
A Strong Logic Programming View for

Static Embedded Implications ?

R. Arruabarrena, P. Lucio, and M. Navarro

Dpto de L.S.I., Facultad de Inform�atica, Paseo Manuel de Lardizabal, 1, Apdo 649, 20080-San
Sebasti�an, SPAIN. Tel: +34 (9)43 448000, Fax: +34 (9)43 219306, e-mail: marisa@si.ehu.es.

Abstract. A strong (L) logic programming language ([14, 15]) is given by two sub-
classes of formulas (programs and goals) of the underlying logic L, provided that:
�rstly, any program P (viewed as a L-theory) has a canonical model MP which is
initial in the category of all its L-models; secondly, the L-satisfaction of a goal G in
MP is equivalent to the L-derivability of G from P , and �nally, there exists an e�ective
(computable) proof-subcalculus of the L-calculus which works out for derivation of
goals from programs. In this sense, Horn clauses constitute a strong (�rst-order) logic
programming language. Following the methodology suggested in [15] for designing logic
programming languages, an extension of Horn clauses should be made by extending its
underlying �rst-order logic to a richer logic which supports a strong axiomatization of
the extended logic programming language. A well-known approach for extending Horn
clauses with embedded implications is the static scope programming language presented
in [8]. In this paper we show that such language can be seen as a strong FO� logic
programming language, where FO� is a very natural extension of �rst-order logic with
intuitionistic implication. That is, we present a new characterization of the language
in [8] which shows that Horn clauses extended with embedded implications, viewed as
FO�-theories, preserves all the attractive mathematical and computational properties
that Horn clauses satisfy as �rst-order-theories.

1 Introduction

Horn clause programs are theories in �rst-order logic (namely FO) whose computation
relation (between programs and goals) is equivalent to the following relations of FO:
logical consequence, derivability and satisfaction in the least Herbrand model of the
program. Moreover, the least Herbrand model of a program is initial in the category
of all �rst-order models of the program and it exactly satis�es the goals which are
satis�ed in every model in this category. In other words, Horn clauses can be seen
as a FO logic programming language, in the strong sense of [14, 15], because its un-
derlying logic FO has attractive (model-theoretic) mathematical and (proof-theoretic)
computational properties (for programs and goals). This idea was formalized in [14, 15]
where the notion of a strong logic programming language is de�ned as a restriction of
an underlying logic satisfying good properties. This means, once �xed an underlying
logic, setting which subclasses of its formulas correspond to the classes of programs and
queries or goals, respectively. The underlying logic, for these subclasses, must satisfy
three properties: mathematical semantics, goal completeness and operational seman-
tics. The mathematical semantics property requires that any program has a canonical

? This work has been partially supported by the CICYT-project TIC95-1016-C02-02.

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 56-72, 1999.
c Springer-Verlag Berlin Heidelberg 1999

model, which is initial in the class of all models of the program (seen as a theory in
the underlying logic). Goal completeness means that logical satisfaction of goals in
the initial model is equivalent to the derivability relation (of the logic) restricted to
programs and goals. The operational semantics property means the existence of an ef-
fective (computable) proof-subcalculus of the calculus (of the logic) for deriving goals
from programs. We believe that this view of axiomatizing a logic programming lan-
guage inside an underlying logic has many advantages. On one hand, it allows one to
separate general logical features from programming language features. On the other
hand, a useful way to analyse, compare and integrate di�erent programming features
is to axiomatize them into a common underlying logic.

