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A b s t r a c t .  This paper describes a method which uses optical flow, that is, 
the apparent motion of the image brightness pattern in time-varying images, 
in order to detect and identify multiple motions. Homogeneous regions are 
found by analysing local linear approximations of optical flow over patches 
of the image plane, which determine a list of the possibly viewed motions, 
and, finally, by applying a technique of stochastic relaxation. The presented 
experiments on real images show that the method is usually able to identify 
regions which correspond to the different moving objects, is also rather 
insensitive to noise, and can tolerate large errors in the estimation of optical 
flOW. 

1 I n t r o d u c t i o n  

Vision is a primary source of information for the understanding of complex scenarios in 
which different objects may be moving non-rigidly and independently. Computer vision 
systems should be capable of detecting and identifying the image regions which corre- 
spond to single moving objects and interpreting the viewed motions in order to interact 
profitably with the environment. This capability could also be usefully employed to drive 
the focus of attention and track moving objects in cluttered scenes. 

The relative motion of the viewed surfaces with respect to the viewing camera pro- 
duces spatial and temporal changes in the image brightness pattern which provide a vast 
amount of information for segmenting the image into the different moving parts [1,2]. As 
the image motion of nearby points in space which belong to the same surface are very 
sinfilar, optical flow, i.e., the apparent motion of the image brightness pattern on the 
image plane [3], is a convenient representation of this information. In addition, simple 
interpretations of first order spatial properties of optical flow make possible meaningful 
qualitative and quantitative descriptions of the relative viewed motion which are proba- 
bly sufficient for a number of applications [2,4-7]. This paper proposes a method, which 
is based on optical flow, for the detection and identification of multiple motions from 
time-varying images. 

The proposed method consists of three steps. In the first step, a number of linear 
vector fields which approximate optical flow over non-overlapping squared patches of 
the image plane are computed. In the second step, these linear vector fields are used to 
produce a list of the "possible" viewed motions, or labels. Finally, in the third step, a 
label, that is, a possible motion, is attached to each patch by means of a technique of 
stochastic relaxation. The labeling of image patches depending on the apparent motion 
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by means of relaxation techniques was first proposed in [2,8]. The presented method has 
several very good features. Firstly, although accurate pointwise estimates of optical flow 
are difficult to obtain, the spatial coherence of optical flow appears to be particularly well 
suited for a qualitative characterisation of regions which correspond to the same moving 
surface independently of the complexity of the scene. Secondly, even rather cluttered 
scenes are segmented into a small number of parts. Thirdly, the computational load is 
almost independent of the data. Lastly, the choice of the method for the computation 
of optical flow is hardly critical since the proposed algorithm is insensitive to noise and 
tolerates large differences in the flow estimates. 

The paper is organised as follows. Section 2 discusses the approximation of optical 
flow in terms of linear vector fields. In Section 3, the proposed method is described in 
detail. Section 4 presents the experimental results which have been obtained on sequences 
of real images. The main differences between the proposed method and previous schemes 
are briefly discussed in Section 5. Finally, the conclusions are summarised in Section 6. 

2 S p a t i a l  p r o p e r t i e s  o f  o p t i c a l  f l o w  

The interpretation of optical flow over small regions of the image plane is often ambiguous 
[9]. Let us discuss this fact in some detail by looking at a simple example of a sequence 
of real images. 

Fig. 1A shows a frame of a sequence in which the camera is moving toward a picture 
posted on the wall. The angle between the optical axis and the direction orthogonal to 
the wall is 30 ~ The optical flow which is obtained by applying the method described in 
[10] to the image sequence and relative to the frame of Fig. 1A is shown in Fig. lB. It 
is evident that the qualitative structure of the estimated optical flow is correct. It  can 
be shown [7] that the accuracy with which the optical flow of Fig. 1B and its first order 
properties can be estimated is sufficient to recover quantitative information, like depth 
and slant of the viewed planar surface. The critical assumption that makes it possible to 
extract reliable quantitative information from optical flow is that the relative motion is 
known to be rigid and translational. 

