
Another Kind of Modular Attribute G r a m m a r s

Beate Baum

Rostock University, Computer Science Department
Albert-Einstein-Str.21, 0-2500 Rostock, Germany

bbaum@informatik.uni-rostock.dbp.de

Abst rac t . The decomposition of attribute grammars into modules is
investigated. In our approach the alternative rules of a nonterminal may be
separated into different modules. The aim of our concept is the generation of
special grammars in respect to the design decisions of a compiler writer.
Therefore, a module represents a concrete syntactic or semantic design decision~
The import- and export-interface of a module contains not only attributes of its
nonterminals, but also semantic functions and constructions of the syntax tree.
In the module body the syntactic as well as the semantic rules are arranged.
The set of already implemented modules can be reused for new applications. A
short explanation of these ideas within the system FLR is given.

1 Introduction

For the specification of large software systems a suitable structure concept is necessary.
Many existing systems like libraries, data bases and retrieval systems support this aspect.
They consist of a lot of components with delimited tasks. Not only the structure and the
management of these systems, but also the reuse of already existing components is
important. In the notion of modules as used in programming languages these and other
properties were associated. A module utilizes foUowing aspects:

Structuring aspect:
A software part is decomposed into subparts with delimited tasks supporting its
clearness and readability. In imperative languages modules (Modula-2), units (Pascal)
or packages (Ada) represent these subparts.
Abstraction aspect:
Each module abstracts from implementation details by dividing into two parts:
* interface part, which declares public data;
* implementation part, which defines private data and realizes the implementation of

all data.
Prevention aspect:
The principle of "information hiding" is realized by the import-/export-behaviour of
data differently implemented in the languages. Their common property is the access to
the data only about a well-defined interface, e.g. only public data can be used for an
application. Private data are hidden from unauthorized users.
Reuse aspect:
Already existing modules can be reused for new applications because of the possibility
of their separate compilation (for example in Modula-2 and Ada).

These modularization aspects are suitable to describe the behaviour of specifications
written as attribute grammars. Attribute grammars in the sense of Knuth [Knn 68] have
naturally no modularization facilities.

45

Therefore, many authors have been concerned with modular decomposition of attribute
grammars in different ways.

In [DuC 90] "modular attribute grammars" were defined as consisting of patterns and
templates. In this sense, a module contains the patterns and templates for the computation
of a special attribute.
For each pattern describing a set of syntactic rules of context-free grammars a set of
corresponding templates is given. It is tried to compose the syntactic rules of a context-
free grammar by giving patterns. If a pattern matches with a context-free rule a production
of an attribute grammar is provided. The corresponding semantic functions are generated by
the templates. In this way a complete attribute grammar is generated.
In [GGV 86] the principle of abstract data types is used in attribute grammars by defining
an "attribute coupled grammar". A grammar can be seen as a semantic signature consisting
of syntactic and semantic sorts as well as syntactic functions. For the grammars G1 and
G2 an attribute coupling is defined as a mapping between the term algebra of G1 into the
term algebra of G2. Such a mapping is characterized by an association of the semantic
rules with G1. The background of this approach is that each compilation phase can be
considered as a translation of one program into another over the same semantic signature.
Dziollol] [Dzi 87] developed a data-flow language for describing the slructure of programs
which is more or less hierarchical. The underlying grammar is a so called "decomposition
grammar" which can be seen as an attribute grammar with an empty set of terminals and
an attachment of input and output attributes to the start symbol. Therefore, a program can
be decomposed into modules, where each of them contains a subgrammar of the
decomposition grammar.
The aim of describing the decomposition of hierarchical functional programs structurally
by means of attribute grammars is found in [Sim 86]. In this approach the structure of
modules is strictly hierarchical. All alternative rules of a nonterminal are collected into a
module. An application of a rule is controlled by means of decomposition conditions.
The object orientation is also a possibility to modularize attribute grammars. One
approach is found in the system TOOLS [Kos 91] using the correspondence of Paakki
[Paa 91] "nonterminal = class'. Also the correspondence "production = class" [Paa 91] is
possible to use in attribute grammars.

In [Paa 91] modular attribute grammars are classified by decomposing the set of
productions with regard to the set of nonterminals or attributes. The classification of
Paakki is the basis for our investigations described in chapter 2. Another approach
decomposing attribute grammars is introduced informally.

