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The papers presented in Session VI dealt with four very different multimedia projects 
which are summarized in chronological order. 

The first paper was "Design Considerations for a Multimedia Network Distribution 
Center" by Riccardo Gusella of Hewlett-Packard Laboratories and Massimo 
Maresca from the University of Genoa. In his talk, Massimo examined the issues 
involved in the design of a central facility called the Multimedia Network Distrib- 
ution Center, which manages a number of different multimedia applications. The 
design revolved around issues of asymmetric communication, support for heteroge- 
neous networks, adaptability to changes in networks or host loads as well as system 
integration. 

Experiments were done on an Ethernet network with SUN hosts running UNIX, 
including the TCP/IP protocol set. Video frames were in the order of 100 Kbytes. 
These frames were stored in compressed form on a mass storage system or can be 
taken from an uncompressed source and then compressed by special hardware before 
being sent out onto the network. A compression factor of 15 was used. This produced 
a required throughput of 200 Kbytes/s for video conferencing applications. Per- 
formance results were presented for memory copying, TCP processing, UDP proc- 
essing, decompression, visualization directly to the frame buffer and visualization 
through the X Server. 

"Next Generation Network and Operating System Requirements for Continuous 
Time Media" was presented by Scott Stevens from Carnegie-Mellon University. 
Scott highlighted the requirements for building complex multimedia applications in 
which different elements of the application can be combined in various ways. The 
proposed technique involves using fine-grain elements and a rule-based system with 
a facility to specify how these elements should be combined and displayed. 

Other mechanisms are used to deal with the scaling of images, synchronization, etc. 
It was pointed out that in order to build such systems a more abstract method of 
defining the multimedia elements is needed which allows different elements to be 
readily connected together. Synchronization at the frame level was also proposed to 
allow users to specify additional responses based on a given action. 

The paper "Dynamicity Issues in Broadband Network Computing," joint work 
with Jose Diaz-Gonzalez, Russell Sasnett and Vincent Phuah, was presented by 
Steven Gutfreund from GTE Laboratories. It looks at dynamicity issues for multi- 
media applications in a distributed environment. These issues include the movement 
of applications from one network to another, the migration of active applications, 
dynamic changes in network topology and the ability to assemble applications from 
a number of different sources. 
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The SHOWME application is a multimedia environment which deals with these 
issues by defining a uniform homogeneous term called an Element which can be used 
to describe different multimedia entities. The binding of Elements is handled by a 
Resource Dispatcher which provides a tuple space, similar to Linda. Tuples are used 
to control the multimedia facilities specified by different elements. The system sup- 
ports pattern-directed binding in which the binding between elements occurs at 
runtime. 

The last paper of the session came from Ralf Cordes of Telenorma ("Managing 
Multimedia Sessions on a Private Broadband Communication System," Ralf Cordes, 
Dieter Wybranietz, Rolf Vautz). This paper addresses the problems of multimedia 
applications in which connections to different servers are dynamically changing de- 
pending on the interactions of one or more clients. To provide these facilities, software 
systems must be geared to support a number of new features, including in-call band- 
width modification, quality-of-service negotiation, integration of servers, transaction- 
oriented protocols and object-oriented structuring of generic applications of service 
elements. 

Object classes are used to define composite objects called Pages and monomedial 
objects called Particles as well as ways for linking and anchoring objects and specify- 
ing telecommunication service elements. Transaction support is provided via the use 
of an ATM network, support for multipoint communications and the use of fine- 
grained set-up and roll-back facilities. An advanced distributed communication sys- 
tem for the customer premises market was also proposed. This network will also 
facilitate the use of several network interfaces and is based on FDDI-II. 
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ABSTRACT 

In this paper we consider a distributed system in which a central facility, 
called a Multimedia Network Distribution Center, serves a number of clients 
and handles simultaneously different multimedia applications. These applica- 
tions include digital TV distribution, interactive TV (consisting of hyper- 
media techniques applied to TV), as well as collaborative applications such as 
virtual distributed classrooms. Clients are allowed to request services 
independently of each other, or groups of clients can make joint service 
requests. 

