
Independence of Negative Constraints

J.L. Lassez
IBM T.J. Watson Research Center

K. McAloon*
Brooklyn College and CUNY Graduate Center

Abstrac t

The independence of negative constraints is a recurring phenomenon in logic
programming. This property has in fact a natural interpretation in the context of
linear programming that we exploit here to address problems of canonical represen-
tations of positive and negative linear arithmetic constraints. Independence allows
us to design polynomial time algorithms to decide feasibility and to generate a
canonical form, thus avoiding the combinatorial explosion that the presence of neg-
ative constraints would otherwise induce. This canonical fo~m allows us to decide
by means of a simple syntactic check the equivalence of two sets of constraints and
provides the starting point for a symbolic computation system. It has, moreover,
other applications and we show in particular that it yields a completeness theorem
for constraint propagation and is an appropriate tool to be used in connection with
constraint based programming languages.

*Research partially supported by NSF Grant CCR-8703086

20

1 I n t r o d u c t i o n

Programming with constraints is an increasingly important element in research on
programming languages and implementations. In languages such as CONSTRAINTS
[Steele,Sussman] and THINGLAB [Borning] constraint solving has been used as a tool
for declarative programming and for knowledge representation. Constraint solving is
also used to drive rule-based systems such as ISIS [Fox] and MOLGEN [Stefik].

The constraint paradigm has also emerged in a significant way in logic programming.
Thus in [Jaffar, Lassez] the Constraint Logic Programming scheme of languages is in-
troduced which provides a formal framework for constraint programming. Moreover,
the constraint point of view represents a significant extension of the logic programming
paradigm beyond the original resolution based framework and is an important extension
of the range of declarative programming [Clark]. Several such languages have been suc-
cessfully implemented. The language CLP(R) for constraint programming over the real
numbers has been implemented by [,Iaffar, Michaylov] and employed in applications to
decision support systems [Huynh,C. Lassez]. Colmerauer and his group have developed
Prolog III which supports boolean and linear arithmetic constraints [Colmerauer 2].
The constraint logic programming system CHIP [Dincbas et all has had very successful
industrial applications.

At the same time, there have been dramatic mathematical developments in con-
straint solving ranging from the work of Karmakar [Karmakar] and others on inte-
rior point methods in linear programming to new work on the existential theory of R
[Canny],[Renegar],[Grlgor'ev,Vorobjov]. New avenues of research have also been opened
by the use of 'analog' techniques such as simulated annealing and neural nets, e.g. [Mc-
Clelland,Rumelhart]. Recent papers such as [Davis], [Pearl], [Dechter,Pearl] contain new
developments in AI motivated constraint based techniques and on connections between
AI and OR work.

Clearly the design and implementation of languages of the CLP scheme will make
heavy use of work on constraint solving from various areas. However, the requirements
on an arithmetic constraint solver in the OR or AI context are quite different from
those that are imposed on a constraint solver which is embedded in a general purpose
programming language. Designing languages to solve constraint satisfaction problems
or optimization problems is a fundamentally different task from using the constraint
paradigm to design programming languages. Thus problems of considerable importance
for a CLP system such as the equivalence of sets of constraints do not appear to have
attracted much attention in Operations Research or Artificial Intelligence, the work of
Bradley [Bradley] and of Adler [Adler] being notable exceptions. In this paper we build
on experience from the fundamental concepts and algorithms of logic programming itself
and show how the 'independence of negative constraints' can be used in the context of
an extended class of linear arithmetic constraints to develop a polynomial time canonical
form algorithm for use in CLP languages. Moreover, this analysis leads to a completeness
theorem for constraint propagation that should prove applicable in other contexts as
well.

21

2 Independence and Logic Programming

The independence of negative constraints is a recurrent phenomenon in logic program-
ming which we can describe schematically as follows: we are given 'positive' con-
straints P i , . . . , Pn and other 'positive' constraints Q1,. . . ,Qm which have 'negative'
counterparts Q b . . . , Q m and are asked to determine the feasibility of the combined
system of positive and negative constraints P1, . . . , Pn,Q1, . . . , Qm. This combined sys-
tem is not feasible iff any solution that simultaneously satisfies the P1, ...,Pn must
also satisfy at least one of the Qj; in logical notation, this system is not feasible iff
P i , . . . , Pn ~ Q1 v . . . v Qm. We say that negative constraints are independent if when-
ever P i , . . . , P , ~ Q1 v ... v Qm then for some J0 we have P1 , . . . ,Pn ~ Qjo. When
negative constraints are independent in this sense, it follows that verifying the consis-
tency or feasibility of P1, . . . , P, , Q1 , . . . , Qm reduces to the simultaneous verification of
the feasibility of the constraints Pi, ..., Pn, Qj.