In the absence of similar "a priori" information (or in the presence of more complex 
scenes) the interpretation of optical flow estimates is more difficult. In this case, a local 
analysis of the spatial properties of optical flow could be deceiving. Fig. 1C, for example, 
shows the vector field which has been obtained by dividing the image plane in 64 non- 
overlapping squared patches of 32 x 32 pixels and computing the linear rotating vector 
field which best approximates the optical flow of Fig. 1B over each patch. Due to the 
presence of noise and to the simple spatial structure of optical flow, the correlation 
coefficient of this "bizarre" local approximation is very high. On a simple local (and 
deterministic) basis there is little evidence that the vector field of Fig. 1B is locally 
expanding. However, a more coherent interpretation can be found by looking at the 
distributions of Fig. 1D. The squares locate the foci of expansion of the linear expanding 
vector fields which best approximate the estimated optical flow in each patch, while the 
crosses locate the centers of rotation of the rotating vector field which have been used to 
produce the vector field of Fig. 1C. It is evident that while the foci of expansion tend to 
clusterise in the neighbourhood of the origin of the image plane (identified by the smaller 
frame), the centers of rotation are spread around. This observation lies at the basis of the 
method for the identification of multiple motion which is described in the next Section. 
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order spatial properties of optical flow. The optical flow is divided into patches of fixed 
size and the expanding (EVF), contracting (CVF), clockwise (CRVF) and anticlockwise 
(ARVF) rotating, and constant (TVF) vector fields which best approximate the optical 
flow in each patch si, i = 1, ..., N ,  are computed. Roughly speaking, this is equivalent to 
reducing the possible 3D motions to translation in space with a fairly strong component 
along the optical axis (EVF and CVF), rotation around an axis nearly orthogonal to 
the image plane (CRVF and ARVF), and translation nearly parallel to the image plane 
(TVF). This choice, which is somewhat arbitrary and incomplete, does not allow an 
accurate recovery of 3D motion and structure (the shear terms, for example, are not 
taken into account), but usually appears to be sufficient in order to obtain a qualitative 
segmentation of the viewed image in the different moving objects (see Section 4). 

As a result of the first step, five vectors x~,  j = 1,...,5, are associated with each 
patch si: the vector x81., position over the image plane of the focus of expansion of the 
EFV; x82,, position of the focus of contraction of the CVF; xs~ , position of the center of 
the CRVF; x, 4, position of the center of the ARVF, and the unit vector xa~ , parallel to 
the direction of the TVF. 

3.2 D e t e r m i n i n g  the  possible motions 

In order to produce a list of the "possible" motions in the second step, global properties 
of the obtained EVFs, CVFs, CRVFs, ARVFs, and CVFs are analysed. This step is 
extremely crucial, since the pointwise agreement between each of the computed local 
vector fields and the optical flow of each patch usually makes it difficult, if not impossible, 
to select the most appropriate label (see Section 2). Figs. 2C and D respectively show 
the distribution of the foci of expansion and contraction, and centers of clockwise and 
anticlockwise rotation, associated with the EVFs, CVFs, CRVFs, and ARVFs of the 
optical flow of Fig. 2B. A simple clustering algorithm has been able to find two clusters 
in the distribution of Fig. 2C, and these clusters clearly correspond to the expansion 
and contraction along the optical axis of Fig. 2B. The same algorithm, applied to the 
distribution of the centers of rotation (shown in Fig. 2D), reveals the presence of a 
single cluster in the vicinity of the image plane center corresponding to the anticlockwise 
rotation in Fig. 2B. On the other hand, in the case of translation, the distribution of the 
unit vectors parallel to the directions of the TVFs is considered (see Fig. 2E). For the 
optical flow of Fig. 2B the distribution of Fig. 2E is nearly flat indicating the absence 
of preferred translational directions. Therefore, as a result of this second step, a label l 
is attached to each "possible" motion which can be characterised by a certain cluster of 
points x,~ (0, where c(l) equals 1, ...,4, or 5 depending on I. In the specific example of 
Fig. 2, one label of expansion, one of contraction, and one of anticlockwise rotation, are 
found. 