2 Modular iza t ion of Attribute Grammars

2.1 Known Modularization Concepts

A modularization of attribute grammars can be reached by decomposing the set of grammar
rules. In [Paa 91] two forms of this decomposition are classified:

/1/ nonterminal = module or
/2/ attribute -- module.

46

The principle of the first modularization form is the arrangement of all alternative rules of
one nonterminal in one module. This correspondence "nonterminal = module" produces a
lot of small modules building a hierarchy. This form of modularization decomposes the
grammar by syntactic aspects because the rules of a nonterminal derive a concrete structure
of the language. In the export-interface of each module the attributes of the corresponding
nonterminal are noted. The module body contains the syntactic and semantic rules of the
corresponding nonterminal.
The second form of modularization "attribute = module" uses the semantic aspect of
grammars represented by their attributes. This means, all production rules containing
nonterminals with the same attribute on the left-hand side of the semantic rules are
composed together to a module. The number of the attributes of the nonterminal
determines the occurrence of the alternative rules of the nonterminals in the modules. The
semantic rules of the nonterminals are arranged to the modules corresponding to the
evaluation of the attributes. Therefore, only few but more compact modules are created. No
module hierarchy is built. The export-interface of each module contains the attribute with
its corresponding nonterminals. In the module body the syntactic and semantic rules of the
nonterminals are settled.
Both modularization forms utilize the structuring aspect of modules by their delimited
syntactic or semantic tasks and the abstraction aspect by their separation into an interface
and an implementation part. The principle of "information hiding" is solved by their
import-/export-behaviour. A module provides certain attributes of their nonterminals used
by other modules. Here only global nonterminals exist, local nonterminals are not allowed
in both forms.

2 . 2 Chacterization of a New Modularization Concept

For our purpose, the use of modularized attribute grammars for compiler writing, the
previous modularization forms are not suitable. There exist following disadvantages:
- the l:l-correspondence from/1/, e.g. one module represents the alternative rules of one

nonterminal,
- the existence of the same rules in more than one module from/2/,
- the non-existence of local data from/1/and/2/.

The property of generating the same language by the "pure" attribute grammar as well as
by the modularized attribute grammar is not sufficient to describe the behaviour of
attribute grammars in compiler writing. Our aim is the generation of special languages
belonging to a language family, which depends on the design decisions of a compiler
writer. Each language is produced by an attribute grammar composed by modules. Each
module represents a concrete syntactic or semantic design decision of the compiler writer.
That's why the alternative rules of a nonterminal can be located to different modules. The
correspondence/1/is extended by local nonterminals, whereas/2/is delimited in that way,
that only one module contains one certain semantic design decision in form of semantic
functions.

The interface of a module contains not only attributes of their nonterminals, but also
semantic functions and constructions of the syntax tree. The interface is divided into a
defining part (export-interface) and an using part (import-interface). The export and import
behaviour can be characterized "unique" if only two modules are involved in the exchange
of information. In the module body the syntactic as well as the semantic rules are arranged.

47

In the following our approach of modularization is illustrated by the example of
translation simple arithmetic expressions into abstract representations. Look at the non-
modularized rules of the attribute grammar AGI:

X -> Y, OP, Y.
X.code = op(OP.code, Y l.code, Y2.code)
typeTest(Yl.type, Y2.type, X.type)

Y -> CONST.
Y.code = const(CONST.val)
Y.type = ira

Y -> ID.
Y.code = id(ID.val)
symtab(ID.val, Y.type)

OP-> "+'.
OPcode = add

OP -> "*'.
OP.code = mul

CONST -> ...
CONST.val

ID->.. .
ID.val

The nonterminals X, Y, OP, ID and CONST of the context-free basic grammar are
augmented by attributes. Each synthesized attribute stands for a semantic meaning, code -
for generated syntax trees, type - for the types of expressions and val - for the values of
constants and identifiers. For evaluating type and val semantic actions are necessary:
symtab - delivers the type of identifiers from the symbol table and rypeTest- calculates the
result type of expressions. The roles of constants and identifiers are omitted here.
Possible sentences of the generated language with their corresponding semantic meaning
me: 1 + x ---> op(add, const(1), id(x))

y * z ---> op(mul, id(y), id(z))

The following figure represents a possible decomposition of the AGI:

I X-> Y, OP, Y.
X. code = op (OP. code, YI. code, Y2. c ~ ~ypeTes~ (Yl. ~ype, Y2. type, X. r .vpe)

Y -> CClqST.
Y.code = cons~ (CONST. val)
Y. cype= int
Y -> ZD.

