
Session II: Architectures
Chair: Radu-Pospescu Zeletin, Technical University of Berlin and GMD-FOKUS

Session II was dedicated to architectures of multimedia systems. Each of the session
papers introduced a certain multimedia architecture. During the talks, however, each
speaker dealt with on one special aspect of the architecture presented. Dietmar
Hehmann concentrated on architectural constraints of a multimedia transport sys-
tem. Frankie Garcia focused on where to put multimedia synchronization. Lillian
Ruston elaborated on the differences of multimedia architectures from telecommuni-
cations companies on one side and data processing companies on the other side.

The first presentation introduced multimedia work being done at the host site of the
workshop, the IBM European Networking Center (ENC) in Heidelberg. In "Imple-
menting HeiTS: Architecture and Implementation Strategy of the Heidelberg High-
Speed Transport System" Dietmar Hehmann, Ralf Guido Herrtwich, Werner Schulz,
Thomas Schtitt, and Ralf Steinmetz describe the ENC's multimedia transport system.
Beyond this, they discuss the system architecture in which the transport system is
embedded. Their system, HeiTS, is aimed at a heterogeneous environment compris-
ing several computers (RS/6000's and PS/2"s), different operating systems (AIX and
OS/2), and a variety of underlying networks (most notably, 16 Mbps Token Ring,
FDDI, and ATM-based Broadband ISDN).

HeiTS is embedded in a special real-time environment within the system software.
According to the authors' model, all system entities handling multimedia data (such
as HeiTS) become so-called stream handlers. Stream-handler code is executed by
real-time threads which are either deadline or rate-scheduled. Management functions
permit to connect stream handlers and to control the flow of data through them.

The system relies on the support of underlying buffer and resource management
subsystems. The buffer management subsystem avoids the needless copying of data
within the system. It extends the traditional Mbuf approach to facilitate direct
adapter-to-adapter data transfer. The resource management subsystem allocates re-
sources for stream handlers to guarantee a certain throughput, delay, and reliability.

In closing, Dietmar Hehmann discussed several design and implementation deci-
sions for the actual multimedia transport protocol. The system uses upcalls to keep
control over the pacing of incoming data. No multiplexing is used above the data link
layer which facilitates directing data to the right stream handler. Segmentation is
avoided in the system. Flow control is purely rate-based.

During the discussion, Dietmar elaborated on the network protocol used in the
system, ST-2 (described in a later talk by Stephen Pink). In continuation of the dis-
cussion in the first session, the reservation model of ST-2 was criticized. The ENC
wants to use pessimistic and optimistic reservation in their future implementations.

Francisco Garcia presented a paper on "Protocol Support for Distributed Multimedia
Applications" co-authored by Geoff Coulson, David Hutchison, and Doug Shepherd.
He described the distributed systems platform being developed at Lancaster Univer-

32

sity to handle multiple media across a number of multimedia workstations. The main
focus of his talk was multimedia synchronization.

The authors use the ANSA architecture for realizing their distributed system sup-
port. This architecture provides trading and binding services and basic facilities of
threads and their synchronization. In the Lancaster system, three categories of basic
services are developed: network services, multimedia devices, and storage services.
An additional service is provided by the synchronization manager. It implements
both event-driven synchronization (as it results, e.g., from an interrupting device) and
continuous synchronization of two and more multimedia streams. For continuous
synchronization, an orchestrator process is inserted at the source and/or sink ot the
streams. Its policy for synchronization is user-defined.

The transport system developed for multimedia transfer is designed for running on
transputer hardware. Rate control of the network (the key element of the protocol)
and orchestration are tightly coupled. While the authors proposal is aimed at audio
and video transfer, they point out that similar rated-based protocols can be used to
achieve reliable data transfer with selective retransmission. They see the main appli-
cation of their protocol in future ATM networks.

This final paper of the session by Lillian Ruston of Bellcore and Gordon Blair, Geoff
Coulson, and Nigel Davies of Lancaster University continued (at least to some ex-
tent) the discussion about the multimedia architecture developed in Doug Shepherd's
group in Lancaster. In "Integrating Computing and Telecommunications: A Tale
of Two Architectures" Lillian Ruston presented multimedia as an add-on to two
kinds of systems: a telecommunications network and a typical distributed computing
environment.

