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Abstract 

The protocol processing software of a multimedia operating system must provide fast 
response time and predictable delays for time-constrained data streams like digital audio 
and video streams. This paper describes several different techniques for scheduling the 
protocol processing of messages. These techniques are analyzed and their (simulated) 
performance compared using various metrics. One of these metrics is the priority inversion 
factor which provides a way of quantifying priority inversion in the system. Protocol 
processing time and context switch time are given as parameters in the simulations, and we 
present guidelines for choosing between the message scheduling techniques based on the 
ratio of protocol processing time to context switch time for a given system. 

1 Introduction 

A continuous media operating system must be highly preemptable so that priority inversion 
(the situation where a high priority activity is delayed by the execution of a lower priority 
activity) can be minimized. This provides good response time for high priority activities and 
better adherence to the priority structure defined by the system designer. Commercial real-time 
operating systems guarantee fast response time by structuring the kernel in a way that is highly 
preemptable. For example, if the scheduler is required to search a list of ready processes in 
order to make a scheduling decision, interrupts must be disabled to preserve the invariants of 
the list. But if the list is long, the scheduler may delay pending interrupts for a time. To avoid 
this problem, the search may be broken up into pieces to allow pending interrupts to be serviced 
at appropriate points during the course of the search. Designing a high degree of preemptability 
into a simple uniprocessor system is relatively easy, but the problem becomes more difficult in 
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the context of a distributed environment where network devices must be handled and protocols 
must be executed. 

In this position paper, we describe our on-going study of various structures for protocol 
processing software where we concentrate on the preemptability properties and efficiency of the 
techniques. We first describe the problem with current techniques used in network operating 
systems, and then we identify several techniques which vary in degree of preemptability and in 
efficiency. We introduce a metric for quantifying the priority inversion in a system, and we use 
this to compare the various techniques. 

2 Protocol Processing Techniques 

The techniques we consider in our study range from a method where protocol processing is 
done at a non-preemptable software interrupt level (a priority level higher than any user process 
but lower than the hardware interrupt level) to a method where prioritized, preemptable threads 
perform the protocol processing. We consider several techniques between these two extremes 
and attempt to identify the degree of preemptability that is required to service what we think 
might be a typical continuous media workload. We start with the software interrupt technique 
(SOFTINT) used in BSD4.3 in which priority inversion arises as a result of the FIFO queueing 
of messages as well as the non-preemptable nature of the software interrupt. Then we consider 
a single-threaded technique (T1F) where the thread executes at the highest priority in the system 
and the messages are again queued in FIFO order. This gives us the same basic characteristics 
except that there is some overhead in going to a threaded approach. The single-threaded 
technique with priority queueing allows us to evaluate the performance of the priority message 
queueing with a non-preemptable service which is easier to implement. This technique gives 
rise to priority inversion from the non-preemptability of the service, but the priority inversion 
due to queueing is eliminated. The problem with these approaches is that if the protocol thread 
is running at the highest priority in the system, low priority messages will be serviced at the 
expense of high priority local activity. So we consider a single-threaded technique where the 
priority of the thread is inherited (based on some mapping of message priority to thread priority) 
from the priority of the message (T1PI); i.e. the priority of the thread is low when servicing 
a low priority message. Of course, if a high priority message arrives while the low priority 
message is being serviced, that high priority message may have to wait for any medium priority 
threads which preempted the protocol thread (at low priority). This is another case of priority 
inversion. To solve this problem, we use priority "bumping" to increase the priority of the 
protocol thread when a high priority message is enqueued (T1PIB). 

Finally, we consider two additional techniques for multi-threaded protocol engines which 
may have any number of threads; aside from the differences in these techniques, the number 
of threads has important implications for the performance and predictability as well. The two 
techniques differ in their method of assigning priorities to threads and their method of matching 
incoming messages to threads. The first technique assigns a fixed priority to each thread and 
queues incoming messages based on a match between the message priority and the thread 
priority. In the second technique, the priority changes dynamically depending on the priority 
of the message being processed. This technique is an extension of the single-threaded priority 
inheritance technique mentioned above, and the important issue is how to allocate threads to 
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incoming messages. 
In our previous work [2, 9], we determined that the prioritized multi-threaded protocol 

processing model gives better schedulability (by means of a higher degree of preemptability) 
than the software interrupt technique employed in the 4.3BSD system. And furthermore, this 
increase in schedulability costs only about 10% in additional overhead. The effects can be seen 
in actual applications [8] as well. However, this earlier work did not shed any light on the 
relative importance of associating priorities with messages vs. using preemptable workers for 
the protocol processing. The more recent work [4] gives a better indication of the performance 
implications of these techniques for a variety of different types of computation including dis- 
tributed continuous media streams, local continuous media computations, background traffic on 
the network, and low priority activities on the local host. 

We evaluated the techniques by simulating a task set where tasks send audio streams across 
the network. The tasks are: 

�9 1 16-bit audio task at high priority (20 ms period), 

�9 1 8-bit audio task at medium priority (40 ms period), 

�9 1 high priority local computation (20 ms period) and 

�9 n low priority tasks (100 ms period). 

The value n is a background load parameter, a larger n indicates more background load. Figure 1 
shows the task set. The 16-bit audio stream is generated by rl and received by r2. The 8-bit audio 
stream is sent from r3 to r4. There is a local computation, rs, and the background messages go 
from r6 to fT. These two tasks are replicated n times, and this replication determines the size of 
the background load. It is also important to note that the periodic background activity is bursty; 
measuring the performance of the techniques under strenuous conditions is our objective. The 
scheduling of the activities on the machine labeled PCPU4 is our main interest. 