~ Y.code = id(iD.val)
- - .

I ID.val = ...
1

OP. code

module body

ir~ort-
interface

• interface
nan~ uniquely

(from name)
exp ~176
interface
export-
interface

A ~u~quely
ir~oor=~ relation
module B imDorts
~ata -~rom module A

"§

e = add

D X--...--..--..--.--
~ O P " ' ~ " Q

OP . code -- mul

Fig. 1. First possible decomposition of the grammar AG 1

Figure 1 represents the decomposition of the grammar AG1. Module A provides the
attributes code and type of the nonterminal X to its environment and has to import the
semantic function typeTest uniquely from module FUNC and the attributes code and type
of the nonterminal Y as well as code of OP. Y is provided by module B, whereas OP can
be provided by module C and/or D. The import of the OP-attributes depends on the
decision of the compiler writer, whether he allows only the addition, only the
multiplication or both operations.

48

The graphical description shows all possible import-/export-relations between the
modules. All nonterminals which are not contained in the export-interface of a module are
local. For our example in figure 1 the nonterminals ID and CONST are local in module
B. The following notation expresses these aspects:

module A
interface

pefNt X(+,+);
OsedNt Y(+,+), OP(+);
UsedFu typeTest(-,-, +) unique FUNC ;
D..efT up(+,+,+);

X -> Y, OP, Y.
X.code = up(OP.code, Y l.code, Y2.code)
typeTest(Yl.type, Y2.type, X.type)

end module;

module B
illterface
DefNt Y(+,+);
UsedFu symtab(-,+) unique;
Deft const(+), id(+);

body
Y -> CONST.

X.code=const(C O NST. val)
Y.type= int

Y ->ID.
code=id(ID.val)
symtab(Id.val, Y.type)

ID->...
td.val

CONST ->...
Const.val

end module;

module C module D
interface interface

DefNt UP(+); DefNt UP(+);
Deft add; Deft" mul;

bod~ body
OP-> "+'. OP-> "*"

O P.code= add O P.c ode= mul
end module; end module;

The import-/export-behaviour of these modules is noted in the following way. Here, each
exported symbol is defined and each imported symbol is used. Symbols may be
nonterminals (DefNt and UsedNt resp.), names of semantic functions (DcfFu and UsedFu
resp.) or constructions of the syntax tree (DefT and UsedT resp.). For each symbol the
number of attributes or parameters and the direction of their evaluation: + for bottom-up
and - for top-down are noted.
The unioue-statement specifies, that only one module has to import or export data. In
association with a module name, uniqu~ determines exactly which module imports or
exports these data, for example, by

UsedFu type Test(-,-, +) unique FUN C ;
the semantic function typeTest is uniquely provided by the module FUNC). Without a
module name unique provides data only by one module which is not specified. In the
above mentioned example the semantic function symtab is provided by the module
SYMTAB. But it is also possible to define a new module exporting this function.

Because of the possible occurrence of semantic functions in the import-interface of a
module there have to be modules providing these functions. In our example these are the
semantic functions symtab and typeTest. The realization of these functions depends on a
concrete implementation language. Therefore, only the skeletons of the modules exporting
the functions are given.

49

module SYMTAB module FUNC
interface interface

D e ~ u sy,ntab(., +) tltflg~" D e ~ u typeTest(-,-, +) IIIKCAg,"
body ... body....
end module: end module:

Another decomposition of the grammar AG1 is possible:
I I ~dule body A
0 = ~ o = x-> Y oP Y I

interface [X. code'= o~(OP.code, Yl.code, .v'2.code) [
iagx)rt- I =ypeTese (.2 . cype, Y2. cype, X. eype)
interface I Y -> C~qST. q z,.c.__o~_)
uniquely ~ Y . c o d e = cons= (CONST. val)

in~erface 11"---- CONST = . . .
exDort- I CONST. va2
znterface I OP -> "§ ~P.code~

A ------41~ lqgle!y I OP. code = add

ir~ort re!ation / '
module B in~orts
data from module A

B

~ Y -> ZD.]
Y.code = id(ZD.val) I
symcab (iD. val, r. =ype) .L__ -

. . .