In order to satisfy a variety of applications and to support the largest possible 
number of clients, a server must be able to deal with a heterogeneous environ- 
ment, in which clients range from small PCs to powerful workstations with or 
without special hardware for compression/decompression and with different 
visualization throughput. Moreover, the server must be able to handle shift- 
ing network load conditions and to offer concurrent synchronous and asyn- 
chronous access. 

The server is connected to a set of devices (either live or playback) that gen- 
erate digital video and audio streams under its control and to a set of networks 
and links used to transport the streams to the clients. We define the func- 
tionality and the performance requirements for an MNDC. To verify the vali- 
dity of the MNDC functionality, we have built and measured a prototype sys- 
tem and taken performance measurements using applications that moved 
video and audio data across a local-area network. 

I.  INTRODUCTION 

A Multimedia Network Distribution Center (MNDC) is a facility in a distributed system 
that can be used to deliver multimedia information to a number of clients simultaneously. 
Because communication of multimedia information is much more demanding than data 
communication-not only are there real-time and synchronization issues, but there are also 
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new error modes, and more demanding quality-of-service requirements-the systems at the 
server and client ends must be closely coordinated. We can think of two classes of applica- 
tions that can be categorized as MNDCs. 

The first class is characterized by the one-to-one communication paradigm. Several 
users of this class of applications (clients) can be active simultaneously, but they are indepen- 
dent of each other and each one of them opens a point-to-point, bidirectional connection with 
the MNDC. An example of an application in this class is interactive video, in which client 
viewers of stored documentaries can choose to follow one of several different paths of the 
documentary at a number of predetermined points during playback. The means of making 
the selection-a typed command, a button click, or a voice command-is a user interface ques- 
tion, which we will not address here; we will simply assume that the user's choice is signaled, 
using the return path of the connection, to the server, which will then begin to deliver the new 
documentary segment to the user. A second example of an application that requires a one- 
to-one communication paradigm is an MNDC that provides multimedia database access. In 
this type of database, queries can return text, images, sounds, video clips, and other types of 
timed data [3]. It is different from the previous application in that the focus is on queries, 
making the interaction between client and server much more frequent. 

The second class of applications that can be classified as MNDC is characterized by the 
one-to-many communication paradigm. In this case, several clients are concurrently active 
and the server, possibly on the basis of input provided by the clients, decides autonomously 
on the sequence of the information delivered to the clients. A simple example of this class of 
applications is video dislribution of the type available today over CATV networks; in this 
application the return communication channels from the clients to the server are never used: 
to change video channel clients listen to different port numbers. A second example is 
represented by a teaching system in which the instructor is in control of the server, which in 
turn sends clients (students) lecture information. Occasionally, one of the clients may inter- 
rupt the lecture flow by asking a question. Rather than providing full physical connectivity 
and connections to all other clients, it is the server that relays the question to the other clients. 
The slight additional delay is a small price to pay in return for the great simplification in sys- 
tem design. (This is similar to what happens in large conferences when a question from the 
audience is repeated by the speaker before he or she provides the answer.) A third example 
of an application that fits this communication structure is a medical application in which the 
server handles the instrumentation in an operating room. This instrumentation may comprise 
a set of cameras directed to an ongoing surgical operation as well as a number of sensors 
monitoring blood pressure, heart and brain activity and other vital signs. The server directs 
this multimedia information to a number of medical students and a few specialists, whose 
task is to supervise the operation and help the surgeon during its most critical phases. The 
specialists may volunteer a comment, or they may be asked questions from the operating 
room. In either case, the server will relay the data to the various output lines as we have dis- 
cussed in the previous example. 

An MNDC may transmit live data, recorded data or a combination of the two within the 
same application. The video distribution and database applications are examples of systems 
that transmit recorded data. The medical application is an example of live data transmission; 
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the teaching system may transmit a combination of both types of data. This distinction is 
important as we will see that live and recorded data will be handled differently by the net- 
work. 

2. GENERAL DESIGN PRINCIPLES 

Before discussing specific design requirements for an MNDC, it is important to consider 
several fundamental characteristics of multimedia data transmission that make the design of 
an MNDC different from that of traditional data communication systems. First of all, the 
MNDC transports mainly continuous media data, which has two key properties: it consists of 
a sequence of messages sent at a fixed rate, and the quality of its presentation can be adapted 
to the varying load conditions of the network and of the hosts. In addition, the MNDC is 
based on an asymmetric connection between one server (or in some circumstances a limited 
number of servers) and a set of clients; in contrast, in other multimedia distributed systems 
connections among the hosts may be more uniformly distributed. 

