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Abstrac t  

The independence of negative constraints is a recurring phenomenon in logic 
programming. This property has in fact a natural interpretation in the context of 
linear programming that we exploit here to address problems of canonical represen- 
tations of positive and negative linear arithmetic constraints. Independence allows 
us to design polynomial time algorithms to decide feasibility and to generate a 
canonical form, thus avoiding the combinatorial explosion that the presence of neg- 
ative constraints would otherwise induce. This canonical fo~m allows us to decide 
by means of a simple syntactic check the equivalence of two sets of constraints and 
provides the starting point for a symbolic computation system. It has, moreover, 
other applications and we show in particular that it yields a completeness theorem 
for constraint propagation and is an appropriate tool to be used in connection with 
constraint based programming languages. 

*Research partially supported by NSF Grant CCR-8703086 



20 

1 I n t r o d u c t i o n  

Programming with constraints is an increasingly important element in research on 
programming languages and implementations. In languages such as CONSTRAINTS 
[Steele,Sussman] and THINGLAB [Borning] constraint solving has been used as a tool 
for declarative programming and for knowledge representation. Constraint solving is 
also used to drive rule-based systems such as ISIS [Fox] and MOLGEN [Stefik]. 

The constraint paradigm has also emerged in a significant way in logic programming. 
Thus in [Jaffar, Lassez] the Constraint Logic Programming scheme of languages is in- 
troduced which provides a formal framework for constraint programming. Moreover, 
the constraint point of view represents a significant extension of the logic programming 
paradigm beyond the original resolution based framework and is an important extension 
of the range of declarative programming [Clark]. Several such languages have been suc- 
cessfully implemented. The language CLP(R) for constraint programming over the real 
numbers has been implemented by [,Iaffar, Michaylov] and employed in applications to 
decision support systems [Huynh,C. Lassez]. Colmerauer and his group have developed 
Prolog III which supports boolean and linear arithmetic constraints [Colmerauer 2]. 
The constraint logic programming system CHIP [Dincbas et all has had very successful 
industrial applications. 

At the same time, there have been dramatic mathematical developments in con- 
straint solving ranging from the work of Karmakar [Karmakar] and others on inte- 
rior point methods in linear programming to new work on the existential theory of R 
[Canny],[Renegar],[Grlgor'ev,Vorobjov]. New avenues of research have also been opened 
by the use of 'analog' techniques such as simulated annealing and neural nets, e.g. [Mc- 
Clelland,Rumelhart]. Recent papers such as [Davis], [Pearl], [Dechter,Pearl] contain new 
developments in AI motivated constraint based techniques and on connections between 
AI and OR work. 

Clearly the design and implementation of languages of the CLP scheme will make 
heavy use of work on constraint solving from various areas. However, the requirements 
on an arithmetic constraint solver in the OR or AI context are quite different from 
those that are imposed on a constraint solver which is embedded in a general purpose 
programming language. Designing languages to solve constraint satisfaction problems 
or optimization problems is a fundamentally different task from using the constraint 
paradigm to design programming languages. Thus problems of considerable importance 
for a CLP system such as the equivalence of sets of constraints do not appear to have 
attracted much attention in Operations Research or Artificial Intelligence, the work of 
Bradley [Bradley] and of Adler [Adler] being notable exceptions. In this paper we build 
on experience from the fundamental concepts and algorithms of logic programming itself 
and show how the 'independence of negative constraints' can be used in the context of 
an extended class of linear arithmetic constraints to develop a polynomial time canonical 
form algorithm for use in CLP languages. Moreover, this analysis leads to a completeness 
theorem for constraint propagation that should prove applicable in other contexts as 
well. 
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2 Independence and Logic Programming 

The independence of negative constraints is a recurrent phenomenon in logic program- 
ming which we can describe schematically as follows: we are given 'positive' con- 
straints P i , . . . ,  Pn and other 'positive' constraints Q1,. . .  ,Qm which have 'negative' 
counterparts Q b . . . , Q m  and are asked to determine the feasibility of the combined 
system of positive and negative constraints P1, . . . ,  Pn,Q1, . . . ,  Qm. This combined sys- 
tem is not feasible iff any solution that simultaneously satisfies the P1, ...,Pn must 
also satisfy at least one of the Qj; in logical notation, this system is not feasible iff 
P i , . . . ,  Pn ~ Q1 v . . .  v Qm. We say that negative constraints are independent if when- 
ever P i , . . . , P ,  ~ Q1 v ... v Qm then for some J0 we have P1 , . . . ,Pn  ~ Qjo. When 
negative constraints are independent in this sense, it follows that verifying the consis- 
tency or feasibility of P1, . . . ,  P, ,  Q1 , . . . ,  Qm reduces to the simultaneous verification of 
the feasibility of the constraints Pi, ..., Pn, Qj. 

