
A Fully Abstract Model for Concurrent Constraint
Programming

Frank S. de Boer 1 Catuscia Palamidessi 2

1Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

email: wsinfdb@tuewsd.win.tue.nl

2Department of Computer Science, University of Utrecht,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

and
Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
email: katuscia@cwi.nl

A b s t r a c t

Recent results [5] have shown that concurrent Logic programming has a very simple model,
based on linear sequences, which is fully abstract with respect to the parallel operator and
finite observables. This is intrinsically related to the asynchronous and monotonic r~ature of
the communication mechanism, which consists of asking and telling constrain.ts on a common
store. We consider here a paradigm for (asynchronous) concurrent programming, based on the
above mechanism, and provided with the standard operators of choice, parallelism, prefixing,
and hiding of local variables. It comes out that linear sequences still suffice for a compositional
description of all the operators. Moreover, we consider the problem of full abstraction. Since
6ur notion of observables implies the removal of silent steps, the presence of the choice operator
induces the same problems (for compositionality) as bisim~ation in CCS. We show that in
our framework this problem has a simple solution which consists of introducing a semantical
distinction between the various ways in which deadlock and failure might occur. The resulting
semantics is fully abstract and still based on linear sequences.

Note: Part of this work was carried out in the context of the ESPRIT Basic Research Action
(3020) Integration. The research of Frank S. de Boer was partially supported by the Dutch REX
(Research and Education in Concurrent Systems) project. The stay of Catuscia Palamidessi at
the Centre for Mathematics and Computer Science was partially supported by the Italian CNR
(Consiglio Nazionale deUe Pdcerche).

1 I n t r o d u c t i o n

The concurrent constraint paradigm [16, 17, 8, 6, 7] represents a considerable improvement with
respect to "classical" concurrent logic languages. The combination with Constraint Logic Program-
ming [10] has allowed on one hand to increase the expressiveness, and, on the other hand, to model
in a logical manner the synchronization mechanism [13, 15], thus integrating it with the declarative
reading of the language. Constraint programming is based on the notion of computing with systems

29"/

of partial information. The main feature is that the store is seen as a constraint on the range of
values that variables can assume, rather than a correspondence variables-values. In other words, the
store is seen as a (possibly infinite) set of valuations. Constraints are just finite representations of
these sets. For instance, a constraint can be a first order formula, like {x = f(y)}, representing
the set {{y = a , x = f(a)}, {y = b, z = f(b)}, . . .}. Constraints are naturally ordered with respect
to (reverse) logical implication. As discussed in [16, 17], this notion of store leads naturally to a
paradigm for concurrent programming. All processes share a common store, that represents the con-
straint established until that moment. Communication is achieved by adding (telling) consistently
some constraint to the store, and by checking (asking) if the store entails (implies) a given constraint.
Synchronization is based on a blocking ask: a process waits (suspends) until the store is "strong"
enough to entail a certain constraint. Notice that the execution of an ask depends monotonically
upon the store, which, in turn, is monotonically increased by the execution of a tell. Since ask and
tell are the only actions on the store, the store will evolve monotonically: the associated constraint
is initially true (no restriction upon the possible values for the variables), and it gets more and more
refined in the course of the computation (the set of possible values for the variables gets smaller and
smaller).

We address here the problem of a compositional and fully abstract semantics for concurrent
constraint programming. Compositionality is considered one of the most desirable characteristics of
a formal semantics, since it provides a foundation of program verification and modular design. The
dit~culty in obtaining this property depends upon the operators of the language, the behaviour we
want to describe (observables), and the degree of abstraction we want to reach. A compositional model
is called fully abstract if it identifies programs that behave in the same way under all the possible
contexts. A fully abstract model can be considered to be the semantics of a language: all the other
compositional semantics can be reduced to it by abstracting from the redundant information. Full
abstraction is important, for instance, for deciding correctness of program transformation techniques.

There are various reasonable observation criteria that can be adopted for concurrent constraint
programming. One may, for instance, consider the sequences of communication actions engaged by
a process, or the sequences of intermediate states of the store, etc. We deal with a more abstract
one: only the final results, together with the termination modes: success, failure, or deadlock (failure
occurs when a process must tell a constraint inconsistent with the store, deadlock occurs when all
processes are stucked on the execution of an ask). This choice is motivated by the fact that, due to the
monotonic evolution of the store, the intermediate states of the computation are just approximations
of the final resuIt.

The main operators of concurrent constraint programming are the communication actions, the
prefixing, the parallel composition, the nondeterministic choice, and the hiding of local variables [17].
Concerning the control structure, these operators have been regarded just as a particular case of the
classica/concurrent paradigms, like CCS and TCSP. As a consequence, the structural operational
semantics and the problems of compositionality and full abstraction have been approached mostly
by the standard methods (failure sets, trees, etc.) of the semantics of concurrency [1, 12, 11, 2, 3, 7,
17, 9, s].

We think that concurrent constraint languages require a different approach. If we compare their
computational model with the one of CCS and TCSP we see a relevant difference:

the communication mechanism is asynchronous, i.e., the execution of a tell do not need
to synchronize with a (complementary) ask engaged by the environment.

In other words, what a process can do does not depend upon the present behaviour of the environment,
it only depends upon the store (re//can always proceed when consistent with the store, and ask can
always proceed when entailed by the store), i.e. the past behaviour of the system. If we want to
describe the semantics via a transition system, a rule like the one of CCS, where complementary
actions synchronize is therefore not needed.

On the other hand, a compositional model can be achieved by making explicit (in the transition
system) the dependency upon the past. This can be done by adding a passive rule that does not

298

exists in CCS: an arbitrary assumption about a step made by the environment. Arbitrary means
not related to what the process ~ a c t l y needs to proceed: it can be either more (so allowing it to
proceed), or less (so it can still suspend) or even inconsistent with the constraint that the process
is going to ask /tell/(so to generate failure in the next future). This corresponds to considering all
the possible interactions between the given process and arbitrary environments, and it leads to a
very simple compositional semantics, consisting of sequences of constraints labeled by assume/tell
modes. Notice the contrast with CCS and TCSP, where compositionality requires more complicated
structures containing branching information, like trees or failure sets. Moreover, we don't need an
interleaving operator to compose these sequences. It is sufficient to pick up the ones that "match".

Our sequences must not be confused with similar structures (sequences of ask/tell constraints,
input/output substitutions etc.) used in [14, 8, 7, 17]. Those structures axe used there to represent
the sequel of actions that a process will engage. There is a basic conceptual difference between an
assume constraint and an ask [input] constraint: the second just represents what a process needs to
proceed, i.e. the minimal assumption that is necessary for the process to go on successfully. As a
consequence, sequences of that kind contain less information and they are compositional only for the
success set [14], whereas failure and deadlock still require some branching information. In [8] this
branching information is given by failure and suspension sets in [7, 17] it is explicitly represented by
a tree-like structure.

A totally different approach has been developed in [18] for the determinate subcase of constraint
logic programming. The basic idea consists of denoting processes as Scott's closure operators, which
have the nice property of being representable as the set of their fixpoints. The operators of the
language can then be described just as operations on those sets. In particular, parallelism can be
modeled simply by intersection. In the same paper, the authors present an extension of their model
for the indeterminate case. The main criticism to this model is that it abstracts from deadlock (it is
identified with termination). Furthermore, the applicability of their method heavily depends upon
this abstra~tion: it is not clear how to generalize their approach so to cope with deadlock.

To our knowledge, the first example of a compositional semantics just based on (assume/tell)
linear sequences was given in [4, 5] 1. Those works, however, deal with a concurrent logic language,
based on substitutions, which is indeterminate, but with no explicit choice operator (it is "hidden"
in the clause union). The compositionality is treated only with respect to the parallel operator.

The model M we present here, for concurrent constraint programming, is compositional with
respect to all the operators of the language (prefixing, parallelism, choice, and hiding of local vari-
ables). Moreover, the communication mechanism we deal with is more general, since it is based on
constraints instead of substitutions. This model is also more simple and elegant, since the hiding of
local variables is here modeled by the existential quantifier.

Since it is induced by linear sequence, the congruence associated to AA is coarser than reactive
equality (a congruence, on tree-like structures, based on strong bisimulation) [17]. One may believe
that this model, being linear, has good chances to be fully abstract. This is not the case, for the
notion of observables described at the beginning of this section 2. The reason is that an assume/tell
sequence contains information about the granularity and the order in which constraints are added to
the store. Because of the monotonic nature of communication, this granularity and this order cannot
be sensed by any context. In other words, it is not possible to define an environment that accepts
only a specific sequence of constraints, and blocks otherwise. In fact after any (logically) equivalent
sequence the reaction of the environment will be the same.