The asymmetric structure of the MNDC creates certain requirements for hosts and net- 
work. The server host must have enough power to handle a large number of continuous 
media channels simultaneously. One means of obtaining this power is to use special 
hardware devices and file systems for storing/retrieving continuous media information in real 
time and special hardware devices for compression/decompression. Client hosts, instead, 
need not be high-performance, as they will be handling a smaller number of channels: clients 
may be simple PCs or workstations with no special hardware. The network should be struc- 
tured in a hierarchical fashion so that links closer to the server have greater bandwidth than 
links closer to the clients. 

One common issue in the design of distributed multimedia applications, which arises in 
the MNDC context as well, is how the network can provide real-time communication. One 
approach is based on the reservation of the network and computing resources during the con- 
nection establishment in order to guarantee the performance [2], while another approach is 
based on the development of flexible communication systems, in which the emphasis is on 
the adaptability of the quality of service to the varying load conditions of the network and of 
the hosts [4]. The MNDC follows this latter philosophy; the only assumption about commun- 
ication management is that the network is able to separate data belonging to different media. 
This ability to distinguish and separate various media is critical because each medium has dif- 
ferent performance parameters and different quality-of-service demands (e.g., audio requires, 
in general, more stringent error handling than video). 

The asymmetric structure allows identifying some specific design goals, which have to 
be met by distributed systems that support an MNDC. Such design goals are listed below. 

1) Heterogeneity: the MNDC must support networks and hosts having different charac- 
teristics, performances and costs. For example, clients of different performance classes 
must be able to receive and present the same video stream simultaneously. The quality 
of the presentation in each client will depend on its capabilities. 

2) Adaptability: the MNDC must be able to adapt the quality of the presentation to load 
variations in the network and the hosts. For example, when the load in a client host 
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grows to the point at which the client no longer can present the frames received at the 
rate they are produced, the client must reduce the quality of the presentation, in a 
manner that will be the least disruptive or perceptible to the viewer. 

3) Integrated approach: the MNDC must handle multimedia data no differently from the 
way it handles regular computer data. Neither special devices for continuous media 
presentation nor special communication channels for continuous media transmission 
should be used. 

3. DESIGN REQUIREMENTS 

The system design requirements of an MNDC involve two sets of issues: first network 
architecture and communication protocols, and second, computer organization and operating 
system architecture to support the multimedia data traffic. Much work is in progress in these 
areas [7], but in this paper we will only address the issues that are relevant to the design of an 
MNDC, and we will start with networking issues. 

While current bus bandwidths are on the order of 100 Mbytes/s and newer, higher- 
parallelism busses promise to be much faster, the networking community is working hard to 
develop large scale networks in the Gbit/s range (equivalent to 128 Mbytes/s) within the next 
several years. Despite the increased capacity possible with such large scale networks, how- 
ever, network bandwidth will still be insufficient for the aggregate traffic that can easily be 
produced by several workstations generating multimedia data such as high-resolution motion 
video. Thus, image compression is necessary to support these applications. 

The most prominent image compression standards, JPEG, MPEG, and H.261, involve 
transform coding techniques [12]. But these algorithms are eomputationally very intensive, 
precluding their implementation by software means if real-time performance is required. 
However, in the case of an MNDC, since it is conceivable that the server will be considerably 
more powerful than client workstations, one could exploit asymmetric compression schemes 
that require a considerable amount of work during compression but could use quick table 
lookup methods for decompression. Alternatively, especially in the case of one-to-many 
communication serving heterogeneous clients, hierarchical or pyramidal compression 
schemes appear very promising. Displaying a rough picture would be quite cheap, and more 
powerful receivers could obtain better images by decoding more and more subbands. 