The phenomenon of independence of negative constraints is central to logic program-
ming. In fact, if Pt, ..., P,, are definite Horn clauses and if Qi, ..., Q,, are elements of the
Herbrand base, then indeed P1, ..., P , ~ Q1 v ... v Qm if and only if for some j , we have
P1, ..., Pn ~ Qj. This follows since Horn formulas are closed under products of models;
Historically, it was this very property of Horn formulas - preservation under products of
models - that motivated the research of Horn, Keisler and others [Chang and Kelsler].

Another example of this phenomenon was discovered by Colmerauer in his work on
Prolog II. Colmerauer considered equations and inequatlons of the form sl = tl,..., sn =
t,,, ui ¢ vl, ..., um ¢ vm where the tl, si, uj, vj are terms. In [Colmerauer], the indepen-
dence of inequations in this context is established and used to develop an algorithm
for deciding feasibility of equations and inequations for Prolog II. In [Lassez et al.] the
concept of dimension was introduced in the term algebra context which brought to-
gether the results of Colmerauer on the independence of negative constraints, the work
of Robinson on idempotent mgu's, and algebraic equation solving. It is the notion of
dimension that also applies in the context of linear arithmetic constraints and which
gives us the requisite independence property.

3 Independence and Linear Arithmetic Constraints

The language of generalized linear constraints is comprised first of positive constraints
which are equations ax = fl and weak inequalities ax < ft. Here a denotes an n-
dimensional vector of real numbers, x denotes an n-dimensional vector of variables,
f~ denotes a real number and juxtaposition denotes inner product. A basic negative
constraint is a disjunction of inequations aix ~ [~i, i = 1 , . . . , n. Using DeMorgan's Law
and matrix notation, a negative constraint can be written {Ax = b} which denotes the
set of points x which lie in the complement, of tile affine space defined by the equations
Ax = b. Conjunctions of negative constraints can be written {Ajx = b j} , j = 1 , . . . , n;
conjunctions of equality constraints will be written Ax = b and similarly conjunctions
of weak inequality constraints will be written Ax <_ b.

22

We also admit strict inequality constraints ax < b. In matrix form conjunctions of
strict inequality constraints are written Ax < b. This is a hybrid form of constraint
in that it can be reduced to the combined positive and negative constraints Ax < b,
{ a l z = i = 1 , . . . , n .

Thus a set of generalized linear constraints consists of positive constraints Ez = f
and Ax < b, strict inequality constraints Gx < h and negative constraints {Cjx = dj} , j =
1 . . , n .

By way of example, the constraints z > 0, x - y + z < 1, x > 0, y < 0, {y = 0, z = 0}
define a wedge shaped polytope with a facet and an edge removed.

We want to develop efficient algorithms for testing the feasibility of a set of gener-
alized linear constraints and to generate a canonical representation of such constraint
sets. The presence of negative constraints introduces new problems. The point sets de-
fined by the constraints are no longer convex sets and so the methods of convex analysis
and of linear programming do not apply directly. Negative constraints themselves are
disjunctions of inequations which enhances the expressive power of the constraint sets
but which complicates the combinatorics of the situation. The key to dealing with these
problems is the independence of negative constraints.

As mathematical preliminaries, we require basic results on polyhedral sets [Schrijver].
We establish the independence of negative constraints as well as a theorem which states
that the solution set defined by a system of generalized linear constraints has a unique
factorization into positive and negative components. For both results, dimensionality
arguments play an essential role.

Theorem 1 (I n d e p e n d e n c e of Nega t ive Cons t r a in t s) A system Ez = f , Az < b,
Cjz = dj , j = 1 . . . n of constraints is feasible if and only if for each jo, the subsystem
Ex = f , Az < b, {Cj0x = dj0 } is feasible.