We show that to achieve full abstraction it is sufficient to saturate the denotation S of a process
by adding those sequences which are logically equivalent to some sequence in S for any subsequence
of constraints produced by the same agent (either the process or the environment). A similar solution
was proposed in [5], but the framework we use here (existentially quantified constraints) allows to

1The idea of considering arbitrary assumptions (in the framework of substitutions) has been first suggested in [9]
for Flat Concurrent Prolog. However, suspension sets, although not necessary, were still present there.

2It would be fully abstract if we considered a stronger notion of observables based on sequences of ask/tell actions,
similarly to what is done in [18] (for the indeterminate case), but this is out of the scope of this paper.

299

express the saturation operator in a far more simple and elegant way. However, due to the presence of
an explicit nondeterministic choice, the application of this operator is quite delicate in our language,
since in the resulting semantics the differences due to silent steps (the actions that do not modify
the store) would be deleted. It is well known that this might cause the loss of compositionality
with respect to the choice operator. It happens, for instance, in the (weak) bisimulation semantics
for CCS, and in the reactive equivalence semantics defined in [17]. Essentially this is because the
distinction is lost between a computation that deadlocks [fails] immediately, and a computation that
deadlocks [fails] after some silent steps. They should be distinguished, since the composition of these
computations with a successful alternative choice gives different results (the second may still deadlock
[fail] while the first cannot). In our framework it is possible to solve the problem in a quite simple
way. W'e just need to introduce a semantical distinction between two kinds of termination modes,
representing the immediate and the not immediate deadlocks [failures]. This solution we propose is,
we believe, applicable in general to any language based on asynchronous communication.

The plan of the paper is the following. In the next section we introduce some basic notions. In
section 3 we give the syntax of the language, the standard operational model based on a transition
system, and we define the notion of observables O. Then we present (section 4) a compositional
semantics .M that is shown to be correct (with respect to O), and compositional. In section 5 we
present a semantics .4 which is a refinement of M . In section 6 we prove that .4 is correct and
compositional, and in section 7 we prove that .4 is fully abstract.

2 Pre l iminar ies

In general, a constraint system can be any system of partial information that supports the notion of
consistency and entailment. We consider here simple constraint systems based on first-order theories.
Our results, however, can be extended to more general settings.

Let Vat be a non empty set of variables, with typical elements x, y, z , Let ~ be a (many sorted)
first-order alphabet (function symbols a, b , f , g, and predicate symbols, and their signature).
A constraint system P on (Vat, ~) is a first-order theory. We say that a formula ¢ is consistent if
r ~ 3(¢), where 3(¢) is the existential closure of ¢, and that ¢1 entails ¢2 if F ~ ¢1 ~ ¢2- The set
of constraints, with typical element c, d , . . . , is the set of formulas 3X.~, where ~ is a quantifier-free
formula and X is a set of variables. 3{x}.~ will be denoted by 3x.t~ and 30.# by tg. The variables in
the scope of an existential quantifier are local, not visible at the top-level. Usually P is assumed to
be complete with respect to the notions of concistency and entaiment. In the following we consider
P to be fixed, so we simply write ~ 3(c) [~: 3(c)1 and ~ c =~ d [~= c =:~ d] to represent consistency
[inconsistency I and entailment [unentailment].

3 T h e language

In this section we present a language containing the basic features of concurrent constraint program-
ming. We define its syntax, its (standard) computational model, and the observation criterium we
consider.

We use A , B , . . . to range over the set of processes, t , u , . . , to range over terms in E, p,q,r , . . , to
range over procedure frames, and X, Y, Z , . . . to range over subsets of Vat. In addition, the notation
)~ indicates a list of the form (X1,. •. , X-).

The processes are described by the following grammar

A ::= Success] Fai l] ask(c) ~ A] tell(c) --* A I A + A I A]] A] 3X.A I p(t~

Success and Fai l represent successful and failing termination, a sk and te l l are the communica-
tion primitives. They are the only actions we consider. The process ask(c) ~ A waits until the store
entails c and then it behaves like A. The process tell(c) --4 A adds c to the store and then it behaves

300

like A. They both fail when c is inconsistent with the store. The operators I1 and + are the parallel
composition and the nondeterministic choice, respectively. Because of the asynchronism of the com-
munication, the behaviour of + is something in between the (global) nondeterministic choice of CCS
and the local nondeterministic choice of TCSP. For instance, (tell(c) ~ A) + (tell(d) --* B) behaves
like a local choice when both c and d are consistent with the store, while (ask(c) ~ A)+(ask(d) --, B)
behaves like a local choice when both c and d are entailed by it. In the other cases, the choice is
global (it depends upon the actions made by the environment), qX.A is like the process A, with the
variables in X seen as local. Finally, p(t~ is a procedure call, p is the name of the procedure, and t"
is the list of the actual parameters. The meaning of a process is given with respect to a set W of
procedure declarations of the form p(~) :- A. Given the list of actual parameters ~, an instantiation of
p(~) :- A is an object of the form p(t') :- A', where A' is obtained from A by simultaneously replacing
every (occurrence of a) formal parameter by its corresponding actual parameter, and by renaming
all the other variables so to avoid clashes with ~. We denote by Inst(W) the set of the instantiations
of the clauses in W. In the sequel, unless stated otherwise, we assume W to be fixed, so we omit
reference to it.

3.1 The operational model and the observables O

The operational model is described by a transition system T = (Conf,---*). The configurations
Con/are pairs consisting of a process or a termination mode, and a constraint representing the store.
The termination modes c~ are the symbols ss, f[and dd, that denote success, failure and deadlock
respectively. The rules of T are described in table 1. For the sake of simplicity, we assume that the
variables which are existentially quantified inside a tell [ask] have different names from all the others
occurring in the process, or introduced during the computation.

We also assume the presence of a renaming mechanism that takes care of using fresh variables
each time an (instance of a) declaration is considered (in RT). For the sake of simplicity we do not
describe this mechanism in T. In the next section (when describing the compositional semantics) we
will show a solution to the problem of renaming. The interested reader can find in [17, 4, 5] various
alternative approaches to this problem.

R1 and R2 indicate that Success and Fall end immediately in their corresponding termination
modes. R3-R6 describe the way in which the communication actions deal with the store. R7
describes the replacement of a procedure call by the body of the procedure definition (in W). R8
describes the first step of a process prefixed by a communication action (g stands for ask or tell).
R9 is the rule for the hiding: a process A in which the variables X are local (3X.A), first renames the
variables in X by fresh variables in Y, and then it behaves like A[Y/X]. The renaming is needed in
order to avoid clashes with the store and the other variables of A, and it is ensured by the condition
Y A vat(A, c) = O. R10-R14 are the usual rules for the parallel and the choice operators, where the
behaviour of a compound process is described in terms of the behaviour of the components. Notice
that parallelism is described as interleaving. The main rule for q- (R l l) shows that the indeteminism
of our language is sometimes global, sometimes local. In fact, the decision taken by the process will
be visible to the external environment only if the store is modified (e.g. if d is different from c.)

The result of a terminating computation consists of the final store (up to logical equivalence),
together with the termination mode. This is formally represented by the notion of observables.

Definition 3.1 The observables are given by the function

O[A] = {(3X.c,a) l (A, true) -----~* (a ,c)}~,

where X are all the variables in c which do not occur in A, the subscript ¢~ denotes the closure under
logical equivalence, and ----~* denotes the transitive closure of-----+.

In the following example, we assume the constraint system to contain the standard equality
theory.