In our view, multimedia traffic will be transported by general purpose, integrated net- 
works. Because current interact packet switching nodes do not distinguish between various 
types of traffic, temporary congestion in a network segment affects all traffic across the seg- 
ment. Provided that network access of multimedia users is controlled so that the total amount 
of multimedia traffic is always below a certain bound, we claim that it is possible to satisfy 
the real-time properties of multimedia traffic without changing the network in any drastic 
way. We suggest that all that is needed is an appropriate queuing algorithm in the internet- 
work gateways and buffer management in the receiving host. Although a detailed description 
of our network architecture is outside the scope of this paper, one issue-how to map the 
quality-of-service requirements to the services provided by the transport protocols-is of 
major importance to the design of an MNDC. 
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Each gateway will have separate queues for high-priority traffic and low-priority traffic. 
The difference between the two types of queues is primarily in the jitter they introduce in the 
packet delivery process, which could be quite high for low-priority queues. We also assume 
that the network bandwidth will be much higher than the bandwidth required by a single 
conversation, so that transmission can proceed at speeds faster than real time even on lower 
priority queues. 

We have classified the traffic produced by the various applications listed in the Introduc- 
tion as live and playback. Since playback traffic can be transmitted ahead of the time is it 
required by a client, we assign playback traffic to lower-priority queues and use large buffers 
in the receiving clients to correct the jitter introduced by the communication system. This 
arrangement will allow us to reserve the high-priority queues exclusively for live traffic, and, 
assuming that the proportion of the total live traffic is small, we can design a queue service 
discipline that in most cases will produce small delay and small jitter. We believe that this 
kind of network architecture and buffering scheme would produce the performance required 
by multimedia traffic under appropriate traffic conditions. 

The second set of requirements for the design of an MNDC is concerned with computer 
organization and operating system architecture. Since cache memories do not help much 
when the flow of data is from the network interface to the frame buffer memory, a first funda- 
mental problem is to try and avoid data paths that include main memory-by far the slowest 
component in today's workstation architecture: the DECStation 5000/200, the HP 9000/720, 
and the Sun Sparc 2 machines have respectively main memory chips with clock cycles of 100 
ns, 80 ns, and 70 ns, respectively. A related computer organization problem is the position of 
the decompression engine with respect to the frame buffer. We claim that, in order to reduce 
main memory traffic and achieve the highest performance, the two should be next to each 
other, connected through a separate bus. 

Another important issue is how to deal with the skews between the clocks of the server 
and those of the clients. The problem arises because the server and a client produce and con- 
sume data at the same rate, but the respective rates are determined by their own clocks, 
which, running at even slightly different speeds, may in the long run cause queue under- or 
overflows. To quantify the amount of skew, let us assume that clocks diverge no more than 
four seconds over 24 hours and that we transmit 30 frames per second. Then, in 60 minutes 
we may be off, in either direction, of up to five frames. 

One simple way to deal with this problem is to have the operating system synchronize 
the rate of a client's clock with the rate of the clock of the server using algorithms analogous 
to those presented in [6]. The alternative method of letting an application do the resynchroni- 
zation is not optimal because a client may have several application programs running simul- 
taneously, all of which would have to apply the clock transformation on their own. However, 
since a machine may be part of an administrative domain whose clocks are synchronized 
independently of the clock of the MNDC, if the rate of a client's clock is changed, then the 
client must have two clock sources, one for supporting multimedia timed operations, the 
other for the regular OS time services that needs to be synchronized locally. Notice that 
popular time synchronization programs such as n t p  [9] and t i m e d  [5] affect an operating 
system software variable and not the hardware device that UNIX uses to produce interval 
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timer interrupts for user processes requesting them. 

In terms of operating system support other issues are include media synchronization, 
real-time scheduling support, performance. We believe that for these issues the solutions that 
have been proposed for general multimedia systems [1] apply as wetl to MNDCs. 

4. EXPERIMENTS 

To verify the validity of the MNDC design principles stated in Section 2 and to evaluate 
the feasibility and the cost of design solutions meeting the specific MNDC goals and require- 
ments outlined in Sections 2 and 3, we ran certain video and audio distribution experiments 
on an MNDC testhed. In this section we concentrate on describing the video experiment, 
which is the most demanding one in terms of computing and communication throughput. 

The testbed was an Ethemet network connected to a number of different hosts; for our 
experiments, we confined our analysis to Sun hosts. These hosts all run the Unix operating 
system including the TCPAP protocol set. The experiment with full motion video consisted 
of the distribution of sequences of frames of CIF size [8] (352 • 288 8-bit pixels, about 100 
Kbytes). In the reminder of the paper we use the term "frame" to refer to a CIF video frame. 