Attempts to extend Horn clause logic programming (e.g. with modules, higher-order,
data abstraction, etc.) should be done by preserving (as much as possible) the above-
mentioned mathematical and computational properties. Since Horn clause logic is the
greatest fragment of FO admitting initial models, concrete extensions could require
to change (by restricting or enriching) the underlying logic FO. Many approaches are
concerned with extending Horn clauses with some features for program structuring
that can be seen as a form of modularity in logic programming (see for instance [2]
for a survey). Some of them consider the extension of Horn clauses with implication
goals of the form D � G, called blocks, where D can be seen as a local set of clauses
(or module) for proving the goal G. This approach yields to di�erent extensions of
Horn clause programming depending on the given semantics to such blocks. A �rst
basic distinction is between closed blocks: G can be proved only using local clauses
from D, and open blocks: G can be proved using D and also the external environment.
Therefore, open blocks require scope rules to �x the interplay between the predicate
de�nitions inside a module D and those in the environment. In general, dealing with
open blocks, a module can extend the de�nition of a predicate already de�ned in
the enviroment. Hence, di�erent de�nitions of the same predicate could have to be
considered, depending on the collection of modules corresponding to di�erent goals.
There are mainly two scope rules, named static and dynamic, allowing this kind of
extension of predicate de�nitions. In the dynamic approach the set of modules taking
part in the resolution of a goal G can only be determined from the sequence of goals
generated until G. However, in the static case this set of modules can be determined
(for each goal) statically from the block structure of the program. Di�erent proposals of
logic programming languages for open blocks with dynamic scope have been presented
and studied in several papers (e.g.[4{6, 16{18]). The static scope approach has been
mainly studied in [8, 7]. In [2, 7] both di�erent approaches are compared. Some other
works (e.g. [19, 20]) treat open blocks with di�erent scope rules avoiding this kind of
predicate extension.

In [16] Miller proves that the proof-theoretic semantics for its dynamic scope program-
ming language is based on intuitionistic logic, and in [2] it is shown that the Miller's
canonical model for a program is indeed an intuitionistic model of this program. How-
ever, for the static scope programming language introduced in [8], neither �rst-order
logic nor intuitionistic logic can be used for this purpose. Following the methodology
suggested in [15] for designing logic programming languages, the extension of Horn
clauses with intuitionistic implication should be strongly axiomatized in a logic which
integrates FO and intuitionistic implication. In this paper we introduce a complete
logic called FO�, which is a very natural extension of FO with intuitionistic implica-
tion. We give a new characterization of the well-known semantics for the static scope
programming language presented in [8]. This characterization strongly axiomatizes the

57A Strong Logic Programming View for Static Embedded Implications

logic programming language inside FO� logic, showing that it satis�es all the desirable
properties.

The paper is organized as follows: In Section 2 we introduce the formalization of [14,
15] for a strong logic programming language which is the methodological basis for our
work. In Section 3 we give a short introduction to the underlying logic FO� giving
the necessary notions and results for the rest of the paper. In Section 4 we develop the
FO� strong axiomatization of the static scope programming language. We conclude,
in Section 5, by summarizing the presented results and related work.

2 Preliminaries

In this section, we introduce the notions of logic and strong logic programming language,
following [14, 15].

The notion of a logic is obtained by combining an entailment system (formalizing the
proof-theoretical component of a logic) with an institution (formalizing the model-
theoretical component) such that a soundness condition relating provability and satis-
faction holds. An entailment system is a triple (Sign, sen, `) with Sign a category of
signatures, sen a functor associating to each � 2 Sign a set sen(�) of �-sentences and
` a function associating to each � 2 Sign a binary relation `�� P(sen(�))� sen(�),
called �-entailment or �-derivability, which satis�es the properties of re
exivity, mono-
tonicity, transitivity and `-translation (i.e. preservation by signature morphisms). An
institution is a 4-tuple (Sign; sen;Mod; j=) with Sign and sen as above; Mod is a func-
tor associating to each � 2 Sign a corresponding category Mod(�) whose objects are
called �-structures (or �-models) and whose morphisms preserve the interpretation
given to signature symbols; and j= is a function associating to each � 2 Sign a binary
relation j=�� Mod(�)� sen(�), called �-satisfaction, which satis�es the j=-invariance
property (i.e. for anyM2 2 Mod(�2), H : �1 ! �2, ' 2 sen(�1): Mod(H)(M2) j=�1

'
i� M2j=�2

H(')). Given � � sen(�), Mod(�) denotes the full subcategory of Mod(�)
determined by the structures M 2 Mod(�) such that M j=� ' for each ' 2 � . The
satisfaction relation induces a logical consequence relation between sets of sentences
and sentences, also denoted j=, as follows: � j=� ' i� M j=� ' for each M 2 Mod(�).
A logic is given by an entailment system and an institution sharing the same signatures
and sentences, such that it holds soundness of the derivability relation w.r.t. the logical
consequence relation. A logic is a 5-tuple L=(Sign, sen, Mod, `, j=) such that:

{ (Sign, sen, `) is an entailment system

{ (Sign, sen, Mod, j=) is an institution

{ For any� 2 Sign, � � sen(�) and ' 2 sen(�), � `� ' =) � j=� ' (Soundness).