3.3 Labeling through deterministic relaxation 

In the third and final step, each patch of the image plane is assigned one of the possible 
labels by means of an iterative relaxation procedure [11]. The key idea is that of defining 
a suitable energy function which not only depends on the optical flow patches but also on 
the possible motions, and reaches its minimum when the correct labels are attached to 
the flow patches. In the current implementation, the energy function is a sum extended 
over each pair of neighbouring patches in which the generic term u(s l ,  s j ) ,  where si and 
sj  are a pair of neighbouring patches, is given by the formula 
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Fig. 2. A) A frame of a synthetic sequence in which the larger sphere is translating toward the 
image plane, while the smaller sphere is moving away and the background is rotating anticlock- 
wise. B) The corresponding optical flow computed by means of the method described in [10]. 
C) Distributions of the foci of expansion (squares) and contraction (crosses) of the EVFs and 
CVFs respectively which lie within an area four times larger than the field of view (identified 
by the solid frame). D) Distribution of the centers of anti~lockwise rotation of the ARVFs. E) 
Distribution of the directions of the TVFs on the unit circle. F) Colour coded segmentation of 
the optical flow of B) obtained through the algorithm described in the text. 
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u(~ , ,  ~ i )  = (,11~, - Xo:( ' ) l l  + I1~, - x,;(')ll) ~,,=,~ (1) 
/ \ 

where x~ is the center of mass of the cluster corresponding to the label l, and ~ = 1 
if the labels of the two patches, ii and Ij respectively, equal l, otherwise $ = 0. The 
relaxation procedure has been implemented through an iterative deterministic algorithm 
in which, at cach iteration, each patch is visited and assigned the label which minimises 
the current value of the energy function, keeping all the other labels fixed. The procedure 
applied to the optical flow of Fig. 2B, starting from a random configuration, produces 
the colour coded segmentation shown in Fig. 2F after twenty iterations. From Fig. 2F, it 
is evident that the method is able to detect and correctly identify the multiple motions 
of the optical flow of Fig. 2B. Extensive experimentation indicates that the deterministic 
version usually converges on the desired solution. This is probably due to the fact that, 
for the purpose of detecting multiple motions, the true solution can be approximated 
equally well by nearly optimal solutions. 

To conclude, it has to be said that the profile of the segmented regions can be suitably 
modeled by adding ad hoc terms to the energy (or "penalty functions") which tend 
to penalise regions of certain shapes. The choice of the appropriate penalty functions 
reflects the available "a priori" knowledge, if any, on the expected shapes. In the current 
implementation, in which no "a priori" knowledge is available, only narrow regions have 
been inhibited (configurations in which in a square region of 3 x 3 patches there are no 
five patches with the same label are given infinite energy). 

4 E x p e r i m e n t a l  r e s u l t s  o n  r e a l  i m a g e s  

Let us now discuss two experiments on real images. Fig. 3A shows a frame of a sequence 
in which the viewing camera is translating toward the scene while the box is moving 
toward the camera. The optical flow associated with the frame of Fig. 3A is shown in 
Fig. 3B. From Fig. 3B it is evident that the problem of finding different moving objects 
from the reconstructed optical flow is difficult. Due to the large errors in the estimation of 
optical flow, simple deterministic (and local) procedures which detect flow edges, or sharp 
changes in optical flow, are doomed to failure. In addition, the viewed motion consists 
of two independent expansions and even in the presence of precisely computed optical 
flow, no clear flow edge can be found as the flow direction in the vicinity of the top, right 
side, and bottom of the box agrees with the flow direction of the background. Fig. 3C 
shows the distribution of the foci of expansion associated with the EVFs computed as 
described above. Two clusters are found which correspond to the (independent) motion of 
the camera and of the box of Fig. 3A. On the contrary, no clusters are found in the other 
distributions. Therefore, it can be concluded that, at most, two different motions (mainly 
along the optical axis) are present in the viewed scene. The colour coded segmentation 
which is obtained by applying the third step of the proposed method is shown in Fig. 3D. 
It is evident that the algorithm detects and correctly identifies the two different motions 
of the viewed scene. 