The next result requires two definitions. Suppose that Ex = f, Az _< b, {Cjz = dj} , j =
1 . . . n is a feasible set of generalized linear constraints and that the positive constraints
define the polyhedral set P; then a negative constraint {Ciz = dl} is said to be relevant
if {z : Ciz = dl} N P is not empty. Suppose that P is a polyhedral set defined by a
system of positive constraints; a negative constrMnt {Cx = d} is said to be P-precise if
{Cx = d} is relevant and {x : Cz = d} = A f f (P f3 {z : Cx = d}), where A f t denotes
affine closure.

T h e o r e m 2 (Un ique Fac tor iza t lon) Suppose that two systems of generalized linear
constraints define the same non-empty solution set. Then the positive constraints in the
two systems define the same polyhedral set P. Moreover if the negative constraints in
both systems are P-precise, then the complements of the negative constraints in the two
systems define the same union of a/fine sets.

4 Canonical Representation

Next we define the canonical representation of a set of generalized linear constraints
and describe the algorithms to compute it, including an algorithm to decide feasibility.

23

A set of linear equations

y~ = a l j Z l + . . . + a,.,~x,. + cl

Ym = am,lzl + . . . + a,.,.,z. + c,.

is said to be in solved/orm if the variables Yl, • . . , ym and z l , . . . , z,, are all distinct. The
variables y l , . . . , y,,, are called the eliminable variables and the variables z l , . . . , x,, are
called the parameters of the solved form. Further, we will say that a negative constraint
{Cz = d} is in solved form if the complementary equality constraint Cz = d is given in
solved form.

A set of generalized linear constraints is in canonical form if it is non-redundant and
consists of (1) a set of equations in solved form with parameters x which define the
affine hull of the solution set (2) a set of inequality constraints Az < b which define
a full dimensional polyhedral set P in the parameter space and (3) a set of P-precise
negative constraints in solved form.

A system of generalized linear constraints in canonical form is thus partitioned into
three modules (E,I,N) where E is a set of equality constraints, I is a set of weak inequality
constraints and N is a set of negative constraints. What we develop is an algorithm
CanForm that maps generalized linear constraints to triples of this form in such a way
that if two constraint sets define the same solution set they are mapped to the same
triple (E,I,N).

By way of example, consider the constraints in four variables zl + x3 < a:4, zl + x3 <
10, z4 < z3, ~ < z3 + z4, zs < zl + z4,0 < z~, {z4 = 0}. The CanForm procedure will
return

/~ = { x l = 0, x3 = x 4 }

I = { z 4 < 1 0 , z 2 - 2 x 4 < 0 , - z 2 < 0 }
N = { { z 2 = = 0} }

The constraints thus define a two dimensional point set, a triangle with a vertex re-
moved.

In the definition of canonical form no mention is made of strict inequality constraints.
As noted above, each strict inequality constraint ekz < Ck can be replaced by the pair
ekz < ~bk, {ekz = ~bk}. From the algorithmic point of view, we can suppose that this
transformation has been made throughout; we return to this point later and show how
to restore the strict inequality constraints at the end of the simplification process.

The independence property allows us to avoid the combinatorial explosion that the
presence of negative constraints would normally introduce and also allows for a large
degree of parallelism in the treatment of the negative constraints. Moreover, we show
that the positive and negative constraints can be separated out in the treatment of re-
dundancy. This will serve to reduce eliminating redundancy among negative constraints
to a parallel sieving process. An important step in the algorithm is the computation

24

of the affine hull of the solution set defined by the constraints. This allows for the
replacement of Linear Programming routines by Gaussian Elimination for part of the
feasibility check in the algorithm. Also, going to the affine hull brings us to a full
dimensional situation. In order to overcome the sequentiality that is typically found
when eliminating redundancy [Karwan et all, we introduce a classification of redundant
inequality constraints, which combined with affine hull arguments leads to a procedure
with highly decomposable parallelism for eliminating redundancy. For further details
see [Lassez, McAloon].

In the theorem that follows, the uniqueness of the equality constraints and negative
constraints depends on a fixed ordering of the variables in the system.

