t, freeness information as discussed
in Section 4.1. All programs were executed on a Sparc 1. The programs are
small but typical functional logic programs in the sense that functions are called
with non-ground arguments so that narrowing rules must be applied to evaluate
these functions, a r i t h is a program that solves the equation X+X=10 on natural
numbers (where natural numbers are represented by terms built from the con-
structors 0 and s). h a m i l t o n computes a Hamiltonian path in a graph, l a s t
computes the last element of a given list with 10 elements by solving the equa-
tion append(_ , [E])=[. . . J . p a t h computes a complete path through a graph.
pe r rasor t is the functional version of the permutat ion sort program, a typical
generate-and-test program which demonstrates the advantages of functional logic
programs compared to pure logic programs [14].

Program Standard Optimized Improvement
arith

hamilton
last
path

permsort

2.70
1180
5.40
1400
1680

2.42
980
4.80
1120
1480

11.5%
20.4%
12.5%
25.0%
13.5%

Table 1. Execution times (in msec) for optimized programs w.r.t, freeness information

Although freeness information is only used to avoid some unnecessary rewrite
a t tempts for the right-hand side after a narrowing step (and not for other more

79

Standard Optimized
Program local stack heap local stack heap

fac 104 441168 161380 370104
f i b 104 1145148 780 926248
zero 104 655620 636 280

Table 2. Maximum memory usage for optimized programs w.r.t, groundness informa-
tion (in bytes)

primitive optimizations [24, 31, 32, 34, 35]), the table presents interesting im-
provements in the execution time. The variations show that it is difficult to state
a general factor of improvement using freeness information. This factor largely
depends on the number of function calls which can be safely skipped in the nor-
malization process after the application of a narrowing rule.

Table 2 shows the memory usage for unoptimized and optimized programs
w.r.t, groundness information as discussed in Section 4.2. The programs are re-
cursive functions on natural numbers where natural numbers are represented by
terms built from the constructors 0 and s. f a c computes the factorial of 8, f i b
computes the 20'th Fibonacci number, and ze ro is a function which maps all
inputs to the constant 0 but it is recursively defined similarly to f i b .

Since we have not changed the instruction set of the A-WAM, we could only
simulate the optimizations with the existing instruction set. But we can see in
Table 2 that the heap space is reduced while the local stack increases. This is
a desirable property since the local stack is automatically cleaned up after de-
terministic computations while the heap space must be reclaimed by a garbage
collector. In the optimized version, no function cMls are created on the heap. The
remaining heap cells are occupied by constructor terms created during ,execution
(in these examples: s-terms representing natural numbers). An extreme case is
the recursive function ze ro which creates no constructor terms. The large heap
space in the unoptimized version is due to the representation of recursive function
calls in the heap.

6 A u t o m a t i c derivation of modes

The main motivation of this paper is to show opportunities to optimize functional
logic programs. For this purpose we have defined a notion of modes which is suit-
able for the particular operational semantics. However, the automatic derivation
of these modes is another complex topic which will be addressed in a forthcom-
ing paper [18]. In this section we will discuss some peculiarities related to the
automatic derivation of modes.

Innermost narrowing without normalization is equivalent to SLD-resolution
if the functional logic program is transformed into a flat program without nested
function calls [2]. For instance, we could transform the rules of Example 1 into
the flat logic program

add(0 ,N,N) .
add(s(M),N,s(Z)) :- add(M,N,Z).

80

where the predicate add corresponds to the function + with its result value. The
nested function call in the right-hand side of rule/~2 has been replaced by the
new variable Z and the additional condition add(M,~,Z). Now each innermost
narrowing derivation w.r.t, rules R1 and R2 corresponds to one SLD-derivation
w.r.t, the transformed logic program.