In the second experiment (Fig. 4A), a puppet is moving away from the camera, while 
the plant in the lower part of Fig. 4A is moving toward the image plane. The optical 
flow associated with the frame of Fig. 4A is reproduced in Fig. 4B. As can be easily seen 
from Fig. 4C both the distributions of the foci of expansion (squares) and contraction 
(crosses) clusterise in the neighbourhood of the origin. No cluster has been found in the 
other distributions, which is consistent with the optical flow of Fig. 4B. The segmentation 
which is obtained by applying the relaxation step is shown in Fig. 4D. 
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Fig. 3. A) A frame of a sequence in which the box is translating toward the camera, while the 
camera is translating toward an otherwise static environment. B) The corresponding optical flow 
computed by means of the method described in [10]. C) Distribution of the foci of expansion 
of the EVFs. D) Colour coded segmentation of the optical flow of B) obtained through the 
algorithm described in the text. 

This example clarifies the need for two distinct labels for expansion and contraction 
(and, similarly, for clockwise and anticlockwise rotation). The energy term of Eq. 1, 
which simply measures distances between singular points, would not be sufficient to 
distinguish between expanding and contracting patches. In order to minimise the number 
of parameters which enter the energy function, it is better to consider a larger number 
of different local motions than to add extra-terms to the right-hand-side of Eq. 1. 

To summarise, the proposed method appears to be able to detect multiple motion and 
correctly segment the viewed image in the different moving objects even if the estimates 
of optical flow are rather noisy and imprecise. 

5 Differences from previous methods 

It is evident that the presented method is very different from the deterministic schemes 
which at tempt to identify multiple motions by extracting flow edges [12-13]. Important 
similarities, instead, can be found with the techmque proposed in [2]. Firstly, the same 
mathematical machinery (stochastic relaxation) is used. Secondly, in both cases first 
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F ig .  4. A) A frame of a sequence in which the puppet is moving away from the camera, while 
the plant is translating toward the image plane. B) The corresponding opticM flow computed 
by means of the method described in [10]. C) Distribution of the loci of expansion (squares) and 
contraction (crosses) of the EVFs and CVFS respectively. D) Colour coded segmentation of the 
optical flow of B) obtained through the algorithm described in the text. 

order spatial properties of optical flow, such as expansion and rotation, are employed to 
determine the different types of motion. However, the two methods are basically different. 
In [2] regions are segmented and only at a later stage local spatial properties of optical 
flow are used to interpret the viewed motions. The possible motions are data-independent 
and the resolution is necessarily fairly low. On the contrary, the method described in the 
previous Section computes the possible motions first and then identifies the regions which 
correspond to the different moving objects. Consequently, the number of labels remains 
small and stochastic relaxation always runs efficiently. In addition, since the possible 
motion are data-dependent, the resolution is sufficiently high to allow for the detection 
of "expansion within expansion" (see Fig. 3D) or the determination of arbitrary direction 
of translation. 

6 C o n c l u s i o n  

In this paper a method for the detection and identification of multiple motions from 
optical flow has been presented. The method, which makes use of linear approximations of 
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optical flow over relatively large patches, is essentially based on a technique of stochastic 
relaxation. Experimentation on real images indicates that the method is usually capable 
of segmenting the viewed image into the different moving parts robustly against noise, 
and independently of large errors in the optical flow estimates. Therefore, the technique 
employed in the reconstruction of optical flow does not appear to be critical. Due to the 
coarse resolution at which the segmentation step is performed, the proposed algorithm 
only takes a few seconds on a Sun SPARCStation for a 256x256 image, apart from the 
computation of optical flow. 

To conclude, future work will focus on the extraction of quantitative information on 
the segmented regions and will be biased to the theoretical (and empirical) study of the 
local motions which must be added in order to increase the capability of the method. 
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