T h e o r e m 3 (Canonica l Form T h e o r e m) If two sets of constraints define the same
solution set the canonical form procedure returns the same equations to define the affine
hull, the same inequality constraints (up to multiplication by positive scalars) and the
same set of negative constraints.

At this point, if strict inequality constraints are to be returned in the canonical
form, let us note that a strict inequality corresponds to a pair (ax <_ fl, {cx = 5}) where
ax < ~ is a positive weak inequality constraint in the canonical form and {cx = 5} is
a negative constraint such that the vector c, 5 is a scalar multiple of the vector a, ft.
This pair can then be replaced by the strict inequality constraint as < 8. As in the
use of linear programming and Gaussian elimination in the decision procedures of the
CanForm algorithm, here too sufficient precision arithmetic is required. This variant
on the canonical form algorithm is a natural one in the context of symbolic processing
of generalized linear constraints and in the context of output constraints where strict
inequality information can be significant.

If~ in the example above, the constraint 0 < x2 is sharpened to 0 < x~, then after
transforming this constraint into the pair 0 < x~, {x~ = 0}, the canonical form procedure
will return

E = {zl = 0, =
I={z~<10,~2-2z4<0,-z2<0}

The negative constraint {x~ = 0, x4 = 0} has been eliminated because it is now redun-
dant. Since the vector (1, 0,0) is a scalar multiple of (-1 , 0, 0) the constraints -x2 < 0
and {x2 = 0} can be replaced by the strict inequality constraint -x2 < 0.

5 C o m p u t a t i o n a l C o m p l e x i t y

In this section we address considerations of computational complexity for the canonical
form algorithm. We have

T h e o r e m 4 The canonical form procedure CanForm is a polynomial time algorithm.

25

Moreover, in terms of the PRAM model of parallel computation, the processor com-
plexity of the algorithm is bounded by the number of constraints and its time complexity
by the sequential complexity of linear programming. Further, the number of arithmetic
operations in the algorithm is determined by Gaussian elimination and linear program-
ming; thus if a strongly polynomial algorithm were to be found for linear programming,
then the canonical form problem would also enjoy a strongly polynomial solution. On
the other hand, it is not to be expected that an NC algorithm can be found: the canon-
ical form problem subsumes the Phase I or Feasibility Problem of linear programming
and this is known to be P-Complete.

The algorithm can be applied to give polynomial time procedures for computing
two normal forms for systems consisting of equality and weak inequality constraints.
In [Schrijver] a normal form is defined for a set of positive linear constraints which
involves computing the afIine hull of the polyhedral set defined by the constraints and
representing this set in terms of its facets; in the non-full-dimensional case, the facets
are defined by means of supporting hyperplanes in the full space chosen orthogonal to
the affine hull. We can also show that the normal form of [Adler] for linear programs
with objective function is polynomial time computable using our algorithm. Adler's
normal form, the core of a linear program involves both the program and its dual and
both the primal and dual constraint sets are analyzed in the process.

6 Constraint Propagation

Finally, we consider the canonical form in the context of constraint propagation and
constraint based programming.

Linear arithmetic constraints arise naturally in constraint programming and in AI
situations. When determining the solvability and/or tile solutions to a set of constraints~
a standard strategy is to work forward in an incremental way by starting with the
~most constraining' conditions and propagating these constraints throughout the rest
of the computation. Intuitively a ~more constraining' condition corresponds to a set of
smaller dimension in the solution space, information which is in general not explicit in
a given system S of constraints. The canonical form procedure returns in ezplicit form
a representation of equality, inequality and negative information in packets of smallest
possible dimension. In fact, the canonical form leads to a soundness and completeness
theorem for constraint propagation.

T h e o r e m 5 (Cons t ra in t P ropaga t i on Comple teness T h e o r e m) Let S be a con-
sistent system of generalized linear constraints with canonical form (E, I, N) . Let y be
the eliminable variables and z the parameters of (E, I, N). Then we have

(1) S ~ ay = b~ qr E ~ ay = b~

(s) s b = d} itY = a}
where {Cz = d} is a precise negative constrainL

26

This theorem also has application to constraint logic programming languages in the
CLP class [Jaffar and Lassez]. In particular, for CLP(R) [Jaffar and Michaylov] and
Prolog III, it shows how the canonical form is the analog in the constraint context of
the most general unifier.