In addition, there are some other useful properties that a logic could satisfy, like com-
pleteness, compactness, etc.

From the axiomatic point of view, a strong logic programming language is a 4-tuple
LPL= (L, Sign0, prog, goal) with:

{ L=(Sign, sen, Mod, `, j=) a logic, namely the underlying logic of LPL
{ Sign0 a subcategory of Sign

{ prog is a functor associating to each � 2 Sign0 a set prog(�) (of �-programs)
included in Pfin(sen(�))

{ goal is a functor associating to each � 2 Sign0 a set of �-goals, goal(�) � sen(�)

such that the following properties are satis�ed:

58 R. Arruabarrena et al.

1. Mathematical Semantics: Each program P 2 prog(�) has a model MP which is
initial in the category Mod(P) of all models in Mod(�) satisfying P

2. Goal Completeness (w.r.t. the initial model): For any program P 2 prog(�) and
any goal G 2 goal(�), P `� G () MP j=� G

3. Operational Semantics: Existence of an e�ective proof subcalculus for the deriv-
ability relation `� restricted to prog(�)� goal(�).

3 The Logic FO�

In this section we introduce the sound and complete logic FO� which extends classi-
cal �rst-order logic with intuitionistic implication. We present its language, semantical
structures, logical consequence relation, derivability relation and some other details
which are relevant to understand the rest of the paper. A more detailed presentation
of this logic is out of the scope of this paper and it can be found in [11], in particular
there it is proved soundness and completeness of FO� logic.

A signature � 2 Sign consists of countable sets FS� of function symbols, and PS�
of predicate symbols, with some speci�c arity for each function and predicate sym-
bol. We also assume a countable set V S� of variable symbols. We denote by T� the
set of all well-formed �rst-order �-terms. A term is closed if no variable symbol does
occur on it. Well-formed �-formulas are built, from atomic ones, using classical con-
nectives (:;^;_;!), intuitionistic implication (�), and classical quanti�ers (8; 9). Free
and bound variables and substitution have the usual de�nitions. sen(�) is the set of
�-sentences, that is, �-formulas with no free variables. We will denote formulas by
lowercase Greek letters '; ;
; �; : : :. The uppercase Greek letters � and � (probably
with sub- and superscripts) will be used as metavariables for sets of formulas. Model
theory is based on Kripke structures ([21]).

De�nition 1. A Kripke �-structure is a triple K = (W (K);�; hAwiw2W (K)) where
(W (K);�) is a non-empty partially ordered set (of worlds) and each Aw is a �rst-
order �-structure (with universe Aw, over which predicate and function symbols are
interpreted) such that for any pair of worlds v � w in W (K):
{ Av � Aw,
{ pAv � pAw , for all p 2 PS�
{ fAw (a1; : : : ; an) = fAv (a1; : : : ; an), for all a1; : : : ; an 2 Av and f 2 FS� .

Mod(�) will denote the category whose objects are Kripke �-structures. The mor-
phisms in this category will be given in De�nition 6.
We denote by tw the classical �rst-order interpretation tAw of t 2 T� . Terms inter-
pretation behaves monotonically, that is, for any Kripke-structure K and any pair of
worlds v; w 2W (K) such that v � w: tw = tv 2 Av � Aw. The satisfaction of sentences
in worlds is handled by the following forcing relation:

De�nition 2. Let K 2 Mod(�), the binary forcing relation
� W (K) � sen(�) is
inductively de�ned as follows:

w 6
 F

w
 p(t1; : : : ; tn) i� (tw1 ; : : : ; t
w
n) 2 p

Aw

w
 :' i� w 6
 '
w
 ' ^ i� w
 ' and w

59A Strong Logic Programming View for Static Embedded Implications

w
 ' _ i� w
 ' or w

w
 '! i� if w
 ' then w

w
 ' � i� for all v 2 W (K) such that v � w: if v
 ' then v

w
 9x' i� w
 '(â=x) for some a 2 Aw

1

w
 8x' i� w
 '(â=x) for all a 2 Aw.