The MNDC server reads the frames of a video stream from its mass storage or from an 
input device, compresses them and sends them to one client (one-to-one communication) or 
to more clients simultaneously (one-to-many communication) at a speed of 30 f/s (frames per 
second). Considering that a compression factor of 15 produces little degradation (in terms of 
user perception) in video-conference type video sequences, the resulting required throughput 
is about 200 Kbytes/s. The clients receive the frames, absorb the jitter introduced by the net- 
work by synchronizing the stream with a local timer, decompress the frames, and display 
them, either writing them directly to the frame buffer or using the local X window server as a 
virtual display. 

In order to meet the design goals introduced in Section 2, namely heterogeneity and 
adaptability, each client must have control over the quality of the presentation at its site, 
while the server must structure the transmission in order to support a presentation of the best 
possible quality. Because of the need to be flexible and adaptive, the structure of the client 
subsystem is a critical part of an MNDC, and was the main focus of our study, the remainder 
of this section is devoted to the analysis of this issue. 

4.1 BASIC ASSUMPTIONS ON THE EXISTENCE OF A TRANSPORT SERVICE 

We began with the general assumption that there was "good-quality transport service". 
With good-quality transport service we mean that a lightweight connection [11] can be estab- 
lished between the server and the clients. We define lightweight connection to mean that 
routes are chosen at establishment time and kept fixed during the session. Once a lightweight 
connection is established, no error checking need be done on the packet's data segment (we 
accepted some corruption), only rate-based flow control techniques are used (i.e. the receiver 
cannot delay the sender), and no message buffering and reordering is performed. Frames or 
fragments of frames are transmitted in datagrams following the same routes, but neither their 
delivery nor their correctness is guaranteed. 
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As mentioned before, in a multimedia system the network should be able to separate dif- 
ferent media, and schedule the messages of each of them independently. In the experiment, 
however, we waived this requirement and relied on the FCFS-based scheduling techniques of 
the TCP/IP protocol suite, in the current Intemet. In particular, we chose to use the UDP/IP 
protocol, which provides the service closest to the one we desired, offering unreliable 
datagram delivery, as we needed, and in practice also offering ordered datagram delivery (for 
the datagrams that are delivered) in local or low-complexity environments, in which the rout- 
ing is trivial and fixed. 

4.2 MULTI-PROCESS ORGANIZATION 

An MNDC client program could be logically split into three processes, running con- 
currently and asynchronously. The first process, called the receiver process, queues the 
received messages in a FIFO buffer called the receiver queue. The second process, called the 
transformation process, extracts the messages from the receiver queue, does the necessary 
transformations (e.g., decompression, recombination and possibly error correction) and 
copies them to another FIFO buffer, called the presentation queue. The third process, called 
the presentation process, extracts the processed messages from the presentation queue and 
either displays (if video frames) or plays (if audio) the data contained in such messages using 
the proper output drivers. 

Because of the dynamically varying load in the client host, it may happen that at the 
time a new frame is to be presented some of the frames received must be dropped, because it 
is discovered that they are late. Since these frames have been already decompressed, the 
computing power expended on their processing is wasted. 

A two-process structure reduces the chances of such wasted processing; a receiver pro- 
cess receives the incoming frames from the network interface in the receiving buffer, and a 
presentation process checks that the frame is on time and, if it is, does the decompression. 
Some jitter, in the form of delay variation, may be introduced locally at each client, because 
the decompression may not require exactly the same time for each frame and because spend- 
ing a large amount of time in processing the data (the decompression of a frame using the 
scheme described in this section takes about 30 ms in a Sun Spare 2) increases the probability 
fiaat other Unix processes will be served during such period of time. However, our experi- 
ments show that, in terms of user perception, the delay jitter introduced by decompression at 
display time is negligible. 

4.2.1 PROCESS ACTIVATION MECHANISM 

Assuming that the MNDC client subsystem is composed of the concurrent processes 
described above, we must decide how these processes are to be activated. The primary alter- 
natives are the s i g n a l  mechanism, the lightweight process library, and different Unix 
processes. 