B i b l i o g r a p h y

[Adler]
I. Adler, The Core of a Linear Program, Technical Report, Department of Operations
Research, Berkeley
[Borning]
A. Borning, The Programming Language Aspects ofTHINGLAB, a Constraint Oriented
Simulation Laboratory, A CM Transactions on Programming Languages and Systems 3
(1981) 252-387
[Bradley]
G. Bradley, Equivalent Integer Programs, Proceedings of lhe Fifth Iniernalional Con-
ference on Operations Research, ed. J. Lawrence, Venice 1969
[Canny]
J. Canny, Some Algebraic and Geometric Computations in PSPACE, STOC, 1988
[Chang and Keisler]
C.C. Chang and H.J. Keisler, Model Theory, North-Holland 1973
[Clark]
K. Clark, Logic Programming Schemes, Proceedings of 1988 FGCS Conference, Tokyo
[Colmerauer]
A. Colmerauer, Equations and Inequations on Finite and Infinite Trees, Proceedings of
1984 FGCS Conference, Tokyo
[Colmerauer 2]
A. Colmerauer, An Introduction to Prolog III, Technical Report, Groupe d'Intelligence
Artificielle (1987)
[Davis]
E. Davis, Constraint Propagation, Artificial Intelligence 1988
[Dechter,Pearl]
R. Dechter and J. Pearl, Network-based Heuristics for Constraint Satisfaction Problems,
Artificial Intelligence, 34 (1987) 1-38
[Dincbas et al]
M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier,
The Constraint Logic Programming Language CHIP, Proceedings of the 1988 FGCS
Conference, Tokyo
[Fox]
M. Fox, Constrainl Directed Search: A Case Study of Job-Shop Scheduling, Morgan
Kaufmann, 1988
[Grigor'ev,Vorobjov]
D. Grigor'ev and N. Vorobjov, Solving Systems of Polynomial Inequalities in Subexpo-

27

nentlal Time, Journal of Symbolic Computation 5 (1988) 37-64
[ttuynh,C. Lassez]
T. ttuynh and C. Lassez, A CLP(R) Options Analysis System, Proceedings of the 1988
Logic Programming Symposium
[Jaffar, Lassez]
J. Jaffar and J.L. Lassez, Constraint Logic Programming, Proceedings of POPL 1987,
Munich
[Jaffar, Michaylov]
J. Jaffar and S. Michaylov, Methodology and Implementation of a CLP System, Pro-
ceedings of the 1987 Logic Programming Conference, Melbourne, MIT Press
[Karwan et al.]
M.H. Karwan, V. Lofti, J. Telgen and S. Zionts, Redundancy in Mathematical Program-
ming, Lecture Notes in Economics and Mathematical Systems 206, Springer-Verlag 1983
[Lassez et at.]
J.L. Lassez, M. Maher and K. Marriott, Unification revisited, Foundations of Deductive
Databases and Logic Programming, J. Minker editor, Morgan Kaufmann 1988
[Lassez, McAloon]
J-L. Lassez and K. McAloon, Applications of a Canonical Form for Generalized Linear
Constraints, Proceeding of FGCS 1988, Tokyo.
[McClelland,Rumelhart]
J. McClelland and D. Rumelhart, Ezplorations in Parallel Distributed Processing, MIT
Press, 1988
[Pearl]
J. Pearl, Constraints and Heuristics, Artificial Intelligence 1988
[Renegar]
J. Renegar, A Faster PSPACE ALgorithm for Deciding the Existential Theory of the
Reals, FOGS 1988, pp 291-285
[Schrijver]
A. Schrijver, Theory of Linear and Integer Programming, Wiley 1986
[Steele,Sussman]
G. Steele and G. Sussman, CONSTRAINTS - A Language for Expressing Almost Hi-
erarchical Descriptions, Artificial Intelligence 1980
[Stefik]
M. Stefik, Planning with Constraints (MOLGEN: Part 1), Artificial Intelligence 16
(19s4) 111-140

J-L. Lassez
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598

K. McAloon
Logic Based Systems Lab
Brooklyn College CUNY
Brooklyn NY 11210