301

Table 1: The Transition System T

R1

R 2

R 3

R 4

R 5

R 6

R 7

R 8

R 9

R I 0

R l l

R 1 2

R 1 3

R 1 4

(Success ,c) , (ss, c)

(Fail, c) , (if, c)

(ask(c ') , c) , (ss, c)

(ask(d) , c) , (dd, c)

(te l l (d) ,c) , (ss, c A c')

(te l l (d) , c) I (ask(d) , c) , (if, c)

(p(t-),c) , (A,c)

(a,c) , (.s, c') l (. , c)
(g --* A, c) , (A, c') [(a, c)

(A[Y/X],c) ~ (A' ,c A c')
(3X.A , (A', c A (3Y.c'))

(A, c)
(A I[B,c)
(B II A, c)

, (A' ,c') l (ss , c')
, (A' II B , d) [(B , d)
, (B II A',d) l(B,c')

(A, ct, ,---~
(A + B,c)
(B + A,c)

(A', c'),l, i , , , c'l
, (A', c ') l (ss , c')
, (A ' , c ') l (s s , c')

(A,c) , (dd, c) (B, c) , (,~, c)
(A II B,c> , (~,c)
(B II A, c) , (a, c)
(A + B, c) , (dd, c)
(B + A,c) , , (dd, c)

(A, c) , (if, c) ,
(A I1 B,c) , (if, c)
(B It A, c) , (if, c)

(A,~) , (~ , c) {B,c) , (a',~)
(A + B, c) , (if, c)
(B + A, c) , (a , c)

if ~ c @ c'

if ~ c ~ c'

if ~ 3(c A c')

if V: 3(c A d)

if p(t-) :- A C Inst(W)

if a E {if, dd}

if Y M vat(A, c) = 0

i f a E {if, dd}

302

E x a m p l e 3.2 Consider the process A defined as follows:

A _-- t e l l (x = a) --+ ask(y = f (a)) -* Success

Starting with the empty store (true), the process will first tell (add to the store) the constraint x = a,
and then it will block on the execution of ask, since x = a does not entail y = f (a) . Therefore what
we observe out of the execution of A is

VIAl = {ix = a, dd)},~,

Consider now the processes

B1 -= te l l (y = f (x)) --* Success

B2 -= 3x. tel l (y = f (x)) ~ Success

The observables are:

O~BI] = {(y = f (x) , ss)}~,

O~B,] = {<3z.y : f (z) , s s)}~ ,

Let's now consider the processes A1 = A II B1 and As = A II Bs. Alter the first step of A and the
execution orB1, the store is x = a A y = f (x) , which entails y = f (a) . Therefore A1 can successfully
terminate:

VIA1] = {(x = a A y = f (x) , s s) } ¢ ,

This is not the case for As, since after the first step of A and the execution of B2, the store is
x = a A 3z.y = f (z) , which does not entail y = f (a) . Therefore A2 will still deadlock:

O~A2] = {(x = a A 3z.y = f(z) , dd)},~.

4 A c o m p o s i t i o n a l s e m a n t i c s b a s e d on s e q u e n c e s

Vie define here a compositional model Ad based on sequences of interactions between a process
and an arbitrary environment. These interactions are constraints labeled by a (.assume) or t (tell).
An assume constraint represents an action performed by the environment, while a tell constraint
represents an action performed by the process itself. We use £ to range over {a, t}. These sequences
encode also the hiding of local variables, by means of existential quantifiers. This will allow to model
compositionally the hiding operator, and to express in a more elegant way the saturation procedure
so to achieve full abstraction.

A sequence s = @ ' ~" (where each ci can be of the form 3X.c) has to be interpreted as
a conjunction, where the scope of an existential quantifier is the whole subsequence that follows
(nesting of local environments). Formally:

D e f i n i t i o n 4.1 We define

• Estore(~) = true (:~ is th~ empty sequence)

• S s t o r e ((3 X c / s) = 3 X (c ^ Estore(s))

Furthermore, in order to describe the basic computation steps (in particular, the check for en-
tailment), we need to define the store resulting from a sequence of interactions. This is just the
conjunction of all constraints where all the quantifiers are dropped.

303

Defin i t ion 4.2 We define

Store()~) = true
S t o r e ((3 X . c) %) = c ^ Store(s)

For technical convenience we introduce the following notions:

Def in i t ion 4.3 Given a sequence s we define

• FV(s) , the free variables of s (the global variables),

• BV(s) , the bound variables ors (the local variables),

• BVt(s) [FVt(s)], £ E {a, t}, the bound [free] variables of s occurring in constraints labeled by
L The local variables introduced by the process itself are given by BVt(s) and those introduced
by the environment by BVa(s),

• vat(x), the variables of the object X (process, sequence. . .) .

To define the compositional semantics we use a transition system T' (see table 2). The configu-
rations are pairs (A, s), such that Store(s) is consistent.

The difference with the transition system T consists mainly in rule R15 t, which models the
interaction with the environment. Note that a process A is not immediately affected by actions
made by the environment (only its future behaviour will depend on them). An arbitrary constraint
can be added (by the environment) consistently to the store without changing the state of A. In
other words, A can make an arbitrary assumption about the store. However, as the local variables are
hidden from the environment, assumptions involving local variables are not allowed. Formally this
means that the free variables of an assumption may not occur in the scope of the bound variables
introduced by the process itself, i.e., FV(c) n BVt(s) = 0, where c is the assumption about the
environment, and s represents the store. The other restriction BV(c) fl vat(A, s) = 0 ensures the
absence of variable clashes between the local variables of the environment and the variables of the
process.

The other rules correspond to the rules of T. In rule RS ' the possibility of adding to the (sequence
representing the) store a constraint d equivalent to the constraint c to be "told" allows to abstract
with respect to the syntactical form of c. Moreover, it allows to rename the variables of c with respect
to s, and this will turn out to be convenient to express the saturation procedure. In rule R10 ~ the
condition BY(c) N var(B) = 0 allows to avoid dashes between the local variables of A (the ones
explicitly hidden by an existential quantifier, and the ones introduced by renaming the clauses of the
program) and the variables (local and global) of the other processes (B) in the environment. Notice
that this also model a renaming mechanism (for the variables in the declarations) which always uses
fresh variables.

The correspondence between T and T ~ is expressed by the following lemma.

L e m m a 4.4 The rules R I ' - R 1 4 ' of T' mimic the rules R1-R14 of T, in the sense that if

(A, s) -----+ (A', s')

is a PA r transition step in T I, then

(d , Store(s)) - - ~ (.~Z , Store(s'))

is a Pd transition step in T.

304

Table 2: The Transition System T'

RI' <Success, s) .~ (ss, s. truer>

R2' (Fail, s) ---* (if, s>

R3' (ask(c), ~) - - - (ss, , .tr~et)

R4' <ask(c), s) - -+ (dd, s)

R5' (tell(c), s) - -+ (ss, s. c 't)

R 6 I

R7 '

RS '

R91

R10'

R l l '

(tell(c), s) [Cask(c), s) - -~ (if, s>

(p(~, s) - -~ (A, s. true t)

<g, s>---, <as, s')i I,,,>
(g --* A,s) ---~w (A,s) l <a,s)

(A[y/x], s> - - , <A', s. :>
(3X.A ~ CA', s. (3Y.c) ~)

(A,s) ~ <A',,.:> i (sS,,.: >
(A II B,~> ----. CA' II B,s.ct) l(B,s.c*)
<B II A,s) - -~ (B II A',s.c*)l(B,s.c*)

(A,,> ---, (a',,.c*} I <~,,,.:}
(A-I- B,s) ~ (A',s.ct) l (ss, s.c ~)
(B + A,s) ---* (A',s .ct) l (ss, s 'c ~)

R12 ' (A,s)

R13 '

RI4'

R15'

, <rid, ~> <B,s> - - - <., ~)
CA li B,~> > <~,s)
(B l[A,s) , (, ,~)
(A + B, s) ----* (dd, s)
(B + A, s) --+ (dd, s)

(A 11 B, ~) --~ (if, ~)
<B II A, s) --+ <if, s)

(A,s) - -+ (if, s> <B,s) - -~ (if, s)

(B + A, ~) - ~ (~, ~>

(A, s) I (ss, s) - -* CA, s. c a) I (ss, s-c a)

if ~ Store(s) => c

if ~ S~o~e(~) ~ c

if ~ 3(Store(s.c)),
Store(s.c) ~* Sto~e(~.¢), and

BY(Z) n ,ar(s) =

if [/=: 3(Store(s.c))

if p(~ :- A E Inst(W)

if a E {if, dd}

if Y n Vat(A, s) =

if BU(c) n vat(B) = 0

if a E {if, dd}

if FV(c) n BVt (s) = ~,
BY(c) n v a r (A , s) = ~, = d

305

P r o o f Immediate by case analysis of the rules in T'. D

The semantics M , based on the transition system T', delivers sets of sequences of assume/tell
constraints, ended by a symbol a E {ss, fi, dd,_L}. The symbol £ stands for unfinished. It is
introduced in order to associate a non empty semantics to infinite processes. In fact, even if we axe
interested only in finite computations, this is necessary for modeling failure compositionally.