Bellcore's Touring Machine architecture is heavily influenced by the traditional
partitioning in the telecommunications industry. The system distinguishes between
the telecommunications infrastructure and the customer's equipment. The
infrastructure provides session management, resource allocation, and directory ser-
vices. It is accessible through a well-defined API through which the policy of
infrastructure usage is specified by the application.

The ANSA-based Lancaster design mentioned above does not make such a dis-
tinction. Whereas the Touring Machine builds an object hierarchy with restricted
access to some objects, in the Lancaster model all objects have equal status. While
the first approach allows for a more "controlled" and "secure" system architecture
through one special API, the open computing model from Lancaster lets the pro-
grammer select the appropriate object level for his need; all objects are accessible. A
combination of two models can be achieved by integrating a layering facility into the
Lancaster model.

The discussion following the talk took up the theme of telecommunications vs.
computer industry and their role in multimedia support. It.was agreed that with
ATM integration into future computers, the traditional network boundary will more
and more vanish. The telecommunications industry wants to make up for it by pro-
viding higher-level information services ("teleservices") as the new API to the multi-
media network. It was believed that such a development is only possible as a joint
effort with the computer industry.

Implementing HeiTS:
Architecture and Implementation Strategy

of the Heidelberg High-Speed Transport System

Dietrnar Hehmann
Ralf Guido Herrtwich

Werner Schulz
Thomas Sehiitt
Ralf Steinmetz

IBM European Networking Center
Tiergartenstr. 8

D-6900 Heidelberg 1

Abstract; The Heidelberg High-Speed Transport System (HeiTS) is a new-generation
end-to-end communication system currently under development at the IBM
European Networking Center (ENC) in Heidelberg. HeiTS is aimed at a heteroge-
neous environment comprising several computers with different operating systems
and a variety of underlying local, metropolitan, and wide-area networks. It incorpo-
rates both end-system and gateway communication functions.

1.0 Introduction

In new high-speed networks, an integration of different traffic types can be observed:
Whereas, e.g., Ethernet was designed for data traffic only, FDDI supports data-type
traffic (asynchronous) as well as voice and video traffic (synchronous), albeit in a
rudimentary form. Such an integration in the physical network should lead to an
integrated communication system as a whole. HeiTS is designed to support fast data
traffic and multimedia communication, in particular the transfer of digital audio and
video. The HeiTS prototype is conceived to be a generic basis for high-speed data
transport applications such as CAD file transfer, and multimedia communication
applications such as video distribution.

For many years, networks were the bottleneck of data transmission. Processing
equipment in the end-systems and gateways was faster than the transmission lines so
that bandwidth usage had to be optimized over processing. With the upcoming
high-speed networks, this paradigm is changing: Shortage of resources is now in the
nodes. To achieve high performance, both architecture and implementation of HeiTS
are oriented to optimize processing over bandwidth use.

HeiTS is primarily directed to two platforms within IBM's Small Systems line: the
PS/2 under OS/2 and the RISC System/6000 under AIX. This imposes the burden
to interface HeiTS with two disjoint operating systems, but the common Microchan-
nel bus architecture of both machines offers the opportunity to use identical commu-
nication network adapters on both systems. The primary networks to be operated
by HeiTS are Token Ring, FDDI, and Broadband-lSDN. For B-1SDN, a first ver-

34

sion will attach to an STM network, later versions will interface with an ATM net-
work.

This paper discusses our implementation decisions for HeiTS. Section 2 introduces
the overall multimedia system architecture into which HeiTS will be integrated.
Section 3 elaborates on the support functions that serve as building blocks for the
construction of HeiTS. Section 4, finally, discusses the actual communication func-
tions that HeiTS provides. For the objectives of the system please refer to an earlier
paper [5].

2.0 Overall Multimedia System Architecture

HeiTS is just one module within a general platform for multimedia applications. It,
therefore, has to fit into the overall architecture of such a platform. This section
discusses the external constraints on the implementation of HeiTS which result from
the need for integrating HeiTS with a surrounding system.

2.1 Stream Handlers

Multimedia data usually enters the computer through an input device and leaves it
through an output device (where storage can serve as an I /0 device in both cases).
It is less common that the data is generated by the computer itself, i.e., calculated or
interpreted by the CPU. Nevertheless, this case occurs in simulation and control
applications; a multimedia architecture needs to take it into account, too.