We will write w;K
 ' (instead of w
 ') whenever confusion on the structure K may
occur. This forcing relation gives a non-intuitionistic semantics to negation, classical
implication (!) and universal quanti�cation; as a consequence, the forcing relation
on sentences does not behave monotonically w.r.t. the world ordering. We say that a
sentence is persistent whenever the forcing relation behaves monotonically for it.

De�nition 3. A �-sentence ' is persistent i� for any K 2 Mod(�) and w 2 W (K):
if w
 ' then v
 ' for any v 2 W (K) such that v � w.

Persistent sentences play an important role in the FO�-axiomatization of logic pro-
gramming languages with embedded implications, since there is a subclass of persistent
sentences (that can be syntactically delimited) which includes the class of goals.

Proposition 4. Any atomic sentence is persistent. Any sentence ' � is persistent.
If ' and are persistent sentences, then ' _ and ' ^ are persistent. If '(â) is a
persistent sentence, then 9x' is persistent.

Proof. For atoms the property is a trivial consequence of the Kripke structure de�ni-
tion. For intuitionistic implication it is also trivial from forcing relation de�nition. The
other two cases are easily proved, by induction, using the forcing relation de�nition for
_;^ and 9.

The satisfaction relation j=�� Mod(�) � sen(�) requires the sentence to be forced
(only) in the minimal worlds of the structure. This satisfaction relation induces the
logical consequence relation, denoted by the same symbol j=� .

De�nition 5. Let K 2 Mod(�) and � [f'g � sen(�). We say that
(a) A world w 2W (K) is minimal i� there does not exist v 2 W (K) such that v � w

and v 6= w.
(b) K j=� ' (K satis�es ') i� w
 ' for each minimal world w 2W (K).
(c) � j=� ' (' is logical consequence of �) i� K j=� �) K j=� ', for each

K 2 Mod(�).

Morphisms in Mod(�) relate only minimal worlds, with the idea of preserving the
satisfaction relation for ground atoms, in the following way:

De�nition 6. For i = 1; 2, let Ki = (W (Ki);�Ki ; hA
i
wiw2W (Ki)) 2 Mod(�) and let

W (Ki)
min be the set of minimal worlds in W (Ki). A morphism H : K1 ! K2 is given

by a mapping �H :W (K2)
min ! W (K1)

min together with a collection of �rst-order
�-homomorphisms hHw : A1

�H(w) ! A2
wiw2W (K2)

min . If the mapping �H is unique
(for instance when K1 has only one minimal world) then we will identify H directly
with its collection of �rst-order �-homomorphisms.

1 The constant symbol â stands for the syntactic denotation of a (see e.g.[21]).

60 R. Arruabarrena et al.

Remark 7. We recall that �rst-order �-homomorphisms are mappings that preserve
the operations and relations which (respectively) interpret function and predicate sym-
bols. In particular they preserve ground atoms.

Actually, the above-de�ned 4-tuple FO� = (Sign; sen;Mod; j=) forms an institution.
The satisfaction relation is preserved: for each signature morphism H : � ! �0,
each K0 2 Mod(�0) and each ' 2 sen(�), it is the case that Mod(H)(K0) j=� ' i�
K0 j=�0 sen(H)('), where sen(H) : sen(�) ! sen(�0) is the translation of sentences
induced by H and where Mod(H) : Mod(�0) ! Mod(�) is the forgetful functor as-
sociated to H. This functor applies each �0-structure K0 into a �-structure K with
the same ordered set of worlds and it associates each �rst-order structure A0w into its
forgetful �rst-order structure VH(A

0
w).