Ad~A] = {s.s8 [(A, true) ---~* Css, s)}
u {s.fi I(A, true) ---." (fi, s)}
u { , - d d l CA, true) ---," Cdd, s)}
u (s._L I (a , true) ----~* (a ' ,s)}

The observables can be obtained from M as follows. We pick up only the sequences entirely com-
posed by tell constraints and ended by ss, fir, or dd. This amounts to requiring that each constraint
we observe has been really produced by the process, and that the computation has reached a final
state. Then we abstract from the particular order in which the constraints have been produced, and
from the syntactical form of them. This is described by the operator Result, defined as follows:

Result(S) = {(Estore(~),a) l s . a e S A s = c~.....c t A a e {ss, ff, dd}}.

T h e o r e m 4.5 (Correc tness of A,t) O~A] = Result(.ad~A])l.

P r o o f Let A be a process and let s.a C AA~A] such that s contains only tell constraints and a #J_.
Then there exists in T ~ a derivation of the form

(A, A) = CAo, so) - -* . . . (Ai, 81) ----* . . . CA,, sn) = C a, 8)

such that a E {ss,ff, dd} and the rule R15' is never used.
By lemma 4.4, there exists in T a derivation

(A, t rue) = (.4o, Store(so)) ~ . . . (Ai, Store(si)) - - - * . . . (A , , Store(s ,)) = (a, Store(s)) .

Therefore (3X.Store(s) , a) E o~a], where the X is the set of variables in s not occurring in A. The
rest follows from the observation that 3X.Store(s) = Estore(s). D

4 .1 C o m p o s i t i o n a l i t y o f 2~4

The operational semantics above defined is compositional with respect to all the operators of the
language: --}, [I, + and 3X. The corresponding semantic operators -,-% ~, q-, and ~ axe defined in
below.

To define -,~ and H, we first define the corresponding partial and nondeterministic operators (still
represented by -,~ and i) on sequences, then we extend them to sets.

tell) Prefixing the action tell(c) to a process A corresponds to picking up sequences representing
computations of A in which c (or an equivalent constraint) is already assumed (initially, i.e.
before any tell action), and to replacing the assume mode by the tell mode. A sequence contain-
ing an initial constraint inconsistent with c will produce a failure. Sequences of assumptions
ended by _L are not affected. Formally:

l e t s = d ~ d ~ .

• c t ",~ s .da . s ' .a = s .d : . s ' . a if ~ Store(s.c:) ¢~ Store(s.d t) and
r v (e) n B y (s) = B Y (e) n FV(s ') = o

• c ~ - ~ 8 . s , . ~ = s . f i if l~ ~ (S t o r e (s ' c t))

• c t " ~ 8 . - L = s . 1

306

ask) Prefixing the action ask(c) to to a process A corresponds to picking up sequences representing
computations of A in which e is already assumed and the result is a sequence in which the
assumption is replaced by true t (cfr. RSI). A sequence containing initial assumptions which
do not entail c wiU give a deadlock• The other cases are the same as for tell . Formally:

• a Let s = dla..., d, .

* ca',~ s . c a . s ' . a = s . t v u e t . s ' . a if ~ Store(s) =t~ c

• ca".* s . s ' . a = s.ff if ~ Store(s . c a)

• e a ~ 8.~'•~ = ~.dd if ~ 3(Store(s.ca)) and ~ Stor~(s) ~ c

• c a ~ s ._L= s._L

Para l l e l compos i t i on) The operator i , first introduced in [9], allows to combine sequences of
assume/teU constraints that are equal at each point, apart from the modes, so modeling the
interaction of a process with its environment, h is similar to the (more popular) interleaving
operator, the difference is that it applies to sequences containing already all the informations
concerning the way in which processes interleave (the assumptions specify "where" and "what").
Hence the application of i amounts to verify that the assumptions made by one process are
indeed validated by the other process (i.e. it tells or assumes the same constraints). In the
positive case, the elements of the resulting sequence are labeled by tell whenever they are labeled
by tell in at least one of the two sequences, by assume otherwise (a constraint is produced by
a pair of parallel processes whenever it is produced by at least one of the two).

• OLiSS -~ Ol

• aHf f = f f

o ddlldd = dd

• I i .L=_L

Since arbitrary assumptions can always be made, it is sufficient to consider the cases listed above,
and to leave -.z and H undefined on the sequences of different kind. The extension of these operators
to sets is defined in the obvious way:

ct, ' ,z S = {ct-,-* s.c~ l s , a E S }

c a ",~ S = {c a ",~ s . a I s . a e S }

s, is2 = {s,.~lliS=.~= I s,.~, e s, ^ s=.,~= e s=}

We now define the semantics operators + and 3X, corresponding to the choice and the hiding.
It is more convenient to define them directly on sets.

Choice) Let $1 and $2 be sets of sequences representing the computations of two alternative pro-
cesses A1 and A2. Apart from the cases of deadlock and failure, an alternative choice can
always be selected, therefore the successful and unfinished computations of A1 + A2 are just
given by the set union. Concerning failure and deadlock, observe that the successful execution
of an action is made visible by telling a constraint. Therefore, when a tell constraint is present,
the alternative can be selected (i.e. when the store entails the asked constraints and when it
is consistent with the constraints to be told, then the choice is local)• We have the set union

307

again. On the other side, sequences consisting of assume constraints and ending in failure and
deadlock, are present in the result only if they are present in both sets. Formally:

s,$s= = (s, u,, s=) u (s, u~ s,) u (s, uaj s=) u (s~ u . s2)

where

S, Uss $2
s~ u~ s2

$I Udd $2

S, U.L $2

= {S'SS

= { s . g
{ s.ft

= {s.dd
{s.dd
{s.dd
{s 'dd

= {s .± l

s.ss 6 Si USe}
s.ff e S~ u S2}ru

s.dd e $I U S~}TU
s.dd 6 S~ f] S,},U
s .dd 6 $I A s . f f 6 S~}AU
s.dd 6 S~ A s . f f 6 SI }AU

s-±6 & u S2}

here ST denotes the subset of sequences of S in which there occurs a tell constraint, and S A

denotes the subset of sequences of S which consists only of assume constraints.

Hid ing) Let IX/Z, Y /X] denote the simultaneous substitution of the free occurrences of a variable
of Z by its corresponding variable of X, and a variable of X by its corresponding variable of
Y.

* 3AX.S = { 3 Y (s [X / Z , Y / X] . a) I s .a E S, Z N var(A) = 0, and V ~ var(s.a) = 0}

* For s = d~.. . . .d~ we define 3Y(s .c t . s ' .a) = s . 3Y . c t s ' . a if Y n FVa(s . s ') = 0

The renaming substitution [X/Z, Y /X] avoids variable clashes between occurrences of the lo-
cal variables X belonging to different local environments. Some global variables Z of the
computation s are interpreted as occurrences of variables of X belonging to a different local
environment.

By induction on the length of sequences, and by case analysis, we have following theorem

T h e o r e m 4.6 (C o m p o s i t i o n a l i t y of A4)

M[te l l (c) ~ A] = c t ...z M [A] M [A]] B] = M [A] i M ~ B] M~3X.A] = 3~AX.M~A]
M~ask(c) -~ A] = ca-,.* M[[A] M [A + B] = M~A]+M[~B]

Since M is compositional, the equivalence relation associated to it, defined as

A1 ~ A2 iff A,4 [[A1]] = M [[A2]]

is a congruence:

Coro l l a ry 4.7 IrA1 ~:~ A2 and B1 ~ B2 then

tell(c) --~ A1 ~M tell(c) -~ A2 A1 [] B1 ~M A2 [[B2 BX.AI ~ 3X.A2
ask(c) --~ A1 ~ ask(c) --, A2 A1 + B1 ~M A2 + B2

P r o o f Standard. O

The congruence above defined is not able to identify processes having the same final results
(observables), but it is large enough to capture equivalence of processes that react (stepwise) in
the same way to any environment (taking silent steps s into account). This notion of equivalence,
in concurrent constraint languages, has different properties than the corresponding notion in CCS
(modeled by strong bisimulation).

3In this framework, a step is silent if does not modify the store (like, for instance, tell(lrue)).