An entity generating or consuming a raw stream of continuous multimedia data is
commonly called a stream handler. The term "raw" shall indicate that no stream-
handler-specific data is contained in the stream. For example, in a transport system
(which would be a typical stream handler), the data must not contain any protocol
headers or trailers; they have no meaning to other stream handlers, e.g., those re-
sponsible for video output. We make no restriction on the encoding of a raw stream.
In particular, a stream can be compressed or uncompressed. Any stream should be
typed to prevent it from being directed to the wrong stream handler.

Stream handler functions are often distributed among the main CPU and on-board
processors. In case of video decompression adapters most of the stream handler
software executes on the on-board DSP of the adapter. Additional software com-
pletes the stream handler to access the board from an application. Whenever the
adapter does not deliver raw data, but some additional information, the stream han-
dler software that executes on the main CPU becomes more complex. Multimedia file
or transport systems are examples of such stream handlers. In applications where
multimedia data is generated or consumed by the computer, a stream handler may
run on the CPU only.

In a modern system which follows the microkernel approach, one will arrive at the
following three-level code structure for a stream handler implementation:

�9 Hardware portions of stream handlers are executed on an adapter board. In
many cases, one will not be able to change these stream handler portions.
However, some modern hardware stream handlers are microprogrammable.

�9 Device drivers constitute the stream handler portion executed inside the operating
system kernel to interface to the hardware adapter.

35

Software portions of stream handlers execute in user space, on top of the oper-
ating system kernel. From a software engineering viewpoint, the majority of the
stream handler code should belong to this portion. Stream handlers which do
not require special hardware support (e.g., simple filter functions) can be imple-
mented in software only.

This layered stream handler structure is continued within each stream handler por-
tion. In particular, the stream handler implementation of a transport system will
contain the traditional communication layers.

2.2 Threads

Stream handlers need to obey the inherent real-time requirements of audiovisual
data: They have to deliver their output before a certain deadline to make it available
in time for its presentation or consumption. In addition, they may have to reduce
jitter between the delivery of adjacent output items or synchronize the presentation
of their data items with those of other stream handlers.

The following implementation structure makes it easy to take these timing criteria
into account: All stream handler software portions are encoded as functions of a
single task. This task assumes the role of an audio/video server which - somewhat
similar to the X server - provides a common input/output environment for time-
critical multimedia data. The functions of the AV server are executed by threads
which escort a single piece of multimedia data from input to output. They wait to
obtain the data from the device driver, then execute the layered functions of the input
stream handler in an upcall fashion [2], execute the functions of the output stream
handler in a downcall fashion and finally submit the data to the output device
through the corresponding device driver functions.

Threads, much better than messages themselves, can take the timing requirements of
multimedia data into account. Each thread can be scheduled according to the ur-
gency of the data item it handles using real-time scheduling techniques. It also can
be synchronized with the execution of other threads through well-known process
synchronization functions. An appropriate synchronization point is the switch from
the upcall to the downcall segment. A thread can also be paced at this point by de-
laying its execution for some time.

2.3 Stream Management

A multimedia application runs on top of the AV server outside of the real-time envi-
ronment. Multimedia data usually does not pass through the application; the appli-
cation merely manages the flow of data in the AV server. To manage the data flow,
we distinguish between device control operations that determine the content of a
multimedia stream and stream control operations that determine its direction.

Device control operations depend on the individual I/O device. Devices may be
grouped into classes and their device control operations may be derived generically
as suggested in [10]. For storage devices, typical control operations include
fast_forward, reverse and seek. Other operations are zoom for cameras and volume
for speakers.

Stream control operations are the same for all stream handlers. They include

36

* open~close (applied to individual stream handlers, yielding stream handles),
�9 connect[disconnect (applied to pairs of stream handles, yielding stream identifi-

cations), and
�9 start~stop (applied to stream identifications),

The open function is a hybrid between a device control and a stream control opera-
tion. It usually requires information specific to the stream handler that also deter-
mines stream content. Except for stream handlers that cannot be multiplexed (such
as those for microphones and speakers), opening the stream handler is not enough:
In a file system, the file to be accessed needs to be known. In a transport system, the
address of the communication partner is required. In a video display, the area where
to display the data on the screen is needed. This information is provided by
handler-specific parameters of the open call.

