
Priority Consistency in Protocol Architectures

Clifford W. Mercer and Hideyuki Tokuda
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
{cwm,hxt}@cs.cmu.edu

Abstract

The protocol processing software of a multimedia operating system must provide fast
response time and predictable delays for time-constrained data streams like digital audio
and video streams. This paper describes several different techniques for scheduling the
protocol processing of messages. These techniques are analyzed and their (simulated)
performance compared using various metrics. One of these metrics is the priority inversion
factor which provides a way of quantifying priority inversion in the system. Protocol
processing time and context switch time are given as parameters in the simulations, and we
present guidelines for choosing between the message scheduling techniques based on the
ratio of protocol processing time to context switch time for a given system.

1 Introduction

A continuous media operating system must be highly preemptable so that priority inversion
(the situation where a high priority activity is delayed by the execution of a lower priority
activity) can be minimized. This provides good response time for high priority activities and
better adherence to the priority structure defined by the system designer. Commercial real-time
operating systems guarantee fast response time by structuring the kernel in a way that is highly
preemptable. For example, if the scheduler is required to search a list of ready processes in
order to make a scheduling decision, interrupts must be disabled to preserve the invariants of
the list. But if the list is long, the scheduler may delay pending interrupts for a time. To avoid
this problem, the search may be broken up into pieces to allow pending interrupts to be serviced
at appropriate points during the course of the search. Designing a high degree of preemptability
into a simple uniprocessor system is relatively easy, but the problem becomes more difficult in

This research was supported in part by the U.S. Naval Ocean Systems Center under contract number N66001-
87-C-0155, by the Office of Naval Research under contract number N00014-84-K-0734, by the Federal Systems
Division of IBM Corporation under University Agreement YA-278067, and by the SONY Corporation. The views
and conclusions contained in this document are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of NOSC, ONR, IBM, SONY, or the U.S. Government.

23

the context of a distributed environment where network devices must be handled and protocols
must be executed.

In this position paper, we describe our on-going study of various structures for protocol
processing software where we concentrate on the preemptability properties and efficiency of the
techniques. We first describe the problem with current techniques used in network operating
systems, and then we identify several techniques which vary in degree of preemptability and in
efficiency. We introduce a metric for quantifying the priority inversion in a system, and we use
this to compare the various techniques.

2 Protocol Processing Techniques

The techniques we consider in our study range from a method where protocol processing is
done at a non-preemptable software interrupt level (a priority level higher than any user process
but lower than the hardware interrupt level) to a method where prioritized, preemptable threads
perform the protocol processing. We consider several techniques between these two extremes
and attempt to identify the degree of preemptability that is required to service what we think
might be a typical continuous media workload. We start with the software interrupt technique
(SOFTINT) used in BSD4.3 in which priority inversion arises as a result of the FIFO queueing
of messages as well as the non-preemptable nature of the software interrupt. Then we consider
a single-threaded technique (T1F) where the thread executes at the highest priority in the system
and the messages are again queued in FIFO order. This gives us the same basic characteristics
except that there is some overhead in going to a threaded approach. The single-threaded
technique with priority queueing allows us to evaluate the performance of the priority message
queueing with a non-preemptable service which is easier to implement. This technique gives
rise to priority inversion from the non-preemptability of the service, but the priority inversion
due to queueing is eliminated. The problem with these approaches is that if the protocol thread
is running at the highest priority in the system, low priority messages will be serviced at the
expense of high priority local activity. So we consider a single-threaded technique where the
priority of the thread is inherited (based on some mapping of message priority to thread priority)
from the priority of the message (T1PI); i.e. the priority of the thread is low when servicing
a low priority message. Of course, if a high priority message arrives while the low priority
message is being serviced, that high priority message may have to wait for any medium priority
threads which preempted the protocol thread (at low priority). This is another case of priority
inversion. To solve this problem, we use priority "bumping" to increase the priority of the
protocol thread when a high priority message is enqueued (T1PIB).

Finally, we consider two additional techniques for multi-threaded protocol engines which
may have any number of threads; aside from the differences in these techniques, the number
of threads has important implications for the performance and predictability as well. The two
techniques differ in their method of assigning priorities to threads and their method of matching
incoming messages to threads. The first technique assigns a fixed priority to each thread and
queues incoming messages based on a match between the message priority and the thread
priority. In the second technique, the priority changes dynamically depending on the priority
of the message being processed. This technique is an extension of the single-threaded priority
inheritance technique mentioned above, and the important issue is how to allocate threads to

24

incoming messages.
In our previous work [2, 9], we determined that the prioritized multi-threaded protocol

processing model gives better schedulability (by means of a higher degree of preemptability)
than the software interrupt technique employed in the 4.3BSD system. And furthermore, this
increase in schedulability costs only about 10% in additional overhead. The effects can be seen
in actual applications [8] as well. However, this earlier work did not shed any light on the
relative importance of associating priorities with messages vs. using preemptable workers for
the protocol processing. The more recent work [4] gives a better indication of the performance
implications of these techniques for a variety of different types of computation including dis-
tributed continuous media streams, local continuous media computations, background traffic on
the network, and low priority activities on the local host.