We chose to use the s i g n a l  mechanism, which makes it possible to manage asyn- 
chronous events (at a certain minimum granularity). As soon as the client program starts, it 
sets up two different s i g n a l s ,  one to be delivered by the I/O handler at each new frame 
received (S IGIO) and another to be delivered by a local timer at fixed intervals (S IGAL~,I). 
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The receiver process is activated upon receiving a message, while the presentation process is 
activated upon receiving an interrupt from the timer. 

The choice of having the presentation process activated at regular time intervals rather 
than by an I/O signal originated by the presentation device whenever the driver is ready to 
accept new data offers the advantages of uniformity in the treatment of video and audio and 
explicit control, at the user level, over the length of the output buffer. 

4.2.2 SYNCHRONIZATION 

Video frames and/or audio messages must be synchronized in order to be presented at 
the fight time. Each message leaving the server (we use the term message to refer to both 
video frames and audio packets) is assigned an increasing sequence number, which deter- 
mines univocally the relative time (with respect to the beginning of the sequence) at which 
the message is supposed to be presented, according to the expression: 

presentation time = sequencenumber / framerate + start_time 

5. BASIC OPERATIONS 

The experimental ctiem subsystem presented in the previous section, as well as the 
analysis of the type of processing that needs to be performed in the acquisition, decompres- 
sion and presentation of integrated continuous media data, shows that there are a number of 
basic operations that must be performed on each flame by each client, and that depending on 
the performance of these operations in each client host, a different quality of presentation is 

achieved. 

These basic operations are memory copy, protocol processing, decompression and visu- 
alization. We have analyzed the performance of a specific system, a Sun Sparc 2, as a 
representative of the class of the current-generation high-performance workstations, to under- 
stand to which extent such a class of machines is suitable for use as MNDC clients without 
additional hardware. Table 1 shows the results obtained; the performance results are given in 
bytes per second, frames per second if/s) and compressed frames per second (cf/s) assuming a 

compression factor equal to 15. 

TABLE 1. - PERFORMANCE OF BASIC OPERATIONS IN A MNDC CLIENT 

- -  OPERATION -"-~ESIS FRAMES/S COMPRESSED 
FRAMES/S 

9.7 100 _Memory Copy .  
TCP Processing 

_.UDP Processing 
Decompression 
Visualization 
(directly to the Frame Buffer) 
Visualization 
(through the X server) 

4.4 
6.7 
2.8 29 
8.2 85 

3.2 33 

675 
1035 
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The performance of the Memory Copy basic operation was studied by trying a number 
of different techniques (e.g., execution of integer and double precision assignments and use 
of the memcpy ( ) library routine) to copy a memory buffer from one area to another. The 
experiments were done with a buffer of very large size (4 Mbytes) in order to eliminate the 
effect of the cache memory. In fact, continuous-media data processing does not exhibit data 
locality, as each message is processed at most one time (for decompression) and then con- 
sumed by its visualization. Many researchers have recognized this fact and, as a conse- 
quence, there is a wide consensus that the architecture of workstations oriented to multimedia 
data processing must be improved to permit workstation to bypass the cache memory when it 
is not needed. The timing results are given in terms of uncompressed frames per second, 
because obviously this type of data movement accounts for much of the processing time. 

The performance of the Protocol Processing basic operation was studied both for con- 
nection oriented (TCP) and connectionless (UDP) communication. In order to evaluate the 
throughput of TCP/IP and UDP/IP, a communication session was established between two 
processes in the same machine through the loopback interface, so to avoid generating any 
data-link layer traffic. The performance figures are only given in terms of compressed CIF 
frames per second, considering that it is expected that only compressed images travel in the 
network. 

The performance of the Decompression basic operation was studied by adopting a 
space-domain intraframe compression algorithm, up analysis of each frame (only intra-frame 
compression). The reason of this choice is that in a heterogeneous system there may be client 
hosts which are not equipped with special hardware for decompression; these hosts are likely 
to use space domain techniques to decompress in real-time. Our algorithm processes the 
image sequentially in blocks of size 16x16 pixels, according to a quadtree coding scheme 
[10]. For each block, the variance and the mean are computed. If the variance is smaller than 
a prespecified threshold, which controls the compression factor, the entire block is encoded 
using its mean value. Otherwise, the original block is subdivided into four square subblocks 
and the procedure is repeated. The smallest block size of 2x2 pixels is not further subdivided. 
This method does not require floating point computation and can be implemented using a 
recursive program. 