The phenomenon of independence of negative constraints is central to logic program- 
ming. In fact, if Pt, ..., P,, are definite Horn clauses and if Qi, ..., Q,, are elements of the 
Herbrand base, then indeed P1, ..., P ,  ~ Q1 v ... v Qm if and only if for some j ,  we have 
P1, ..., Pn ~ Qj. This follows since Horn formulas are closed under products of models; 
Historically, it was this very property of Horn formulas - preservation under products of 
models - that motivated the research of Horn, Keisler and others [Chang and Kelsler]. 

Another example of this phenomenon was discovered by Colmerauer in his work on 
Prolog II. Colmerauer considered equations and inequatlons of the form sl = tl,..., sn = 
t,,, ui ¢ vl, ..., um ¢ vm where the tl, si, uj, vj are terms. In [Colmerauer], the indepen- 
dence of inequations in this context is established and used to develop an algorithm 
for deciding feasibility of equations and inequations for Prolog II. In [Lassez et al.] the 
concept of dimension was introduced in the term algebra context which brought to- 
gether the results of Colmerauer on the independence of negative constraints, the work 
of Robinson on idempotent mgu's, and algebraic equation solving. It is the notion of 
dimension that also applies in the context of linear arithmetic constraints and which 
gives us the requisite independence property. 

3 Independence and Linear Arithmetic Constraints 

The language of generalized linear constraints is comprised first of positive constraints 
which are equations ax = fl and weak inequalities ax < ft. Here a denotes an n- 
dimensional vector of real numbers, x denotes an n-dimensional vector of variables, 
f~ denotes a real number and juxtaposition denotes inner product. A basic negative 
constraint is a disjunction of inequations aix ~ [~i, i = 1 , . . . ,  n. Using DeMorgan's Law 
and matrix notation, a negative constraint can be written {Ax = b} which denotes the 
set of points x which lie in the complement, of tile affine space defined by the equations 
Ax = b. Conjunctions of negative constraints can be written {Ajx  = b j} , j  = 1 , . . . ,  n; 
conjunctions of equality constraints will be written Ax = b and similarly conjunctions 
of weak inequality constraints will be written Ax <_ b. 
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We also admit strict inequality constraints ax < b. In matrix form conjunctions of 
strict inequality constraints are written Ax < b. This is a hybrid form of constraint 
in that it can be reduced to the combined positive and negative constraints Ax < b, 
{ a l z  = i = 1 , . . . ,  n .  

Thus a set of generalized linear constraints consists of positive constraints Ez = f 
and Ax < b, strict inequality constraints Gx < h and negative constraints {Cjx = dj} , j  = 
1 . . , n .  

By way of example, the constraints z > 0, x - y + z < 1, x > 0, y < 0, {y = 0, z = 0} 
define a wedge shaped polytope with a facet and an edge removed. 

We want to develop efficient algorithms for testing the feasibility of a set of gener- 
alized linear constraints and to generate a canonical representation of such constraint 
sets. The presence of negative constraints introduces new problems. The point sets de- 
fined by the constraints are no longer convex sets and so the methods of convex analysis 
and of linear programming do not apply directly. Negative constraints themselves are 
disjunctions of inequations which enhances the expressive power of the constraint sets 
but which complicates the combinatorics of the situation. The key to dealing with these 
problems is the independence of negative constraints. 

As mathematical preliminaries, we require basic results on polyhedral sets [ Schrijver ]. 
We establish the independence of negative constraints as well as a theorem which states 
that the solution set defined by a system of generalized linear constraints has a unique 
factorization into positive and negative components. For both results, dimensionality 
arguments play an essential role. 

Theorem 1 ( I n d e p e n d e n c e  of  Nega t ive  Cons t r a in t s )  A system Ez  = f ,  Az  < b, 
Cjz = dj , j  = 1 . . . n  of constraints is feasible if and only if for each jo, the subsystem 
Ex = f ,  Az < b, {Cj0x = dj0 } is feasible. 