The connect function generates a thread to escort data from the input to the output
stream handler. When the connection is established, system resources are allocated
to ensure that the thread can perform its function according to the application's re-
quirements (on time, with a certain reliability, etc.). In distributed applications, such
resource reservation has to be made from end to end, including the network.

In addition to the above functions, an application can also specify that a connection
(--- thread) shall be synchronized. In this case, the above-mentioned synchronization
mechanism is enabled and threads are potentially delayed.

Figure 1 shows the overall architecture of HeiTS.

The devices drivers (DD), the transport system (TS) and the audio/video handler
(AV) are examples of stream handlers. Data flows from a network adapter through
the corresponding device driver to the transport system, where the communication
functions are provided (see 4.0), passed over to the audio/video handler and written
to the adapter using the AV-device driver. The buffer management system (BMS)
enables the handling of the data between the different stream handlers withoiat copied
them (see 3.1). The resource management system (RMS) allocates and manages the
resources (see 3.2). The stream management system (SMS) provides the interface to
the application.

3.0 Support Functions

In protocol implementations, the protocol machine contributes only a small fraction
to the overall processing time. Most computation power goes into support functions
such as data administration, communication between modules (e.g., processes), etc.
This is even more true for light-weight protocols with their streamlined protocol ma-
chines.

In HeiTS our goal is to handle data in real-time. First of all, this means that some
delay bounds for the data handling can be guaranteed. As delay bounds for audi-
ovisual data are tight, this automatically translates into fast data handling. To han-
dle data efficiently, a sophisticated buffer management is needed. To schedule the
resources for real-time data handling, we need a resource management which reserves
the resources in HeiTS and guarantees the commitments made.

37

3.1 Buffer Management

Conceptually, data always flows from one stream handler into another. However, if
a significant portion of the stream handler is realized in software and makes use of
the CPU, this flow of the data should not imply costly data copying, in particular
copying from kernel to user space and back.

The buffer management system (BMS) enables the transfer of the data "below" the
stream handlers to achieve higher performance. In this case, special device capabili-
ties such as direct adapter-to-adapter transfer can be utilized and the BMS hides
differences between buffers on different adapters and in main memory.

The BMS not only avoids copying while data is flowing between stream handlers, it
also provides features needed for efficient protocol implementations such as chaining
of buffer fragments (headers from different layers, data, possibly trailers) and locking
(e.g., to keep buffers for retransmissions).

A BMS buffer consists of one or more blocks of memory (called fragments) which are
linked together as shown in figure 2. The information describing the buffer is con-
tained in a buffer descriptor, so no buffer management information has to be stored
in the fragments.

A fragment consists of three parts:

* The data area is filled with information.
e The empty area is free and can be used to store information (e.g., to add a pro-

tocol header).
e The dirty area cannot be used (it can contain adapter specific information).

The pointers to the different areas are stored in the buffer descriptor. Space in a
fragment is allocated from the back to the front, so each layer can add its header.
If there is no empty space left in the fragment, a new fragment is allocated and is
linked to the current buffer. So it is not necessary to copy the buffer.

A side effect of this scheme is, that segmenting and recombining of data units is pos-
sible without copying the data. To segment a data unit into, e.g., two pieces, the
BMS allocates a second buffer descriptor which points to the same fragment(s) and
only changes the pointers to the different areas accordingly.

Normally the last stream handler handling the buffer gives the buffer back to the
BMS after the data is copied to the external device and the buffer is freed. Under
some circumstances a stream handler may want to keep the data for later use, e.g.,
the transport layer may keep a buffer for retransmissions if it has to provide a reliable
service to its user. In this case the respective stream handler can tell the BMS to lock
the buffer. When a locked buffer is returned to the BMS, it is not actually freed until
the lock is removed.

3.2 Resource Management

The resource management system (RMS) allocates resources for connections to
guarantee a certain throughput, delay and reliability [6]. The workload model used in
HeiTS is the Linear Bounded Arrival Process (L B A P) , which was introduced by Cruz
[4] and employed, for example, in SRP [1]. Whenever a new connection is established,
the RMS makes sure that this connection does not violate performance guarantees

38

already promised to other connections. There are two types of connections: best ef-
fort and guaranteed.