The performance of the Visualization basic operation was studied both considering the 
case in which the frames are copied directly from the main memory to the frame buffer, using 
the library routines made available by SunOS ( p i x r e c t  ( ) ), and the case in which the 
frames are copied to the frame buffer through the X server. In this second case, the X server 
and the client program exchange data using shared memory, in such a way to avoid the over- 
head of interprocess communication. 

6. DISCUSSION 

Using the figures presented in the previous section, it is now possible to discuss the per- 
formance requirements of a distributed system to support the implementation of the MNDC, 
We consider the case of Sun Sparc 2 workstations and the case of Ethemet and FDDI net- 
works. 
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In Table 2, we indicate the physical-layer throughput of Ethernet and of FDDI. It is evi- 
dent that the transmission of uncompressed frames, which would require 24 Mbit/s, is not 
supported by Ethernet. Compressed video, instead, assuming a compression ratio of 15 to 1, 
can be transmitted in real time and only takes 16% of the network bandwidth. Supposing that 
50% of the network bandwidth is available for multimedia traffic, up to 94 cf/s can be 
transmitted, corresponding to three video channels of 30 cf/s each. In contrast, again assum- 
ing that 50% of the bandwidth is available, FDDI supports the simultaneous transmission of 
up to two uncompressed video channels or as many as 31 compressed ones. 

TABLE 2. - THROUGHPUT OF ETHERNET AND FDDI 

Ethemet 1.25 Mbyte'~ 12 f/s 180 ef/s .... 6 video channels 
FDDI 12.5 Mbytes/s 120 f/s 1800cf/s 60 video channels 

Let us now examine the minimal number of operations that each video frame must 
undergo from the network interface to the visualization device. The first step is reception, 
which involve one memory copy of a compressed frame from the network interface to the 
workstation main memory; the second step is protocol processing, which may or may not 
involve the calculation of a checksum (in our experiments it does because we have used 
UDP); the third step is decompression, which may be performed either by specialized 
hardware or by software (in our experiments we have used software decompression); the 
fourth step is visualization, which includes the communication between the client program 

and the X selver. 

TABLE 3. -REQUIRED OPERATIONS INSIDE AN M_NDC CLIENT 

OPERATION TIME IN MS 

Memory Copy 0.66 
UDP Processing 0.96 
Decompression 34.48 
Visualization through X 30.22 

Table 3 shows the times required to carry out each of the steps above, as measured in 
our experiments. As expected, the most time-consuming operations inside the client work- 
station are those requiring the generation and/or processing of uncompressed frames, namely 
decompression and visualization. The decompression time can be reduced by using special 
hardware for decompression, while the visualization time is bounded by the speed of the 
frame buffer (30 ms per frame; see Table 1) and can be reduced by optimizing the X server 
path from the client program to visualization (notice from Table 1 that visualization directly 
to the frame buffer is almost three times as fast as visualization through the X server) and/or 
by adopting a faster frame buffer. 
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7. SUMMARY 

We have presented the architecture of a distributed system in which a central facility, 
called a Media Network Distribution Center, serves a number of clients and handles simul- 
taneously different multimedia applications. We have described a set of possible applications 
of such a system, such as interactive video, database access, video distribution and distributed 
classroom. We have outlined the design principles upon which a MNDC is based and we 
have introduced a set of specific requirements to be met. 

We have then focused on continuous media data and in particular on video, taking the 
case of CIF video (352 • 288 pixels) as a case study and performing a set of experiments on 
video sequences of CIF frames to verify the validity of the design principles and the feasibil- 
ity of proposed design solutions meeting the specific system requirements. Our experiments 
concerned the implementation of an MNDC in a local environment based on Ethemet net- 
works. We focused on the client program and partitioned the client part of the MNDC system 
into a set of basic processing steps that must be carded out in sequence on each video frame 
as it moves from the network to the frame buffer. We have measured the performance of 
each of these processing steps, by running a set of specific experiments, and have reported the 
results. Although building a successful MNDC certainly requires additional basic research, 
on the basis of our experiments, we conclude that the MNDC architecture that we have out- 
lined in Sections 1, 2 and 3 is a valid one. 
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