Structural Rules

(Init) � B A if A is atomic and A 2 � (FL) �;�; F ;�0
B �

(Cut)
�;� B ' �;�; ';�0

B �
�;� ;�0

B �
(RF) �;�; ';:';�0

B F

Connective Rules

(:L) �;� ;:� B '
�;�;:' B � (R:) �;�; ' B F

�;� B :'

(_L) �;�; ';�
0
B � �;�; ;�0

B �
�;�; ' _ ;�0

B �
(R_) � B '

� B ' _
� B

� B ' _

(^L) �;�; '; ;�0
B �

�;�; ' ^ ;�0
B �

(R^) � B ' � B
� B ' ^

(! L)
�;� B ' �;�; ;�0

B �
�;�; '! ;�0

B �
(R!)

�;�; ' B
�;� B '!

(� L)
�;� ;�0;� 0 B ' �;� ;�0;� 0; ;�00

B �
�;�; ' � ;�0;� 0;�00

B �
(R �)

�; f'g B
� B ' �

Quanti�er Rules

(9L)
�;�; '(c=x);�0

B �
�;�; 9x';�0

B �
(R9)

� B '(t=x)
� B 9x'

(8L)
�;�; '(t=x);�0

B �
�;�; 8x';�0

B �
(R8)

� B '(c=x)
� B 8x'

Fig. 1. A sound and complete sequent calculus for FO�.

We will complete the de�nition of FO� logic by giving a derivability relation `��
P(sen(�))� sen(�) in terms of sequent calculus proofs. The original Gentzen's notion
considers sequents � B � whose antecedent � and consequent � are both �nite (possibly
empty) sequences of formulas. In FO� logic, to deal with classical and intuitionistic
implications inside the same logic, it is essential to introduce extra structure in sequent
antecedents. That is, to achieve soundness and completeness for FO� logic, we consider
sequents consisting of pairs � B ' where the antecedent � is a (�nite) sequence of
(�nite) sets of formulas, and the consequent ' is (like in intuitionistic logic) a single
formula. Uppercase Greek letters �, �0, �00; : : : will be used as metavariables for
sequences of sets of formulas. In order to simplify sequent notation: the semicolon sign
(;) will represent the in�x operation for concatenation of sequences, � [f'g will be
abbreviated by �; '; and a set � will be identi�ed with the sequence consisting of this

61A Strong Logic Programming View for Static Embedded Implications

unique set. On these bases, we present a sound and complete sequent calculus for the
logic FO� in Figure 1 where (in quanti�er rules) c stands for a new fresh constant
symbol and t stands for a closed term.
Notice that every rule in the calculus of Fig.1 is a natural generalization (to sequences of
sets in the antecedent) of some classical �rst-order sequent rule. Moreover, by viewing
the antecedent as a single set of formulas, the rules for both implication connectives
would coincide. It is also easy to see that (R �) is the unique rule creating a new set
in the antecedent.

De�nition 8. For any (possibly in�nite) set � [f'g � sen(�) we say that � `� '
i� for some �nite � 0 � � there exists a proof of the sequent � 0 B ' using the calculus
in Figure 1.

In general, a proof for the sequent � B ' is a �nite tree constructed using inference
rules of the calculus, such that the root is the sequent � B ' and whose leaves are
labeled with initial sequents (in our case, these are (Init), (FL), (RF)). In particular,
the antecedent � may be a unitary sequence of one �nite set � . We recall that `�
is the relation induced (by the calculus in Fig.1) on the set P(sen(�))� sen(�). It is
worthwhile noting that this relation satis�es re
exivity, monotonicity and transitivity,
although any rule in the calculus (Fig.1) does not directly correspond with them.
Besides, the `-translation property is also satis�ed. However, the extension to a relation
between sequences of sets of formulas and formulas lacks to satisfy the former three
properties.

4 The Logic Programming Language Horn
�

In this section we give the strong FO� axiomatization for the static scope program-
ming language introduced in [8]. Its syntax is an extension of the Horn clause language,
by adding the intuitionistic implication � in goals. We de�ne this language as the fol-
lowing 4-tuple Horn� = (FO�; Sign0; prog; goal), where Sign0 is the class of �nite
signatures in Sign and, for each � in Sign0, prog(�) is the set of all �-programs, which
are �nite sets of closed D-clauses (called �-clauses), and goal(�) is the set of all closed
G-clauses (called �-goals). D- and G-clauses are recursively de�ned as follows (where
A stands for an atomic formula):

G := A j G1 ^G2 j D � G j 9xG D := A j G! A j D1 ^D2 j 8xD

Following [8], we use a simple de�nition of the operational semantics ofHorn�, given by
a nondeterministic set of rules which de�ne when a �-goal G is operationally derivable
from a program sequence �= P0;...;Pn , in symbols � `s G. Moreover, to deal with
clauses in P 2 prog(�) of the form D1 ^ D2 and 8xD, we utilize the closure (w.r.t.
conjunction and instantiation) set [P] of all clauses in P . This abstract de�nition of
the operational semantics is more suitable to be compared with the mathematical
semantics of Horn�.