308

Example 4.8 Let A1 and A2 be defined as follows:

A1 = (tell(true) --* tell(c1) -* Success)
+

(tell(true) - , tell(c2) -* Success)
+
(tell(true) --* tell(c3) -~ Success)

and

A2 = (tell(true) --~ tell(c1) -* Success)
+
(tell(true) --* ((tell(c2) -* Success)

+
(tell(c3) --* Success))

A1

l

A2

c, 1

Assume cl, c2 and c3 to be pairwise inconsistent. The behaviour of Ax and A2 with respect to an ar-
bitrary environment will be exactly the same, at each step, and indeed A1 ~ A2. In CCS, where
communication is synchronous, these processes can be distinguished by an environment B that ac-
cepts (at the second step) cl or c2 (only). In such a situation, A1 tl B can fail 5t happens when d l
follows the third branch), while A2 H B cannot. This discrimination power of CCS environments,
based on the ability to '2ake decisions together", is reflected by strong bisimulation. A1 and A2 indeed
are not strongly bisimilar (they are not even bisimilar). On the contrary, in concurrent constraint
languages, where decisions are taken asynchronously, either the process or the environment chooses
without taking the other into account. Therefore, also A2 can bring to a failure by choosing c3.

As a conclusion, ~ is coarser than the congruence based on strong bisimulation (reactive equal-
ity, [17]), and, we think, more appropriate for concurrent constraint.

However, one may argue that this notion of equiwlence is too fine and that it would be more
interesting, for instance, to abstract from silent steps or, even, from intermediate steps (i.e. to
identify processes that give the same final results).

In the next section we introduce a semantics A that is

• compositional,

• correct, i.e. it does not identify processes which have different observables

• fully abstract, i.e. it identifies processes that give the same observables in any context.

5 A fully abstract semant ics

The operational semantics defined in the previous section is not fully abstract with respect to the
observables. Like in CCS, silent steps cause unnecessary distinctions, but this is only part of the
the reason. More generally, the problem is that sequences contain redundant information about the
order and the granularity in which constraints are added to the store.

Example 5.1 Let B1 and B2 be defined as follows:

309

and

/31 = (tell(c~) --* tell(c2) --~ Success)
+
(tell(el A c2) --* S u c c e s s)

B1

el ~ I Acz

B2
B2 = tel l (c1) --, tel l (c2) ~ S u c c e s s Cl

C2

Of course, B1 ~ B2, but still, in every context, they will produce the same final results. This is
because of the monotonicity of communication: we cannot define an environment that accepts both
cl and c2 and not c~ ^ c2.

In general, the reaction of a process to a certain sequence of actions will only depend upon
the (logical) final content of the store. Therefore, we must eliminate distinctions between logically
equivalent subsequences. One way to do this is to saturate the sets of denotations by adding, for any
sequence s, all the ones that differ only for a logically equivalent subsequence (C1). This operation,
however, is not enough. In A,t a sequence can occur only together with all the possible interleavings
with arbitrary assumptions. Therefore, also for the new sequences introduced by C1 we must add
all possible interleavings (C2).

D e f i n i t i o n 5.2 Given a set of sequences S, the saturation of S, Sat(S), is the minimal set which
contain S and satisfies the conditions C1 and C2 of table 3.

Table 3: The saturation conditions

C1 if e s and E , ore(Sl.
then sl 'd~. . , d~'s2.a e S

C2 if.sl'82"c~ E S and ~ Estore(sl.S2) ~ Estore(Sl.C.s2) then sl.ca.s2.a e S

Sometime it will be convenient to apply the saturation operator also on sets of sequences s
(without termination mode), with the obvious meaning.

R e m a r k 5.3 The conditions C1 and C2 preserve the meaning of a sequence. Namely, if s.a E
(abbrev. then Estore(s) Es*ore(s') holds.

R e m a r k 5.4 The saturation operator is idempotent, namely

Sat(Sat(S)) = Sat(S).

We want to define the fully abstract semantics by applying the saturation operator to the se-
mantics Jr4. However, as the closure under the conditions C1 and C2 abstracts from silent steps
we loose the compositionality with respect to the choice operator. Our solution to this problem con-
sists of introducing the termination modes if,, dd, and .L,. The termination modes if, and dd, are

310

intended to describe computations in which the process immediately fails and suspends respectively.
A sequence ending in J_, will correspond to an unfinished computation in which the process has not
performed any step. We introduce the new termination modes by the following modification of the
operational semantics 2,4:

A~, [A] = {S. Ss
u {s.tr
u {s-a',
U {s .dd
U {s .dd,
U {s._L
U {s..l_~

(A, true) ----," (as, s)}
(A, true) ---** (if, s)}r
(A, true) ---** (if, s)}a
(A, true) ---** (dd, S)}T
(A, true) ----** (dd, s)}A
(A, true) - -** (A t, S)}r
(A, true) --," (A', s)}~

The semantics .4 is defined as follows:

-4~A] = s~t(,~,[Al)

In the following two sections we prove the correctness, the compositionality, and the full abstraction
of A.

6 T h e c o r r e c t n e s s a n d c o m p o s i t i o n a l i t y o f . 4

The equivalence defined by ,4 is still stronger than the equivalence induced by O. In fact, the
observables can be derived from .4, by application of the operator Result.

L e m m a 6.1 Result(A4,~A]) = Result(A ~ A])

P r o o f The operator Result picks up only the sequences with constraints annotated by tell, and for
these sequences the definitions of A4, and A~ coincide. []

T h e o r e m 6.2 (Correc tness of .4) Resul t (A[A]) = O~A]

P r o o f Immediate by lemma 6.1 and remark 5.3. []

Now we consider the compositionality of -4. To this purpose, we define the new semantics
operators --~,, H,, and ~,.

The operator -.z~ on sequences is a slight modification of the operator ~.~. It a~lditionally trans-
forms the termination modes ff~, dd~ and ±~. into/T, dd and 2., respectively, and it introduces
immediate failure and deadlock.

let s = d~-...-d. ~.

• C t .-,~ S.cJa.at.O~ = 8.~t .s t .ot Store(s . c t) ~, Store(s . d t) and
F V (d) n B Y (s) = B Y (e) n FV(s ') = 0
for a, = ss, ff,,dd~,_L~, and a = ss, f f , d d , ±

• c t ~ , ~.s' .~ = s .~ , if V: 3(Store(s.c*))

• C ~ . ' . ~ S.l,= S.I~

• ca,,,** s . ca . s ' . a = s . t r u e t . s ' . a i f ~ Store(s) ~ c
for a, = ss, i f , , dd,, _k,, and a = ss, if, dd, A_

. c a'~z, s ' s " a = a ' f f , if ~: Store(s .e a)

. ~ . . ~ , ~.~,.~ = s . d < if b 3(St°re(s'ca)) and V= Store(a) ~ c

311

• C ~ ",-~ S._I_,= s._L~

The parallel operator H, is defined as the operator H plus the following:

• f l ' ,~a = / / : , , a 6 { if , , dd,, _L,}

• f [~ a = If, a 6 {ss, ff, dd, L}

• dd~[ldd~ = dd,

• _t, H+ I,=.I_,

• i, iL i=l

The extension on sets of "--~+ and i, are defined as usual.
The new operator q-+ is defined as follows:

SI Ec,S2 = (S] Uss $2) U ($1 Uff , S~) U (S] U dd" $2) U (S] U.L, $2)

where S1 Uss $2 is the same as before, and

SxU~ s~ = {~-gt ~.ges, us~}u{~.ei, 1 s.~,~s, ns~}
S1Udd, Sz = {s.dd I s.dd 6 Sz U Se} U {s.dd, [s.dd, 6 Sz N St}U

{s.dd, t s.dd, 6 S, A s.ff , 6 S~} U {s.dd, I s.dd, 6 St A s.ff, 6 S, }
s, u . , & = {s.-LI 8._L~ S~ U & } U {s-±,l ~.±,~ S~ n S2}

By induction on the length of the sequences, and by case analysis we have the following

L e m m a 6.3 (C o m p o s i t i o n a l i t y of .M,)

M,l [te l l (e) -~ All = c t ~ , M, [[A] M , I [A 11 ml = M Z, I [A] i ,M, I [B]
A~,[[ask(c) ---+ A] = c a .--*, M , [A] M,I[3X.A] = 3AX.M,I[AI
./t4,~A + B]] = ,/vl,~A]Ec, M:~B]

We show now the composit ionali ty of .4.