The RMS consists of submodules for each resource (e.g., local resources like CPU
processing capacity and network resources like bandwidth) to perform schedulability
testing, reservation, and resource scheduling. The RMS also reserves buffer space.
The buffers needed for a connection are allocated statically from a buffer pool. The
amount of buffer space to be reserved is based on the throughput and the burst size.

Let us discuss the reservation and scheduling of the CPU as an example for the re-
source management techniques employed. For any new connection, a schedulability
test is performed: Based on the maximum message rate of a connection and the
processing time needed per message it is calculated whether the acceptance of this
new connection could violate guarantees for other connections. If this is the case the
new connection is rejected. The values calculated for accepted connections are stored
in a local database. This information is used by the RMS for further schedulability
tests and by the scheduler for scheduling the thread processing the message.

For CPU scheduling we are currently using three priority classes:

1. critical threads,
2. critical threads that have used up their processing time, as specified by their

workload specification, but require further processing (this is based on our opti-
mistic assumption, that this message can make up for the lost time in later re-
sources and is especially useful for best effort connections), and

3. threads that are no stream handlers (the normal system threads).

Currently we investigate to use a fourth class for workahead messages, but it is not
clear if the potentially better CPU utilization is worth the scheduling effort (which
consumes CPU capacity itself).

The scheduling within the different classes is currently based on a modified rate-
monotonic scheme, where the priority of a thread is based on the message rate for the
respective connection. For incoming messages the urgency is calculated and depend-
ing on the outcome the message is passed to the thread handling the connection di-
rectly or it is hold back by the scheduler.

In the future we plan to also use deadline scheduling where the priority of a thread
is calculated based on the urgency of an arriving message.

4.0 Communication Functions

Using the support environment introduced in the previous chapters, HeiTS realizes
the function of the lower 4 layers of the OSI reference model as a stream handler
providing endsystem-to-endsystem transfer of multimedia data items.

4.1 Design Decisions

Based on the application requirements either a reliable or an unreliable communi-
cation path between a sender and a single or multiple recipients can be established
by HeiTS. QOS parameters are used to specify such requirements. Formally, the
services provided are based on the ISO transport service standard document [7];
however suitable enhancements had to be defined to cover typical multimedia re-

39

quirements. Additionally, the use of certain ISO defined optional facilities had to be
restricted to ensure isochronity requirements could be met.

Specific design decisions have been made in the following areas:

Calling conventions: Downcalls are used for outbound communication (i.e., re-
quests and responses in the OSI terminology), upcalls for incoming indications
and confirmations.

This architectural decision ensures in particular that incoming data can not only
be offered for processing to the application - as is standard practice in today's
data-oriented communication systems - , but that any required processing can
directly be initiated by HeiTS at the correct time. Side effects of this design de-
cision include reduced elasticity buffer requirements and that immediate
connection-specific processing can be done in the user-provided indication and
confirmation routines.

Entry points into these user provided functions are passed to the transport sub-
system at the latest possible occasion.

Multicast: Multicast is supported by the network layer where the topology of the
network is known. Two forms of multicast are distinguished: In traditional
"sender-initiated" multicast, the sender enumerates its communication partners.
In "receiver-initiated" multicast, a receiver may join an existing communication
(probably without even informing the sender about its presence).

Multiplexing: Multiplexing is not supported for time-critical traffic above the
data link layer, i.e., a data link connection will always be mapped onto a single
transport connection. It is necessary to support multiplexing in the data link
layer since some networks support only one physical connection. Its exclusion
for network and transport layer allows for easier identification of the receiving
process for incoming data.

Splitting: Splitting is not supported, i.e., a single upper-layer connection does
not use more than one lower-layer connection. In particular, one transport con-
nection never sends data over two or more network adaptors. Splitting was once
used to let a fast processor output data to several slow networks, increasing the
overall throughput of a connection. In an environment, where networks become
faster than processors, splitting becomes obsolete.

Segmentation: Segmentation should be avoided, but is supported by HeiTS.
Segmentation to and reassembly of very small data units (such as ATM cells),
however, shall be accomplished in hardware - HeiTS is not optimized for this
function.