De�nition 9. [P] is de�ned as the set [f[D] j D 2 Pg where [D] is recursively
de�ned as follows: [A] = fAg, [G ! A] = fG ! Ag, [D1 ^ D2] = [D1] [[D2],
[8xD] = [f[D(t=x)] j t 2 T� and t is closedg.

62 R. Arruabarrena et al.

(1) � `s A if A is atomic and A 2 [�]

(2)
P0; : : : ;Pi `s G

P0; : : : ;Pi; : : : ;Pn `s A
if G! A 2 [Pi] and 0 � i � n

(3) � `s G1 � `s G2

� `s G1 ^G2
(4)

� `s G(t=x)
� `s 9xG

(5)
�; fDg `s G
� `s D � G

Fig. 2. Operational Semantics for Horn�.

Notice that w
 P , w
 [P] and also that all clauses in [P] match the pattern G! A
(with G possibly empty for handling the case A). We extend the notation [P] to [�] by
[P0;...;Pn] =

Sn
i=0[Pi]. Now, we de�ne � `s G by means of the rules given in Figure 2.

In order to illustrate the operational behaviour of this language we give the Example
10.

Example 10. Let the program with two clauses P = f((b ! c) � c) ! a; bg and let
the goal G1 = a. A proof of P `s G1 is given by the following steps (applying rules in
Figure 2):

P `s a by Rule (2)
if P `s (b! c) � c by Rule (5)
if P ; fb! cg `s c by Rule (2)
if P ; fb! cg `s b by Rule (1) since b 2 P ; fb! cg

However, let now the program with a unique clause Q = f((b ! c) � c) ! ag and
let the goal G2 = b � a. The only way to obtain a proof of Q `s G2 would make the
following steps:

Q `s b � a by Rule (5)
if Q; fbg `s a by Rule (2)
if Q `s (b! c) � c by Rule (5)
if Q; fb! cg `s c by Rule (2)
if Q; fb! cg `s b

Since the last sequent can not be proved then Q 6`s G2.

This example shows the "static scope rule" meaning: the set of clauses which can be
used to solve a goal depends on the program block's structure. Whereas G1 = a can
be proved from the program P because b was de�ned in P , in the case of G2 = b � a
and the program Q the "external" de�nition of b is not permitted for proving the body
of the clause in Q. This is a mayor di�erence with the "dynamic scope rule" used in [16].

In the Appendix A we prove that the proof-subcalculus `s is sound with respect to the
FO�-calculus when restricted to the programming language Horn�.

In the rest of this section we show that Horn� satis�es all the desirable properties
to be a strong FO� logic programming language. In Subsection 4.1 we present the
mathematical (or model) semantics and we prove the goal completeness property. The
operational semantics is studied in Subsection 4.2, showing the equivalence between
mathematical and operational semantics. Also completeness of `s w.r.t. the FO�-
calculus will be proved there as a consequence of previous results. Along the whole
section j= (respectively `) stands for the satisfaction and the logical consequence rela-
tions j=� (respectively the derivability relation `�) of FO

�.

63A Strong Logic Programming View for Static Embedded Implications

4.1 Mathematical Semantics and Goal Completeness

In this subsection we �rst de�ne the subcategory FMod(�) of Mod(�). Its objects are
Kripke structures with Herbrand interpretations associated to worlds, with a unique
minimal world and closed w.r.t. superset. Then, we show that to deal with Horn�

programs (as particular FO�-theories) the category Mod(P) of Kripke �-structures
satisfying P can be restricted to the subcategory FMod(P). Notice that, for Horn
clauses, the Herbrand models constitute the corresponding subcategory of the general
�rst-order structures. We will prove the existence of a model in FMod(P) which is
initial in the whole category Mod(P). Again, one can observe the parallelism with the
least Herbrand model of Horn clauses. Finally, we will prove the goal completeness
property w.r.t. this initial model.