The next result requires two definitions. Suppose that Ex = f, Az _< b, {Cjz = dj} , j  = 
1 . . .  n is a feasible set of generalized linear constraints and that the positive constraints 
define the polyhedral set P; then a negative constraint {Ciz = dl} is said to be relevant 
if {z : Ciz = dl} N P is not empty. Suppose that P is a polyhedral set defined by a 
system of positive constraints; a negative constrMnt {Cx = d} is said to be P-precise if 
{Cx = d} is relevant and {x : Cz = d} = A f f ( P  f3 {z :  Cx = d}), where A f t  denotes 
affine closure. 

T h e o r e m  2 (Un ique  Fac tor iza t lon)  Suppose that two systems of generalized linear 
constraints define the same non-empty solution set. Then the positive constraints in the 
two systems define the same polyhedral set P. Moreover if the negative constraints in 
both systems are P-precise, then the complements of the negative constraints in the two 
systems define the same union of a/fine sets. 

4 Canonical Representation 

Next we define the canonical representation of a set of generalized linear constraints 
and describe the algorithms to compute it, including an algorithm to decide feasibility. 
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A set of linear equations 

y~ = a l j Z l  + . . .  + a,.,~x,. + cl 

Ym = am,lzl + . . .  + a,.,.,z. + c,. 

is said to be in solved/orm if the variables Yl, • . . ,  ym and z l , . . . ,  z,, are all distinct. The 
variables y l , . . . ,  y,,, are called the eliminable variables and the variables z l , . . . ,  x,, are 
called the parameters of the solved form. Further, we will say that a negative constraint 
{Cz = d} is in solved form if the complementary equality constraint Cz = d is given in 
solved form. 

A set of generalized linear constraints is in canonical form if it is non-redundant and 
consists of (1) a set of equations in solved form with parameters x which define the 
affine hull of the solution set (2) a set of inequality constraints Az < b which define 
a full dimensional polyhedral set P in the parameter space and (3) a set of P-precise 
negative constraints in solved form. 

A system of generalized linear constraints in canonical form is thus partitioned into 
three modules (E,I,N) where E is a set of equality constraints, I is a set of weak inequality 
constraints and N is a set of negative constraints. What we develop is an algorithm 
CanForm that maps generalized linear constraints to triples of this form in such a way 
that if two constraint sets define the same solution set they are mapped to the same 
triple (E,I,N). 

By way of example, consider the constraints in four variables zl + x3 < a:4, zl + x3 < 
10, z4 < z3, ~ < z3 + z4, zs < zl + z4,0 < z~, {z4 = 0}. The CanForm procedure will 
return 

/~ = { x l  = 0,  x3  = x 4 }  

I = { z 4 < 1 0 ,  z 2 - 2 x 4 < 0 , - z 2 < 0 }  
N =  { { z 2  = = 0} }  

The constraints thus define a two dimensional point set, a triangle with a vertex re- 
moved. 

In the definition of canonical form no mention is made of strict inequality constraints. 
As noted above, each strict inequality constraint ekz < Ck can be replaced by the pair 
ekz < ~bk, {ekz = ~bk}. From the algorithmic point of view, we can suppose that this 
transformation has been made throughout; we return to this point later and show how 
to restore the strict inequality constraints at the end of the simplification process. 

The independence property allows us to avoid the combinatorial explosion that the 
presence of negative constraints would normally introduce and also allows for a large 
degree of parallelism in the treatment of the negative constraints. Moreover, we show 
that the positive and negative constraints can be separated out in the treatment of re- 
dundancy. This will serve to reduce eliminating redundancy among negative constraints 
to a parallel sieving process. An important step in the algorithm is the computation 



24 

of the affine hull of the solution set defined by the constraints. This allows for the 
replacement of Linear Programming routines by Gaussian Elimination for part of the 
feasibility check in the algorithm. Also, going to the affine hull brings us to a full 
dimensional situation. In order to overcome the sequentiality that is typically found 
when eliminating redundancy [Karwan et all, we introduce a classification of redundant 
inequality constraints, which combined with affine hull arguments leads to a procedure 
with highly decomposable parallelism for eliminating redundancy. For further details 
see [Lassez, McAloon]. 

In the theorem that follows, the uniqueness of the equality constraints and negative 
constraints depends on a fixed ordering of the variables in the system. 

T h e o r e m  3 (Canonica l  Form T h e o r e m )  If  two sets of constraints define the same 
solution set the canonical form procedure returns the same equations to define the affine 
hull, the same inequality constraints (up to multiplication by positive scalars) and the 
same set of negative constraints. 