Flow control: Flow control consists of end-to-end flow control to prevent the
receiver from being flooded with data and access control to prevent the network
from being overloaded. For time critical unreliable traffic, HeiTS applies a
rate-based control scheme for connections and enforces the rate of connections
through leaky bucket algorithms. For conventional reliable data communication
the standard techniques are used.

40

4.2 Implementation Structure

Internally the communication subsystem is structured into 3 layers:

�9 Transport Sublayer: The transport subsystem provides reliable and unreliable
end-to-end communication services enhanced by provisions for multimedia data
transfer. The use of these provisions results in an isochronous data delivery
whenever a respective quality of service was negotiated. As a starting point, an
extended ISO transport service is considered. A modified ISO transport protocol
class 1 [8] has been implemented. Other protocols (e.g., XTP) are under consid-
eration.

Network Sublayer: The focus of the network layer work is in the areas of
multicast support and LAN/WAN internetworking. Two different protocols are
currently being implemented for experimentation: As a result of previous ISO
work, a modified X.25 version is used for unicast experiments in gateway sce-
narios. The Internet protocol ST-II [12] is used to experiment with multicast
communication over guaranteed-performance channels.

Connectivity Subsystem: The connectivity subsystem provides a data link service
interface to HeiTS. On most of the already available adapters for high-speed
networks a data link protocol is implemented. The connectivity subsystem hides
the different interfaces of the drivers for the various network adapters. Network
adaptors currently under consideration are 4 and 16 Mbit Token Ring, FDDI,
and B-ISDN.

A stream handler interface is built on top of the HeiTS stack.

4.3 Sample Session

Let us discuss a "typical" example scenario from the transport system interface per-
spective. Assume the head of a small company wants to give his Monday morning
speech (a monologue, of course) to his employees sitting in their offices with their
multimedia workstations switched on and ready to listen to their boss. When the chief
is ready to begin, we will see the events at the transport service interface as shown in
figure 3.

In this example the symbol " > " is used to identify upcatls. "@" stands for "address
of".

The example illustrates some of the key choices made for the HeiTS design: First, the
concept of specialized service access points is used to distinguish multimedia and
regular data traffic. Second, a set of QOS parameters is used to specify the applica-
tion requirements. In this case typical values for the distribution of compressed video
are given. In particular, error indication but no correction is specified. This enables
the output stream handler to substitute, e.g., a corrupted video frame by either a
previous full frame or a zero delta frame which will prevent the error from being vis-
ible. However, strong isochronity for the individual pictures and voice sample is re-
quired. Third, only addresses are passed at the procedure interfaces whenever data
need to be handed over an interface.

41

5.0 Summary

HeiTS is designed to handle high-speed data applications as well as multimedia ap-
plications within IBM's Small System line (PS/2 under OS/2 and the RISC
System/6000 under AIX). The main emphasis in this paper was put on the multi-
media aspect. In order to meet the real-time requirements of audiovisual data
streams HeiTS uses threads to haridle such streams. These threads can be scheduled
dependent on their real-time requirements. In order to allow this kind of scheduling
the Resource Management System has been implemented in HeiTS. It allows best
effort and guaranteed connections, and it supplies the scheduler with the necessary
information for real-time scheduling.

Another aspect within HeiTS is to minimize the overhead of data handling. For this
reason, a Buffer Management System was defined that allows efficient data handling.
This includes segmenting and recombining of data units, chaining and locking of
buffers, and other features. With this buffer management all unnecessary data
movements can be avoided.

With all these supporting functions defined HeiTS is an implementation of the lower
four layers of the OSI Reference Model. It allows multicast on the network layer,
multiplexing up to the data link layer, segmentation, and ent-to-end flow control.

Currently a modified ISO transport class I has been implemented. But other proto-
cols like XTP are under consideration for future implementations. There are also still
some open issues in the resource management, e.g., the different threads are sched-
uled based on a rate-monotonic scheme, where the thread's priority is based on the
message rate for the connection. This will be replaced by deadline scheduling, where
the priority of a thread is adjusted to the urgency of an arriving message, and is not
based on a QOS input parameter.

References

[1] D. P. Anderson, R. G. Herrtwich, C. Schaefer: SRP: A Resource Reservation
Protocol for Guaranteed-Performance in the Internet. ICSI, Berkeley,
TR-90-006, Feb. 1990.