Given a signature �, U� and B� will denote the Herbrand universe and the Herbrand
base, respectively. Consider the complete lattice P(B�) of all Herbrand (�rst-order) �-
interpretations over the universe U� . Any subset K of P(B�), ordered by set inclusion,
can be viewed as a Kripke �-structure. On these structures, I;K
 ' (or simply I
 ')
will denote w;K
 ' for the world w whose �rst-order associated �-structure is I.

De�nition 11. FMod(�) is the full subcategory of Mod(�) whose objects are the
Kripke �-structures fFil(I) j I�B�g where Fil(I) denotes the �lter fJ � B� j J �
Ig. (FMod(�);v) is the partial order given by Fil(I1) v Fil(I2) i� I1 � I2. The
morphisms in FMod(�) can be seen as these inclusions, that is Fil(I1) v Fil(I2) is the
morphism H 2 Mod(�) de�ned by �H(I2) = I1 and the singleton f�: I1 ! I2g.

Remark 12. Note that the morphisms H : K1 ! K2 with K1 2 FMod(�) are unique
since: (i) K1 has only one minimal world and (ii) if A and B are �rst-order �-structures
and A is �nitely generated then the �-homomorphism A! B is unique.

Hence, for formulas ' � , the forcing relation restricted to the class FMod(�) satis�es:
I
 ' � i� for all J � B� such that I � J , if J
 ' then J
 .

Proposition 13. Let I1,I2 be two �-interpretations, fIjgj2J a (possibly in�nite) set
of �-interpretations, D a �-clause and G a �-goal.

(a) If I1
 G then for all I2 such that I1 � I2, I2
 G
(b) If Ij
 D for each j 2 J then \jIj
 D

Proof. (a) is a direct consequence of persistence of goals (see Proposition 4). The proof
of (b) can be made by structural induction on D: For D = A it is trivial, since I
 A
i� A 2 I. Cases D = D1 ^ D2 and D = 8xD1 can be easily proved by applying the
induction hypothesis. For D = G! A, the case \jIj
 A is trivial. Now suppose that
\jIj 6
 A, then there exists j 2 J such that Ij 6
 A and Ij 6
 G. Hence \jIj 6
 G holds
by (a), and therefore \jIj
 G! A.

Proposition 14. (FMod(�);v) is a complete lattice with bottom Fil(;) = P(B�).

Proof. It is enough to de�ne the operations t and u for any (possibly in�nite) collection
fFil(Ii)gi as follows: tiFil(Ii) = Fil([iIi) and uiFil(Ii) = Fil(\iIi).

64 R. Arruabarrena et al.

The notion of satisfaction between elements in FMod(�) and �-clauses (respectively
-goals), borrowed from the underlying logic, is given by Fil(I) j= D i� I
 D (respec-
tively for G).
The class of models of a �-program P, denoted FMod(P), is de�ned as FMod(P) =
fK2FMod(�) j Kj=Pg or equivalently as fFil(I) j I�B� ; I
 Pg. FMod(P) is a full
subcategory of FMod(�).

Proposition 15. There exists a least element MP in FMod(P) with respect to v.

Proof. FMod(P) is not empty since Fil(B�) = fB�g satis�es P . As a consequence
of Proposition 13(b), the intersection (u) of elements in FMod(P) is an element of
FMod(P). Then MP = ufK2FMod(�) j Kj=Pg belongs to FMod(P) and it is the
least element w.r.t. v. Moreover, MP = Fil(IP) with IP = \fI � B� j I
 Pg.

Then,MP is the initial object in the category FMod(P). Now, we will prove the initiality
of MP in the (more general) category Mod(P). Then, following [15], the denotation
function P 7!MP is called the mathematical semantics of Horn�.

De�nition 16. A�-program P is satis�able (respectively F-satis�able) i� there exists
K 2 Mod(�) (respectively K 2 FMod(�)) such that K j= P .