At this point, if strict inequality constraints are to be returned in the canonical 
form, let us note that a strict inequality corresponds to a pair (ax <_ fl, {cx = 5}) where 
ax < ~ is a positive weak inequality constraint in the canonical form and {cx = 5} is 
a negative constraint such that the vector c, 5 is a scalar multiple of the vector a, ft. 
This pair can then be replaced by the strict inequality constraint as  < 8. As in the 
use of linear programming and Gaussian elimination in the decision procedures of the 
CanForm algorithm, here too sufficient precision arithmetic is required. This variant 
on the canonical form algorithm is a natural one in the context of symbolic processing 
of generalized linear constraints and in the context of output constraints where strict 
inequality information can be significant. 

If~ in the example above, the constraint 0 < x2 is sharpened to 0 < x~, then after 
transforming this constraint into the pair 0 < x~, {x~ = 0}, the canonical form procedure 
will return 

E = {zl  = 0, = 
I={z~<10,~2-2z4<0,-z2<0} 

The negative constraint {x~ = 0, x4 = 0} has been eliminated because it is now redun- 
dant. Since the vector (1, 0,0) is a scalar multiple of ( -1 ,  0, 0) the constraints -x2 < 0 
and {x2 = 0} can be replaced by the strict inequality constraint -x2  < 0. 

5 C o m p u t a t i o n a l  C o m p l e x i t y  

In this section we address considerations of computational complexity for the canonical 
form algorithm. We have 

T h e o r e m  4 The canonical form procedure CanForm is a polynomial time algorithm. 
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Moreover, in terms of the PRAM model of parallel computation, the processor com- 
plexity of the algorithm is bounded by the number of constraints and its time complexity 
by the sequential complexity of linear programming. Further, the number of arithmetic 
operations in the algorithm is determined by Gaussian elimination and linear program- 
ming; thus if a strongly polynomial algorithm were to be found for linear programming, 
then the canonical form problem would also enjoy a strongly polynomial solution. On 
the other hand, it is not to be expected that an NC algorithm can be found: the canon- 
ical form problem subsumes the Phase I or Feasibility Problem of linear programming 
and this is known to be P-Complete. 

The algorithm can be applied to give polynomial time procedures for computing 
two normal forms for systems consisting of equality and weak inequality constraints. 
In [Schrijver] a normal form is defined for a set of positive linear constraints which 
involves computing the afIine hull of the polyhedral set defined by the constraints and 
representing this set in terms of its facets; in the non-full-dimensional case, the facets 
are defined by means of supporting hyperplanes in the full space chosen orthogonal to 
the affine hull. We can also show that the normal form of [Adler] for linear programs 
with objective function is polynomial time computable using our algorithm. Adler's 
normal form, the core of a linear program involves both the program and its dual and 
both the primal and dual constraint sets are analyzed in the process. 

6 Constraint Propagation 

Finally, we consider the canonical form in the context of constraint propagation and 
constraint based programming. 

Linear arithmetic constraints arise naturally in constraint programming and in AI 
situations. When determining the solvability and/or tile solutions to a set of constraints~ 
a standard strategy is to work forward in an incremental way by starting with the 
~most constraining' conditions and propagating these constraints throughout the rest 
of the computation. Intuitively a ~more constraining' condition corresponds to a set of 
smaller dimension in the solution space, information which is in general not explicit in 
a given system S of constraints. The canonical form procedure returns in ezplicit form 
a representation of equality, inequality and negative information in packets of smallest 
possible dimension. In fact, the canonical form leads to a soundness and completeness 
theorem for constraint propagation. 

T h e o r e m  5 (Cons t ra in t  P ropaga t i on  Comple teness  T h e o r e m )  Let S be a con- 
sistent system of generalized linear constraints with canonical form (E, I, N) .  Let y be 
the eliminable variables and z the parameters of (E, I, N).  Then we have 

(1) S ~ ay = b~ qr E ~ ay = b~ 

(s)  s b = d} itY = a} 
where {Cz  = d} is a precise negative constrainL 
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This theorem also has application to constraint logic programming languages in the 
CLP class [Jaffar and Lassez]. In particular, for CLP(R) [Jaffar and Michaylov] and 
Prolog III, it shows how the canonical form is the analog in the constraint context of 
the most general unifier. 
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