Fig.2. Second possible decomposition of the grammar AG 1

Here, a particular basic grammar representing a complete subgrammar is noted in module
A. This basic grammar can be extended by additional syntactical constructions which are
contained in the modules B and C. Therefore, although a rule for the nonterminal Y exists
in the module A an import of the attributes of Y from B is allowed. In this example the
nonterminals CONST and ID have local character. Look at the notation of these modules:

module A
interface

DefNt X(+,+);
UsedNt Y(+,+), OP(+);
UsedFu typeTest(-,-,+) unique FUNC ;
DefT op(+,+,+), const(+), add;

body
X -> Y, OP, Y.

X.code = op(OP.code, Y l.code, Y2.code)
typeTest(Yl . type, Y2.type, X.type)

Y -> CONST.
Y.code = const(CONST.val)
Y.type = int

CONST -> ...
CONST.val

OP -> "+'.
OP.code = add

end rr]odule;

module B
interface

Deft,It Y(+,+);
UsedFu symtab(-,+) unique;
DetT id(+);

bodv
Y -> ID.

Y.code = id(ID.val)
symtab(ID.val, Y.type)

ID -> ...
ID.val

end module;

module C
interface

De fNt OP(+);
De, fY mul;

body
OP -> "*"

OP.code = mul
end module:

50

3 Conclusions

In the previous chapters known modularization concepts were described. A new approach
was introduced to support the design decisions for a compiler writer. Our modularization
concept does not always include the fact from which concrete module data have to be
imported. It is only determined that one module at least has to provide these data. Data are
nonterminals with their attributes, semantic functions or conslructions of the syntax tree.
The reason for this property is the possible separation of alternative rules of a nonterminal
into different modules.
It is our aim to introduce this modularization concept in the system FLR. FLR (Fast
Laboratory for Recomposition) [For 91] developed at our department is a tool for
generating text documents, programs in a programming language, formal specifications
and grammars. FLR utilizes the generative aspect of attribute grammars. The knowledge
of a problem domain is described by special attribute grammar rules. The solution of a
special problem is generated by selecting special rules from the knowledge base.
In our approach FLR is used for generating attribute grammars for compiler construction.
This means, the FLR-grammar rules contain grammar parts of compiler descriptions for
imperative languages. So, the compiler writer has the possibility to select certain
grammar parts for his application. The result of this generation is a concrete grammar.
With the help of modularization attribute grammars certain parts of the grammar should be
reused. Therefore, mechanisms in FLR supporting the modularization are needed. For
example, symbol tables collecting information about each symbol, like their number and
direction of parameters, their internal representation, the names of their export modules,
information about their using, are necessary. By means of these tables the import-/export-
relations between the modules have to be checked, the interfaces of user-defined modules
have to be controlled with regard to the use of already existing names of nonterminals or
functions and local nonterminals have to be renamed. Also a type system can help to find
conflicts.

References

[AIM 91]

[DuC 90]

[Dzi 87]

[For 91]

[GGV 861

[Kas 91]

[Knu 68[

[Kos 91]

[Paa 91]

[Sim 86]

Alblas,H.; Melichar,B. (Eds.): Attribute Grammars, Applications and Systems,
SAGA, Prague, June 1991, LNCS 545, Springer-Verlag Berlin.
Dueck,G.D.P.; Cormack,G.V.: Modular Attribute Grammars, The Computer
Journal, vol. 33, no. 2, 1990, pp. 164-172.
DziolloB,A.: DatenfluBorientierte Programmierung mit Attributgrammatiken,
Dissertation A, TU Dresden, Informatikzentrum, 1987.
Forbrig,P.: Using the generative aspect of attribute grammars in a knowledge
based way, in: [AIM 91], pp. 438-459.
Ganzinger,H.; Giegerich,R.; Vach,M.: MARVIN - A Tool for Applicative and
Modular Compiler Specifications, Universit~t Dortmund, Abteilung Informatik,
Forschungsbericht Nr. 220, 1986.
Kastens,U.: Attribute Grammars as a Specification Method, in: [AIM 91], pp.16-
47,
Knuth,D.E.: Semantics of Context-Free Languages, Mathematical System Theory
2, 2, 1968, pp. 127-145.
Koskimies, K.: Object-Orientation in Attribute Grammars, in: [AIM 91], pp. 297-
329.
Paakki,J.: Paradigms for Attribute-Grammar-Based Language Implementation,
Department of Computer Science, University of Finland, Helsinki, Report A-
1991-1.
Simon,E.: A new programming methodology using attribute grammars, Acta
Cybernetica, tom.7, fasc.4, 1986, pp. 425-436.