[2] D.D. Clark: The Structuring of Systems Using Upcalls. 10th ACM SIGOPS
Symposium on Operating System Priciples, Orcas Island, Washington, Dec.
1985, pp. 171-180.

[3] D.D. Clark, D. D. Tennenhouse: Architectural Considerations for a New Gen-
eration of Protocols SIGCOMM '90 Symposium "Communications Architec-
tures and Protocols", Philadelphia, Pennsyslvania, Sep. 1990, pp. 200-208.

[4] R.L. Cruz: A Calculus for Network Delay, Part I: Network Elements in Iso-
lation. IEEE Transactions on Information Theory, Vol. 37, No. 1, January
1991.

[5] D. Hehmann, R.G. Herrtwich, R. Steinmetz: Creating HeiTS: Objectives of the
Heidelberg High-Speed Transport System. GI-Jahrestagung, Darmstadt, Oct.
1991.

[6] R. G. Herrtwich, R Nagarajan, C. Vogt: Guaranteed-Performance Multimedia
Communication Using ST-II Over Token Ring. Submitted for publication.

42

[7] International Standards Organisation: International Standard 8072, Information
Processing Systems - Open Systems Interconnection - Transport Service Deft-
nition. 1986.

[8] International Standards Organisation: International Standard 8073, Information
Processing Systems - Open Systems Interconnection - Connection-Oriented
Transport Protocol specification, 1986.

[9] N. Luttenberger, R. v. Stieglitz: Performance Evaluation of a Communication
Subsystem Prototype for Broadband ISDN. IEEE Workshop on the Future
Trends of Distributed Computing Systems, Cairo, Sep. 1990.

[10] R. Steinmetz, R. Heite, J. Riickert, B. Sch6ner; Compound Multimedia Obiects
- Integration into Network and Operating Systems. International Workshop on
Network and Operating System Support for Digital Audio and Video, Interna-
tional Computer Science Institute (ICSI), Berkeley, Nov. 1990.

[1 1] D. L. Tennenhouse: Layered Multiplexing Considered Harmful. In: H. Rudin,
R. Williamson (Eds.): Protocols for High-Speed Networks, Elsevier (North-
Holland), 1989.

[12] C. Topolcic (Ed.): Experimental Internet Stream Protocol, Version 2 (ST-II).
Internet Request for Comment 1190, Oct. 1990o

43

4L
I
I i~i!iiiiiiii!!ii!iiiiii!i!!iiii~!i!i~i!ii~iiiiiiiii~i!i~iiiiiiiiiiiiiiiiiiiiii~iiiiiiiiii~iiii~iiiiiiiiiiiiiiiiiiii~i~J~1

i!iiiiii.~.ii~i~ii~iiiiii~ii~i~i~iiii!!~iiii!i!~i!i!~!iii~i~!iii!i~iiii!i~iiii!iii.~..~i!ii!i!ii!
iiii~ Ts iiiiiiiii[RMs liiiiiiiii ~ iiiili
::i::::::J:~ ::: ::::::::::::::::::::::::::::::::::

!

| , ~ , . . , ' - ' - ~ . ~ ~ I

| . . , ~ 1 7 6 1 7 6 , ~ |

i I r ~ - r - " �9 � 9 i

' ,'.'.'.'.'.'.~176 ~
' "~:::: ""t

I DD ~ "" I I I ~176

Application
Ueer

UHr

Kernel

Figure 1. HeiTS: Archi tec ture

44

Buffer
Descriptor

~:o:~~~176176176

[F-l-.mpt~ ~-Data ~-~,r~y)
Figure 2. BMS: Buffers and Fragments

Chief

ts_open sap (MMSAP, . . . , @ts_conn_ind, @ts_disc_ind, ...)
tsopen_sap (MMSAP, ...)
ts conn req (MMSAP, Employeelist,

{error_indication, 1.4 Mbps, 25 SDUs per second, 258 msec constant delay},
@ts conn_conf, ...)

>ts conn_ind (...)
tsSonnrsp (. . . , @ts_data_ind, ...)

>ts corm conf (. . .)
ts_data..~eq (. . . , @first_picture_data)

>ts_data_ind (,..)

tsdtsc_req (...)

tsclose_sap (MMSAP)
>tsdisc_ind (...)

Figure 3. Unidirectional Live Distribution of Compressed TV