Due to these similarities of narrowing and SLD-resolution, one could try to
apply abstract interpretation techniques developed for logic programming (e.g.,
[3~ 22, 27]) to derive the desired information. E.g., to derive the narrowing mode
of the function + w.r.t, to the class of initial goals x+y=z, where x and y are
always ground and z is a free variable, we could use an abstract interpretation
framework for logic programming to infer the call modes of the predicate add
w.r.t, the class of initial goals add(x ,y , z) . In this case we infer that the call
mode is (g, g, f) and the argument z of the initial goal will be bound to a ground
term at the end of a successful computation. Hence we could deduce that (g, g)
is the narrowing mode of the function +.

ttowever~ normalizing narrowing, which we have considered in this paper, does
not directly correspond to SLD-resolution because of the intermediate normal-
ization process. These normalization steps between narrowing steps may delete
entire subterms or change the order of subterms. These subtleties require more
sophisticated analysis techniques than those developed for pure logic program-
ming. E.g., consider the rules

~(o ,z) - . o g(O) ~ o

and the initial equation f (g (X), g (u Using normalizing innermost narrow-
ing, this equation is solved by applying a narrowing step to the innermost subterm
g(X) followed by a rewrite step:

f (g (X) ,g (u = 0 ~-*{X~O} f(O,g(Y)) = 0
---* T~ 0 = 0

Hence variable Y remains unbound at the end of the computation. On the other
hand, the flattening transformation yields the following corresponding logic pro-
gram:

~ (0 ,Z ,0) .
g (0 ,o) .
?- g(X,Z1), g(Y,Z2), f (Z l , Z 2 , 0) .

But this logic program has another behavior than the functional logic program
since the variable Y will be bound by SLD-resolution! Therefore we can apply
abstract interpretation frameworks for logic programming in our context only if
there are no rewrite rules which may delete or permute arguments. Such rewrite
rules require a special treatment in the abstract interpretation procedure which
will be described in a forthcoming paper [18]. Another approach to abstract
interpretation of functional logic programs based on an alternative operational
semantics is described in [16].

7 C o n c l u s i o n s

In this paper we have shown optimization techniques in the presence of mode
information which are unique to the execution mechanism of functional logic pro-

81

grams. We have considered normalizing innermost narrowing as the operational
semantics since it has been shown that this strategy is a reasonable improvement
over Prolog's left-to-right resolution strategy [10, 14]. We have defined the notion
of modes for functional logic programs. These modes can be used to optimize the
normalization process. On the one hand, the normMization process is the tea-
son for the operational improvements of functional logic languages compared to
pure logic languages. On the other hand, the normalization process may add un-
necessary work. This can be improved using modes: fteeness information avoids
superfluous rewrite attempts, and groundness information provides for a better
implementation (in terms of memory consumption) of the normalization process.
Moreover, information about modes can also be used to avoid the generation of
code for rewrite or narrowing rules which will never be used at run time.

Y~ture work includes a refinement of the abstract machine for the execu-
tion of functional logic programs following the lines presented in [32, 34], the
development of appropriate abstract interpretation frameworks to derive mode
information at compile time [18], and refined applicability conditions for rewrite
rules using type information [4].

R e f e r e n c e s

1. D. Bert and R. Echahed. Design and Implementation of a Generic, Logic and Func-
tional Programming Language. In Proe. ESOP'86, pp. 119-132. Springer LNCS
213, 1986.

2. P.G. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-
retical Computer Science 59, pp. 3-23, 1988.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming (10), pp. 91-124, 1991.

4. M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrat-
ing Type and Mode Inferencing. In Proc. 5th Conference on Logic Programming ~J
5th Symposium on Logic Programming (Seattle), pp. 669-683, 1988.

5. S.K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM TOPLAS, Vol. 11, No. 3, pp. 418-450, 1989.

6. S.K. Debray and D.S. Warren. Automatic Mode Inference for Logic Programs.
Journal of Logic Programming (5), pp. 207-229, 1988.

7. D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Relations,
and Equations. Prentice Hall, 1986.

8. N. Dershowitz and J.-P. Jouannand. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.

9. M.J. Fay. First-Order Unification in an Equational Theory. In Proc. 4th Workshop
on Automated Deduction, pp. 161-167, Austin (Texas), 1979. Academic Press.

10. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting. In Proc. IEEE Int. Syrup. on Logic Programming,
pp. 172-184, Boston, 1985.

11. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2,
pp. 139-185, 1991.

12. M. Hanus. Compiling Logic Programs with Equality. In Proc. PLILP'90, pp. 387-
401. Springer LNCS 456, 1990.

13. M. Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. PDK'91,
pp. 344-365. Springer LNAI 567, 1991.

82

14. M. Hanus. Improving Control of Logic Programs by Using Functional Logic Lan-
guages. In Proc. PLILP'92, pp. 1-23. Springer LNCS 631, 1992.

15. M. Hanusl Incremental Rewriting in Narrowing Derivations. In Proc. ALP'92, pp.
228-243. Springer LNCS 632, 1992.

16. M. Hanus. On the Completeness of Residuation. In Proc. of the 1992 Joint Int.
Conf. and Syrup. on Logic Programming, pp. 192-206. MIT Press, 1992.

17. M. tianus. The Integration of Functions into Logic Programming: From Theory to
Practice. To appear in Journal of Logic Programming, 1994.

18. M. Hanus and F. Zartmann. Automatic derivation of modes for functional logic
programs. Max-Planck-Institut fiir Informatik, Saarbriicken (in preparation), 1994.

19. S. ttSlldobler. Foundations of Equational Logic Programming. Springer LNCS 353,
1989.

20. J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Conference on Auto-
mated Deduction, pp. 318-334. Springer LNCS 87, 1980.

21. H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodrfguez-Artalejo. Graph-
based Implementation of a Functional Logic Language. In Proc. ESOP'90, pp.
271-290. Springer LNCS 432, 1990.

22. B. Le Charher, K. Musumbu, and P. Van Hentenryck. A Generic Abstract Inter-
pretation Algorithm and its Complexity Analysis. In Proc. International Confer-
ence on Logic Programming, pp. 64-78. MIT Press, 1991.

23. R. Loogen. Relating the Implementation Techniques of Functional and Functional
Logic Languages. New Generation Computing, Vol. 11, pp. 179-215, 1993.

24. A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impact of abstract
interpretation: an experiment in code generation. In Proc. Sixth International Con-
ference on Logic Programming (Lisboa), pp. 33-47. MIT Press, 1989.

25. C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic
Programming (1), pp. 43-66, 1985.

26. J.J. Moreno-Navarro and M. Rodrfguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming,
Vol. 12, pp. 191-223, 1992.

27. U. Nilsson. Systematic Semantic Approximations of Logic Programs. In Proc.
PLILP'90, pp. 293-306. Springer LNCS 456, 1990.

28. U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In
Proc. IEEE Int. Syrup. on Logic Programming, pp. 138-151, Boston, 1985.

29. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity, and Associativity. Journal of the ACM, Vol. 21, No. 4, pp. 622-642, 1974.

30. Z. Somogyi. A system of precise modes for logic programs. In Proc. Fourth Int.
Conf. on Logic Programming, pp. 769-787. MIT Press, 1987.

31. A. Taylor. Removal of Dereferencing and Trailing in Prolog Compilation. In Proc.
Sixth Int. Conf. on Logic Programming, pp. 48-60. MIT Press, 1989.

32. A. Taylor. LIPS on a MIPS: Results form a Prolog Compiler for a RISC. In Proc.
Seventh Int. Conf. on Logic Programming, pp. 174-185. MIT Press, 1990.

33. P. Van Roy. An Intermediate Language to Support Prolog's Unification. In Proc.
1989 North American Conf. on Logic Programming, pp. 1148-1164. MIT Press,
1989.

34. P.L. Van Roy. Can Logic Programming Execute as Fast as Imperative Program-
ming? PhD thesis, Univ. of California Berkeley, 1990. Report No. UCB/CSD
90/600.

35. D.H.D. Warren. Implementing PROLOG- Compiling Logic Programs. 1 and 2.
D.A.I. Research Report No. 39 arid 40, University of Edinburgh, 1977.

36. D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, Stanford, 1983.