An important consideration in comparing these techniques is the ratio of protocol processing 
time to context switch overhead. Intuitively, a large ratio would indicate that preemption should 
be used to reduce the effects of priority inversion, and a small ratio would mean that preemption 
would be detrimental to efficient completion of the protocol processing. Our convention for 
describing the ratio is to use the one-way protocol processing time and the thread context 
switch time. In our simulation studies, we found that for a protocol processing time to context 
switch time ratio of 5-to- 1 or 10-to- 1, preempting protocol processing to avoid priority inversion 
makes sense. With a ratio of 2-to-1 or 1-to-1, however, the simulation showed that it is not 
worth preempting the protocol processing. 

The table shows the protocol processing time and context switch time for two operating 
systems we are concerned with. The numbers are based on RPC protocol performance where 
we measure the round-trip response time. From this, we conclude that for systems such as ARTS 
[7] where the ratio is about 20-to- 1 (using a one-way protocol processing time of about 4500 #s), 
the multi-threadedmodel is appropriate. Systems such as the x-kernel [1], with a ratio of about 
50-to- 1 could also benefit from this approach. For protocol processing engines implemented in 
hardware [5], however, the ratio may be more like 1-to-1, and so non-preemptable processing 
is appropriate in this case. 
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Operating System Time 
ARTS 

context switch time 260 #s 
protocol processing time (RPC) 9000 #s 

x-kernel 
context switch time 38 #s 
protocol processing time (RPC) 4000 #s 

Table 1: Operating System Timing Measurements 

3 Measuring the "Degree of Preemptability" 

In evaluating the performance of the techniques in our simulation studies, we use several 
traditional metrics, and we introduced a new measure as well. We measure the mean and 
variance for the response times of the simulated activities, and we count the missed deadlines 
for the time-constrained, periodic continuous media activities. 

We have introduced [4] a new metric which we call the priority inversion factor to measure 
the degree of preemptability in a system. Until this work, there was no way to describe the level 
of preemptability in a system except by specifying bounds on interrupt response time which is 
a very limited way to measure this effect. Interrupt response time, for example, does not give 
any indication of priority inversion in lower priority activities where hardware interrupts are not 
involved. 

This priority inversion factor is a utilization-based method of measuring the preemptability. 
Utilization is the fraction of time during some interval that the processor was actually in use. 
During the time that the processor is not idle, it will be running some activity which is hopefully 
the highest priority activity available in the system. It is possible, however, that the running 
activity is not the highest priority (ready) activity, i.e. the system is suffering from priority 
inversion. To find the priority inversion factor, we consider only the time during which the 
processor is not idle, and we define the priority inversion factor to be the fraction of this time 
that the wrong activity is running. That is, the priority inversion factor is the time during which 
some priority inversion occurs divided by the time during which the processor is active. The 
product of the priority inversion factor and the total utilization is called the priority inverted 
utilization. 

In order to illustrate this measure, we consider two systems which we simulated: one uses 
a single-threaded protocol processing engine with FIFO queueing and the other uses a multi- 
threaded engine with priority queueing. Furthermore, the multi-threaded engine has one thread 
for each message priority level in the system, and context switch time is taken to be zero, just 
to see what happens when preempting is free. We put the periodic task set described above on 
each system and measured the utilization and priority inverted utilization. Figure 2 shows the 
measured utilizations from the single-threaded case (T1F). The total utilization is given by the 
solid line; the priority inverted utilization is given by the broken line. In this case the priority 
inverted utilization is quite large compared with total utilization. 

In Figure 3, we show the utilization for the W4P case. The total utilization is again given by 
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the solid line, but the priority inverted utilization is zero. This is because each message priority 
has its own thread and the context switch time (a non-preemptable critical region in the system) 
is zero. 

The idea of quantifying the predictability of a task set comes from real-time scheduling 
theory. The schedulable bound [3] provideS a numerical measure of the schedulability of a task 
set. If a task set contains independent, periodic tasks with fixed computation times and if the 
utilization of a task set is less that the schedulable bound, then no deadlines will be missed; if 
the utilization is greater than the schedulable bound, no guarantees can be made. Furthermore, 
if these tasks are allowed to contain shared critical regions, the schedulable bound is effectively 
reduced, admitting fewer task sets [6]. And the more priority inversion is associated with this 
resource sharing, the more the schedulable bound is reduced. Thus, priority inversion adversely 
affects the schedulable bound, and quantifying the priority inversion for comparison among 
competing techniques is therefore a reasonable way to evaluate the predictability of the system. 

In our simulation study, the priority inversion factor observed for the T1PI, T2P, and T4P 
techniques ranged from .20 for the protocol processing time to context switch time ratio of 20-1 
to .06 for a ratio of 1-1. For the T1F and T1P techniques, the priority inversion factor increases 
linearly (with the size of the badkground spike) for a ratio of 20-1, but the factor is constant at 
about .06 for the case where the ratio is 1-1. 

4 Conclusion 

The simulation results we have obtained [4] indicate that the method for structuring the protocol 
processing software should be chosen based on the ratio of protocol processing time to context 
switch time. This choice affects the predictability of continuous media streams on the network 
as well as the performance of local computations on each host in the system. And the timing 
characteristics of current operating systems indicate that these systems can benefit from the use 
of multi-threaded protocol engines. The priority inversion factor provides a way to measure the 
schedulability of a particular technique and allows us to evaluate the relative performance of 
the techniques. 
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Figure 3: Utilization (T4P, 2000-0) 
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