T h e o r e m 6.4 (C o m p o s i t i o n a l i t y o f .4)

.4~tell(c) --+ All = Sat(c t -,~, .4I[A]) A [A II B] = Sat(`4[A]H`4~B])
`4[ask(c) ~ A] = Sat(c ~ ,,~, ALIA]) `4[3X.A] = Sat(3AX.`4[A])
.4[A + B] = Sat(.4[Z]~,.4~B])

P r o o f We prove these results separately by the following lemmata.

L e m m a 6.5 .4[tel l (c) ~ A] = Sat(e t -,-+, A~A]).

P r o o f By definition of .4 and the composit ionali ty of A4, it is sufficient to prove Sat(c t .,-+,
M , [A]) = Sat(e t -,~, Sat(M,~A])).

C_) Trivial.

~) We show tha t e t --~, Sat(Pcl,l[A]) C Sat(c t -,z, M,~A]) . We t reat the following case: Let
s = s l . d t . s 2 . a 6 c t .,z~ Sat(A~f,[A]) , with Sl = d~.....da,, such that ~ Estore(sx.c t) ¢#
Estore(s].d t) and s , - d a . s 2 . a 6 Sat(s'.a), where s' .a 6 .M,[A]. I t is not difficult to see that
Sl 'da's"ce 6 A4,~A]. So we have s l , c ' t . s ' . a 6 c t --*, A4,~A]. As Sl .C 'a-s2 .~ E Sat(s') we
thus can infer tha t s~.dt .Sl .da.s2.~ E Sat(c t -,z, A4,1[A]), from which we derive by C1 that
s = sl'c't'a2"a 6 Sat(c t ",-*, .44,[A]).

The case s = s~.ff,, with s~ = d ~ d , a, such that s~.s2 6 Sat(g) and ~ Estore(s~.et), where
s' 6 M,~A], is t rea ted similar. [3

312

L e m m a 6.6 ,A~ask(c) ~ A] = Sat(c ~ ~.,~ v4~A]).

P r o o f Similar to the proof of the previous lemma. []

L e m m a 6.7 A~A ÷ B]] = Sat(A[A]~-,A[[B]).

Proof By the definition of A and the compositionality of . ~ , it suffices to prove that Sat(Sat(A~A])~,
Sat(.h4,[[B])) = Sat(A,~,[[A]-~-,A4,[[B]), the proof of which is straightforward. []

L e m m a 6.S A~SX.A] = Sat(3"~X.A~A]).

P r o o f By the definition of ..4 it suffices to prove Sat(3-~-'X.Sat(.M,[A])) = Sat(3A~X.M,~A]). Let s ' e
Sat(s), with s e Ad,[A]. It follows that s'[X/Z,Y/X] e Sat(s[X/Z,Y/X]) (Z N var(A) : 0). Fur-
thermore, it is not difficult to see that s'[X/Z, Y/X] e Sat(s[X/Z,Y/X]) implies 3Y(s'[X/Z, Y/X]) e
Sat(SY(s[X/g, Y/X])). So we have 3"~-'X.Sat(M,[[A]) C_ Sat(SAX.,~,~A]), and thus

Sat(3"~-~.Sat(M,[[A])) C_ Sat(3~-X.~,[[A]).

The other inclusion is immediate. []

L e m m a 6.9 A[A [1 B E = Sat(A[[A]i,A[[B]).

P r o o f By definition of ,4 and the compositionality of .M, it suffices to prove

Sat(Sat(.M,[[A])i, Sat(A4,[[B])) = Sat(./t4,[[A]i .M,~B])

To prove this it is sufficient to show that

Sat(A~,[A])H, Sat(.M,[B]) C Sat(A4,[A])[[,.M,[[B])

Let s r a l e .M,[[A] and s2.a2 e .M,~B]. Furthermore let s~.al e Sat(sral) and s'2.a 2 e Sat(sra2)
such that s'~.a~[[,s~.a2 is defined. We prove by induction on the number of applications of C1-O, the
saturation condition C1 for g = O, that s~.all]~s~.a2 • Sat(.M,[[A]i,.h4~[[B]). Note that this indeed
suffices because .M~ is closed under C2 and the following version of C1

t a a
C I - I s l "~1" . • . ' c ~ ' s 2 " ° L • S =:~ s 1 - c 1 "*" "*~ ' J rn 'S2"a • S

if p

It is not difficult to see that we may without loss of generality restrict ourselves to modular
sequences, namely~ to those sequences s such that for every two distinct constraints c and c ~ of s we
have BV(c) N FV(c) = ¢. (Modularize the derivations of s~ and s~ from s~, sz, respectively, prove
that ~ ' a l [[fi~-a2 • Sat (.M,~A] i,.M [B]), where ~ and ~ are the modularizations of sl and s~. Then,

Sl. ,li,s . 2 e we are done).
The case that the number of applications of C1-O equals zero follows immediately from the

closedness of .M, under C I - I and C2.
For the sake of a smooth presentation leCs introduce the notation s =# s t for the derivability of

g from s by one application of an arbitrary saturation condition.
Now let

S l :::::~* t; t S11 .~J~ . . { * , S l l - C l ' . . . ' C . ' S 1 2 ==~ . . ' C / r n ' S l 2 ==~ S 1

where szzcl~., t ==~, • din's12 s~ consists only of applications of C I - I and C2. We have

t t t t --a l~ .~ t t t
81 = S 11"C 1"~1 "C 2 " • • a m - 1 "C r n ' S 12

where the input constraints are introduced by C2, s~z =~* s~z and s~2 =~* s~ , both derivations using
only C I - I and C2. (The slightly more general case that some of the di's introduced are actually

313

sequences of input constraints can be treated in the same way, but requires a more elaborate notation
which might obscure the underlying idea.)

So we have

I t ~ 1 / a ' = s 2~.c1.~ .c 2"..'&~--~ '~ ' 8 2 • "C r n ' 8 22

such that s'nHs'21 a n d S/12~S'22 are defined.
Define

rl = s 'n 'c[' . . . ' c t 'd ; . . .da_l"d12

It is not difficult to see that sl =~* r~, where the number of applications of C1-O is one tess than
that in sl ~* si: ,1 ~ * Sll.C~.....ct,-s12 ~* sil.cl.....ct,.si2 ~* Sil.C~.....c£-d~....'d~-~'~;2.

Furthermore let

- - t ~ a 1 m - 1 r2 - s 2~.c i'Cn" ~ "...'din_ 1 S' • 22

Again it is not difficult to check that s2 ~* s'a :=>* r= ,, with the same number of applications of
(31-0 as in the derivation s2 =>* s~.

So we are now in a position which allows us to apply the induction hypothesis: r~ "a~Hf2.a2 E

Finally, we have rl-~lH,r2-a2 ~ * s i ' m i , 4 " a 2 , which we leave the reader to verify, []
[3

By theorem 6.4 we have that the equivalence relation associated to A, defined as

A1 ~'A A2 iff .A~AI~ = ,A~A2~

is a congruence:

Corol lary 6.10 IrA1 ~.4 A2 and B1 ~.a B2 then

tell(c) --* A1 ~--.4 tell(c) --+ A2 A1]] B1 ~A A2 II B2
ask(c) --* A1 ~.4 ask(c) ~ A2 3X.A1 ~ 3X.A2
A~ + B~ ~ A~+ B2

Proof Standard.

Processes A1 and A2 of example 4.8 and processes B1 and B2 of example 5.1 are equivalent
(A1 ~.4 A2 and B1 ~.a B2). In the following section we prove that ~4 is the coarsest equivalence
that preserve the five operators described above, and that is correct w.r.t, the observables.

7 T h e f u l l a b s t r a c t i o n o f . 4

In this section we prove the full abstraction of A with respect to our observation criterium. The
basic lines of the proof are the following. Given two processes A~, A2 with a different semantics A,
we build a context that is able to "detect" this difference at the observational level.

An important simplifying observation is that we can restrict ourselves to modular sequences. (A
sequence s is modular if for every two distinct constraints c and c' of s we have BV(c) n FV(c) = 0.)
Note that the constraint associated with a modular sequence s can be obtained by simply taking the
conjunction of the constraints of s. Now if AUA1]] # ALIA2] then there exists a modular sequence s,
such that, say, s - a E .A~A1] \ .ALIA2]. This can be seen as follows: Let s ' .a E .A~AI] \ A~A2]]. Let
s be obtained from 8' by replacing every constraint c of s' = sl "ct.s2 by a constraint equivalent to
Estore(svct). It follows that s is modular and furthermore that s.a E Sat(s'.a) by only applications
of C1, so we have also that a ' -a E Sat(s.a). It follows that s . a E A[A1] \ AgA2]].