We evaluated the techniques by simulating a task set where tasks send audio streams across
the network. The tasks are:

�9 1 16-bit audio task at high priority (20 ms period),

�9 1 8-bit audio task at medium priority (40 ms period),

�9 1 high priority local computation (20 ms period) and

�9 n low priority tasks (100 ms period).

The value n is a background load parameter, a larger n indicates more background load. Figure 1
shows the task set. The 16-bit audio stream is generated by rl and received by r2. The 8-bit audio
stream is sent from r3 to r4. There is a local computation, rs, and the background messages go
from r6 to fT. These two tasks are replicated n times, and this replication determines the size of
the background load. It is also important to note that the periodic background activity is bursty;
measuring the performance of the techniques under strenuous conditions is our objective. The
scheduling of the activities on the machine labeled PCPU4 is our main interest.

An important consideration in comparing these techniques is the ratio of protocol processing
time to context switch overhead. Intuitively, a large ratio would indicate that preemption should
be used to reduce the effects of priority inversion, and a small ratio would mean that preemption
would be detrimental to efficient completion of the protocol processing. Our convention for
describing the ratio is to use the one-way protocol processing time and the thread context
switch time. In our simulation studies, we found that for a protocol processing time to context
switch time ratio of 5-to- 1 or 10-to- 1, preempting protocol processing to avoid priority inversion
makes sense. With a ratio of 2-to-1 or 1-to-1, however, the simulation showed that it is not
worth preempting the protocol processing.

The table shows the protocol processing time and context switch time for two operating
systems we are concerned with. The numbers are based on RPC protocol performance where
we measure the round-trip response time. From this, we conclude that for systems such as ARTS
[7] where the ratio is about 20-to- 1 (using a one-way protocol processing time of about 4500 #s),
the multi-threadedmodel is appropriate. Systems such as the x-kernel [1], with a ratio of about
50-to- 1 could also benefit from this approach. For protocol processing engines implemented in
hardware [5], however, the ratio may be more like 1-to-1, and so non-preemptable processing
is appropriate in this case.

25

Operating System Time
ARTS

context switch time 260 #s
protocol processing time (RPC) 9000 #s

x-kernel
context switch time 38 #s
protocol processing time (RPC) 4000 #s

Table 1: Operating System Timing Measurements

3 Measuring the "Degree of Preemptability"

In evaluating the performance of the techniques in our simulation studies, we use several
traditional metrics, and we introduced a new measure as well. We measure the mean and
variance for the response times of the simulated activities, and we count the missed deadlines
for the time-constrained, periodic continuous media activities.

We have introduced [4] a new metric which we call the priority inversion factor to measure
the degree of preemptability in a system. Until this work, there was no way to describe the level
of preemptability in a system except by specifying bounds on interrupt response time which is
a very limited way to measure this effect. Interrupt response time, for example, does not give
any indication of priority inversion in lower priority activities where hardware interrupts are not
involved.

This priority inversion factor is a utilization-based method of measuring the preemptability.
Utilization is the fraction of time during some interval that the processor was actually in use.
During the time that the processor is not idle, it will be running some activity which is hopefully
the highest priority activity available in the system. It is possible, however, that the running
activity is not the highest priority (ready) activity, i.e. the system is suffering from priority
inversion. To find the priority inversion factor, we consider only the time during which the
processor is not idle, and we define the priority inversion factor to be the fraction of this time
that the wrong activity is running. That is, the priority inversion factor is the time during which
some priority inversion occurs divided by the time during which the processor is active. The
product of the priority inversion factor and the total utilization is called the priority inverted
utilization.

In order to illustrate this measure, we consider two systems which we simulated: one uses
a single-threaded protocol processing engine with FIFO queueing and the other uses a multi-
threaded engine with priority queueing. Furthermore, the multi-threaded engine has one thread
for each message priority level in the system, and context switch time is taken to be zero, just
to see what happens when preempting is free. We put the periodic task set described above on
each system and measured the utilization and priority inverted utilization. Figure 2 shows the
measured utilizations from the single-threaded case (T1F). The total utilization is given by the
solid line; the priority inverted utilization is given by the broken line. In this case the priority
inverted utilization is quite large compared with total utilization.