314

To build up the distinguishing context we will follow different strategies, depending upon the
kind of termination mode (immediate or not immediate).

For the sequences ending with the not immediate termination modes (ss, f/:, dd and _L) the defi-
nition of the distinguishing context is uniform, in the following sense: given a modular sequence s .a
we define a context C(s .a) II [] such that the process C(s.a) "recognizes" s-(x. Next we prove that
every other sequence s ' - a recognized by C(s . a) that gives the same result must generate 3. a by
application of the saturation operator. Then we reason by contradiction: given a sequence s .a in the
semantic difference (say, s - a E .ALIA1] \ M~A2]), if the process C(s.ot) doesn't induce a difference in
the observables, then there exists an other sequence s ' .a (s ' .a E .A~A2]) recognized by the process
that produces the same result. But, since M is closed, the presence of d . a implies the presence of
s. a, and this contradicts the assumption.

Def in i t ion 7.1 Let s be a modular sequence. We define the process C(s .a) by induction on the
length ors.

. C(ss) = c (~) = C(da) = s u c c e s s , and c (±) = Fail,

• C(ca.~.~) = a s k (c) , C(s.a),

• C(c t . s - a) = tell(c) ~ C(s.a) .

The following proposition states that a process C(s . (x) recognizes the sequence s. ct. Namely,
C(s .~) generates g.5, where $ denotes the "mirror" of s, i.e. ca.s = et.$ and ct.s = ca.5, and

ss i f ,~e {ss a dd}
6 = F[otherwise.

P r o p o s i t i o n 7.2 For any modular sequence s .a we have $.6 6 A~C(s.a)].

P r o o f Let s ' be the sequence obtained from $ by adding after every assume constraint of ~ true t.
It is straightforward to prove that s ' . 6 6 A4[C(s.a)]. Furthermore, we have by applications of C1
that $ E Sat(s). So by definition of .4 we conclude that ~.6 E A[C(s.a)]. t3

We show now that the process C(s .a) induces s .a , i n t h e sense that if C (s . a) interacts with
a sequence s' (i.e., for some a ' we have $'.a' E A~C(s.a)]), which gives the same result as s, i.e.,

Estore(s) ¢* Estore(s'), then s can be obtained from s' by applying the saturation operator.
The next 1emma actually shows that g' is in the saturation of $. The final step is then made by

the mirroring lemma (cfr. lemma 7.4).

L e m m a 7.3 Given a modular sequence s.a, for every s' .a' E A~C(s.a)] such that ~ Estore(s') ¢*
Estore(~) we have s' e Sat(~).

P r o o f By definition we have A~C(s.a)] = Sat(Ad[C(s.a)]). Therefore, by remarks 5.3 and 5.4, it is
sufficient to prove that, for s'.a' e Ad[C(s.a)] with ~ Estore(s') ¢~ Estore(g), we have s' C Sat(S).

Let s'.a' e A,i[C(s.a)] such that ~ Estore(d) ¢* Estorc(~). Let n be the length of s. It is not
so difficult to see that there exists a computation

(Ao, s~o) ---~*.. . ---** (A,, s~) ---**.. . ---~* (A,, s~)

' A0 = C(s .a) , and such that s~ = A, s , = s',

A , = Success if a E {ss, ff, dd}
= Pail otherwise

Let #0 denote the suffix of ~ starting from its (i + 1) th dement. We prove that s~.#0 E Sat(g) for
0 < i < n. We proceed by induction on i.

315

i = o) Obvious, since s~ = A and ~(o) = 5.

i + i) By the induction hypothesis we have

s~'g (0 6 Sat(~).

There are two cases

Case 1: ~(1) = ca.g(i+l)) In this ease Ai equals ask(c) ---r Ai+l. So we have

(A~, s~) ---r* (A,+,, s~+,)

where

t t a a t
8i.{_ 1 = S i ' C 1 " . . . ' C ~ ' t ~ e

with

s to~(,~ .4 '4) ~ c.

Next note that

Estore(s') ¢~
Estore(~) ¢~
Estore(s~. 5(O)

from which we derive

(by hypothesis)
(by 1 and remark 5.3)

(i)

(2)

• ' ~ ~ - ') Estorc(s~.~(')) (3) Estore(&4....c~.c~.~('+l)) ¢ , E s t o r e (s ~ . C l c ~ . 8 ()

Therefore, since s!.c~.....4.ca-~(~+1) e Sat(s~.~(O) (by 3 and C2), and Sat(&~(0) C Sat(~) (by
1 and remark 5.4), we obtain

' . a ~a ~a ~(i+1) Sat(~) i'~1""" "'~k "~ "° e (4)

Now we can apply C1, using 2, thus obtaining

t ~a ~a z (i + l) t a a a - (i+1) i'~1"...'~k'o 6 Sat(sl.c 1ck.c .s). (5)

We conclude

8~i+1) • 3 (/+1) =

, a ..-c~.g(i+l) 6 (by 5) 8 i • C 1 . .

sat(~.4.....4.c,.~(~+~)) c_ (by4)
sat(~)

Case 2 : ~ (0 = ct.$(i+O) In this case Ai equals tell(c) ~ Ai+l. So we have

(A,, s~) ---~* (Ai+l, s~+l)

w h e r e

l t a . . C ~ . C ~ 8/+1 = "ql" Cl "" •

Similarly to the previous case, we have

Est°re(s~'4".--'c~ "ct'$(~+1)) ¢> Estore(s~'4"... 'cg'$ (0) ¢~ Estore(s~'~ (0) (6)

316

therefore, since s~.c~.....c~.ct.g(i+I) E Sat(s~.g (i)) (by 6 and C2), and Sat(s~.g(i)) C Sat(g) (by
1 and remark 5.4), we obtain

, a ...c~.ct.g(~+l) E Sat(S) (7) S l . C 1 ".

Therefore we can conctude

S~i+l) . g (i + l) =

s~-c~-....4-ct-~(i+1) e (by 7)
Sat(g).

0

If s' E Sat(s), then S E L e m m a 7.4 (M i r r o r i n g l e m m a) Let s and s' be modular sequences.
Sat($'). (As usual, g and g' denote the mirror of s, s', respectively.)

P r o o f First note that without loss of generality we may assume that s' is obtained from s by a
derivation consisting of modular sequences (take a derivation of s ' from s and "modularize" M1 its
sequences). So it is sufficient to show that for any set of sequences S, if Sat(S) = S, then S satisfies
the following property:

C3 sl.cL s2.a E Mod(S) ~ s1"s2"a e Mod(S)
if ~ Estore(sl.s2) ~* Estore(sl.Ct.S2).

Here Mod(S) denotes the set of modular sequences of S. We then can proceed by induction on the
number of applications of the saturation conditions C1 and C2, making use of the fact that C1
mirrors itself, in the following sense: if s ' is derived from s by one application of C1 then $ can be
derived from g' using C1 again. In the same sense an application of C2 can be mirrored by C3.

We prove C3 by induction on the length of s2:

s2 = A) In this case we just apply C1.

s~ = c't.s~) We consider the cases £ = I and £ = O separately.

£ = O) By C1 we have

sl.ct.c't 's~.a E Mod(S) ~ Sl.C't.ct.s~.a E Mod(S)

The induction hypothesis then gives us

sl.c't.s~'a E Mod(S)

£ = I) By C2 we have
/ a $ / a i sl'ct'c'a's~'a E Mod(S) ~ sl'c .c .c .%.a E Mod(S)

An application of C1 then gives us

sz-c'a'ct's~'a E Mod(S)

By induction hypothesis we obtain

sl'da's'2"a e Mod(S).

[]

Now we are ready to prove the main theorem

T h e o r e m 7.5 (Ful l a b s t r a c t i o n of ,4) For arbitrary processes A1, A2 such that .A~AI~ ~ ¢4~A2~
there exists a context C[] such that O[C[A,]] ~ O[C[A2]].

317

P r o o f Assume s . a E A~A~] \ A[[A2]]. As explained above we may assume without loss of generality
that s is modular. We t reat first the case that s = s~.ct.s~, such tha t V= Estore(sl) ,w Estore(s~.ct).
Note tha t this implies tha t a E {ss, E, dd, 1}. Let A = C(s.a), and let

ss if a E {as, f/ , dd}
= /~ otherwise.

By proposit ion 7.2 we have $-~ E .A~A], therefore

Result(s'ai~.(~) e Result(A~A [[A~])t~ = O~A [[A~].

Assume now tha t

Result(s.ai~.~) e VIA II A2] = ResuIt(.A[A 11 A2])/¢.

By the composit ional i ty of ,4 and remark 5.3 it follows tha t there exist ~ - a ~ E ,A[W2; J2] and
g~.a" E A~W; fi] such that

= Re uZt(s-a .a). (8)

Without loss of generali ty we may assume tha t s' is modular. We have

Estore(') Estore(s'i ') E tore(si) Estore(),
so by lemma 7.3 we have ~' E Sat(~). An application of lemma 7.4 then yields s E Sat(s'). Therefore
s .a t E A~A2] holds. By definition of .M, and ,4, and the assumption tha t s = sl "ct's2 such that
~: Estore(sl) ~ Estore(s~.c*), it follows tha t s . lE A~W2; J2]]. Fur thermore we observe that , by the
above ment ionated assumption about s, by definition of 6, of the process C(s.a), and by 8, we have
o / = o~ if a ~ ± . (Note tha t the assumption about s excludes the possibil i ty tha t a e {E,, dd,, _L,},
because the process C(s.a) requires the environment to produce the constraint c.) So we conclude
s. a E A[A2], and this contradicts our initial assumption.

Next we t reat the case that s is not of the form srct.s2, such tha t ~ Estore(s~) ~e~ Estore(srct). It
follows that we may assume without loss of generality, using the saturat ion conditions, that s = ca-a,
for some constraint c. We distinguish the following cases:

a = as) This case is t rea ted as above.

a =_k, _L,) It is sufficient to consider the case that ca.'lE A[AI] \ A~A2], because the case c a. _L,E
A~AI~ \ A~A2] does not occur. Let C[] = tel l (c) ~ ((Fai l l] []) + Success) . It is not difficult
to show that e \

a -- f[, dd) Let C[] -- te l l (c) --~ ([]+Succes s) , It is easy to show tha t (c, a) e O~C[A1]~\O~C[A2]~.

a = fi,, dd,) Firs t we consider a = if,: Let d be such tha t ~= c =~ d . Let C[] = tel l (c)
(((tell(true) --* Fai l) l] []) + a sk (d)) . It follows that (c, dd) e V~C[A,]] \ O~C[A~]~.

Next, we consider a = dd,: So let ca.dd, E A~A~] \ ~4~A2~ Firs t we note tha t ca.dd f[A~A~,
because when a process immediate ly suspends this means tha t it cannot perform any step. If
on the other hand we do have c a. dd E A~A~] we proceed as in the previous case. So suppose
now tha t ca.dd ¢ A~A~]. Let C[] = tel l (c) [I []. We then have (c, dd) e (.9~C[A,]] \ O[C[Ae]~.

El

318

8 C o n c l u s i o n s and fu ture w o r k

We have presented a fully abstract semantics for concurrent constraint programming which is fully
abstract with respect to finite observables and the operators of choice, parallelism, prefixing and
hiding. It would be interesting to extend our results to a notion of observables that includes infinite
behaviours.

We are currently investigating the possibiity of giving an axiomatization (in the style of Process
Algebra) for the equivalence induced by our compositional models.

Another topic of future research is the development, in our semantics framework, of some tool
for the static analysis of programs (in particular, deadlock analysis).

Acknowledgements We thank the members of the C.W.I. concurrency group, J.W. de
Bakker, F. Breughel, A de Bruin, E. Horita, P. Knijnenburg, J. Kok, J. Rutten, E. de Vink and J.
Warmerdam for their comments on preliminary versions of this paper.

R e f e r e n c e s

[1] J.W. de Bakker and J.N. Kok. Uniform abstraction, atomicity and contractions in the com-
parative semantics of Concurrent Prolog. In Proc. of the International Conference on Fifth
Generation Computer Systems, pages 347-355, Tokyo, Japan, 1988. OHMSHA, LTD. Extended
Abstract, full version available as CWI report CS-8834.

[2] J.W. de Bakker and J.N. Kok. Comparative metric semantics for Concurrent Prolog. Theoretical
Computer Science, 75(1/2):15-44, 1990.

[3] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Control flow versus logic: a deno-
rational and a declarative model for Guarded Horn Clauses. In A. Kreczmar and G. Mirkowska,
editors, Proc. of the Symposium on Mathematical Foundations of Computer Science, volume 379
of Lecture Notes in Computer Science, pages 165-176. Springer-Verlag, 1989.

[4] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Semantic models for a version
of PARLOG. In Giorgio Levi and Maurizio Martelli, editors, Proc. of the Sixth International
Conference on Logic Programming, Series in Logic Programming, pages 621-636, Lisboa, 1989.
The MIT Press. Extended version to appear in Theoretical Computer Science.

[5] F.S. de Boer and C. Palamidessi. Concurrent logic languages: Asynchronism and language
comparison. In Proc. of the North American Conference on Logic Programming, Series in Logic
Programming, pages 175-194. The MIT Press, 1990. Full version available as technical report
TR 6/90, Dipartimento di Informatica, Universit~ di Pisa.

[6] F.S. de Boer and C. Palamidessi. On the asynchronous nature of communication in concurrent
logic languages: A fully abstract model based on sequences. In J.C.M. Baeten and J.W. Klop,
editors, Proc. of Concur 90, volume 458 of Lecture Notes in Computer Science, pages 99-114,
Amsterdam, 1990. Springer-Verlag. Full version available as report at the Technische Universiteit
Eindhoven.

[7] M. Falaschi, M. Gabbrielli, G. Levi, and M. Murakavai. Nested Guarded Horn Clauses: a
language provided with a complete set of Unfolding Rules. In Proc. of the Japanese National
Conference on Logic Programming '89, 1989.

[8] M. Gabbrielli and G. Levi. Unfolding and fixpoint semantics for concurrent constraint logic
programs. In H. Kirchner and W. Wechler, editors, Proc. of the Second Int. Conf. on Algebraic
and Logic Programming, Lecture Notes in Computer Science, pages 204-216, Nancy, France,
1990. Springer-Vertag.

319

[9] H. Gaifman, M. J. Maher, and E. Shapiro. Reactive Behaviour semantics for Concurrent Con-
straint Logic Programs. In E. Lusk and R. Overbeck, editors, North American Conference on
Logic Programming, 1989.

[10] R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully abstract denotational semantics
for Concurrent Prolog. In Proc. of the Third IEEE Symposium on Logic In Computer Science,
pages 320-335. IEEE Computer Society Press, New York, 1988.

[11] J. Ja~ar and J.-L. Lassez. Constraint Logic Programming. In l~th ACMPrinciples of Program-
ming Languages Conference, pages 111-119, Munich, F.R.G., 1987. ACM, New York.

[12] J.N. Kok. A compositional semantics for Concurrent Prolog. In R. Cori and M. Wirsing, editors,
Proc. Fifth Symposium on Theoretical Aspects of Computer Science, volume 294 of Lecture Notes
in Computer Science, pages 373-388. Springer-Verlag, 1988.

[13] M. J. Maher. Logic semantics for a class of commltted-choice programs. In Jean-Louis Lassez,
editor, Proc. of the Fourth International Conference on Logic Programming, Series in Logic
Programming, pages 858-876, Melbourne, 1987. The MIT Press.

[14] V.A. Saraswat. Partial Correctness Semantics for CP($, t, &)- In Proe. of the Conference on
Foundations of Software Computing and Theoretical Computer Science, volume 206 ~f Lecture
Notes in Computer Science, pages 347-368. Springer-Verlag, 1985.

[15] V.A. Saraswat. A somewhat logical formulation of CLP synchronization primitives. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Proc. of the Fifth International Conference on Logic
Programming, Series in Logic Programming, pages 1298-1314, Seattle, USA, 1988. The MtT
Press.

[16] V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon
University, january 1989. Published by The MIT Press, U.S.A., 1990.

[17] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of the seventeenth
A CM Symposium on Principles of Programming Languages, pages 232-245. ACM, New York,
1990.

[18] M. Rinard V.A. Saraswat and P. Panangaden. A fully abstract semantics for concurrent con-
straint programming. In Proc. of the eighteenth A CM Symposium on Principles of Programming
Languages. ACM, New York, 1991.