In Figure 3, we show the utilization for the W4P case. The total utilization is again given by

26

the solid line, but the priority inverted utilization is zero. This is because each message priority
has its own thread and the context switch time (a non-preemptable critical region in the system)
is zero.

The idea of quantifying the predictability of a task set comes from real-time scheduling
theory. The schedulable bound [3] provideS a numerical measure of the schedulability of a task
set. If a task set contains independent, periodic tasks with fixed computation times and if the
utilization of a task set is less that the schedulable bound, then no deadlines will be missed; if
the utilization is greater than the schedulable bound, no guarantees can be made. Furthermore,
if these tasks are allowed to contain shared critical regions, the schedulable bound is effectively
reduced, admitting fewer task sets [6]. And the more priority inversion is associated with this
resource sharing, the more the schedulable bound is reduced. Thus, priority inversion adversely
affects the schedulable bound, and quantifying the priority inversion for comparison among
competing techniques is therefore a reasonable way to evaluate the predictability of the system.

In our simulation study, the priority inversion factor observed for the T1PI, T2P, and T4P
techniques ranged from .20 for the protocol processing time to context switch time ratio of 20-1
to .06 for a ratio of 1-1. For the T1F and T1P techniques, the priority inversion factor increases
linearly (with the size of the badkground spike) for a ratio of 20-1, but the factor is constant at
about .06 for the case where the ratio is 1-1.

4 Conclusion

The simulation results we have obtained [4] indicate that the method for structuring the protocol
processing software should be chosen based on the ratio of protocol processing time to context
switch time. This choice affects the predictability of continuous media streams on the network
as well as the performance of local computations on each host in the system. And the timing
characteristics of current operating systems indicate that these systems can benefit from the use
of multi-threaded protocol engines. The priority inversion factor provides a way to measure the
schedulability of a particular technique and allows us to evaluate the relative performance of
the techniques.

References

[1] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture for Implementing
Network Protocols. IEEE Transactions on Software Engineering, January 1991.

[2] Y. Ishikawa, H. Tokuda, and C. W. Mercer. Priority Inversion in Network ProtocolModule.
Proceedings of 1989 National Conference of the Japan Society for Software Science and
Technology, October 1989.

[3] C.L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real
Time Environment. JACM, 20(1):46-61, 1973.

[4] C.W. Mercer and H. Tokuda. An Evaluation of Priority Consistency in Protocol Architec-
tures. In Proceedings of the IEEE Conference on Local Area Networks, October 1991.

27

[5] Protocol Engines, Inc., Santa Barbara, CA. XTP ProtocolDefinition, Revision 35, Septem-
ber 1990. PE190-120.

[6] L. Sha, R. Rajkumar, and J. E Lehoczky. Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. IEEE Transactions on Computers, 39(9), September 1990.

[7] H. Tokuda and C. W. Mercer. ARTS: A Distributed Real-Time Kernel. ACM Operating
Systems Review, 23(3), July 1989.

[8] H. Tokuda, C. W. Mercer, and S. E. Breach. The Impact of Priority Inversion on Continuous
Media Applications. In Proceedings of the International Workshop on Network Operating
System Support for Digital Audio and Video, November 1990. Available in International
Computer Science Institute Techical Report TR-90-062.

[9] H. Tokuda, C. W. Mercer, Y. Ishikawa, and T. E. Marchok. Priority Inversions in Real-Time
Communication. In Proceedings of l Oth IEEE Real-Time Systems Symposium, December
1989.

28

PCPU4 PCPUI

t..
. . . .

PCPU3 PCPU2

Figu re 1: S i m u l a t e d Task Set

~1"~176 ::1 I iil ~
0 .90M, . : , I i ' ; , , I h:',Z.q I , ; : : l i I i I { I I

H":I ?""1 ?,,::!iil ? iiiil " 0.80 ,,::, n ,:.: n :"ii: o ol[ll/../ II 06O : 1:. :1:, n
0.50 , " ' ', "" ' '

0.40 : " '

i !if ill Ili:
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Time

F igure 2: Ut i l i za t ion (T1F, 2000-0)

29

1.00

0.90 i

0.80
0.70
0.60

0.50
0.40
0.30
0.20
0.10

0.00

m

!

!

0.10 0.20
I I I

0.30 0.40 0.50 0.60 0.70

Figure 3: Utilization (T4P, 2000-0)

0.80
I

0.9O 1.00
Time