Lemma 17. For each K 2 Mod(�) there exists IK 2 P(B�) (therefore Fil(IK) 2
FMod(�)) such that, for every �-clause D and every �-goal G:
(a) If K j= D then Fil(IK) j= D
(b) If Fil(IK) j= G then K j= G
Moreover, there exists a unique morphism HK :Fil(IK)! K.

Proof. Let K = (W (K);�; hAwiw2W (K)). We consider, for each w 2 W (K), the H-
interpretation Iw = fp(t1; :::; tn) 2 B� j w;K
 p(t1; :::; tn)g and let IK = \fIw j w 2
W (K)g. That is, IK = fp(t1; :::; tn) 2 B� j K j= p(t1; :::; tn)g. Then, for each �-clause
D and each �-goal G:

(i) If w;K
 D then Iw
 D
(ii) If Iw
 G then w;K
 G

The proof of above facts (i) and (ii) is made by simultaneous induction on D and G.
(i) and (ii) for an atom A: w;K
 A i� A 2 Iw i� Iw
 A. (i) for D1 ^D2, 8xD and
(ii) for G1 ^ G2, 9xG, can be easily proved by applying the induction hypothesis. To
prove (i) for G! A, let us suppose that w;K
 G! A, then w;K
 A or w;K 6
 G.
By the induction hypothesis, Iw
 A or Iw 6
 G holds. Therefore Iw
 G ! A. To
prove (ii) for D � G, suppose that w;K 6
 D � G, then there exists v 2 W (K) such
that w � v, v;K
 D and v;K 6
 G. By induction, Iv
 D and Iv 6
 G hold. Then
Iw 6
 D � G, since w � v implies Iw � Iv.
Now, to prove (a), let us suppose that K j= D, then for all minimal w 2 W (K):
w;K
 D. Hence, by (i), for all minimal w 2 W (K): Iw
 D. Then, by Proposition
13(b), IK
 D holds. Therefore Fil(IK) j= D. The proof for (b) is symmetric, suppose
that Fil(IK) j= G, this means that IK
 G. Then, by Proposition 13(a), Iw
 G holds
for all minimal w 2 W (K). Therefore by (ii), w;K
 G for all minimal w 2 W (K).
Hence K j= G.
The unique morphism HK :Fil(IK)! K is given by the collection of unique �rst-order
�-homomorphisms fHw : IK ! Aw j w minimal in W (K)g.

65A Strong Logic Programming View for Static Embedded Implications

Theorem 18. MP is initial in the category Mod(P).

Proof. Given K 2 Mod(P), the unique morphism from MP into K is H = HKÆ v
obtained by composing the two morphisms v:MP ! Fil(IK) and HK : Fil(IK)! K
of the previous lemma.

Corollary 19. A �-program P is satis�able i� it is F-satis�able.

Now, we will show that MP is typical in Mod(P) (and also in FMod(P)) w.r.t. goal
satisfaction.

Proposition 20. For each �-program P and each �-goal G: P j= G i� Fil(I) j= G
for all Fil(I) 2 FMod(P).

Proof. The only-if part is trivial. For the if part let K 2 Mod(P), that means K j= P .
Then by Lemma 17 Fil(IK) j= P . Then Fil(IK) j= G and, again by Lemma 17,K j= G.

Theorem 21. For each �-program P and each �-goal G: P j= G i� MP j= G.

Proof. The only-if part is trivial. Conversely,MP j= G is equivalent to \fI � B(�) j I

Pg
 G. Therefore I
 G for all I � B(�) such that I
 P , hence Fil(I) j= G for all
Fil(I) 2 FMod(P). Then by Proposition 20, P j= G.

From this result and the fact of that FO� is a complete logic, the goal completeness
property is obtained:

Theorem 22. For each �-program P and each �-goal G, P ` G i� MP j= G.

Remark 23. It is worthwhile noting that: Fil(I) j= G (or I
 G) i� G is logical
consequence of I. This can be proved by Proposition 20, by seeing I as a (posibly
in�nite) program of ground atoms, and by persistency of G.

4.2 Operational Semantics

In this subsection we �rst de�ne, for each �-program P , an immediate consequence
operator TP (on FMod(�)). The monotonicity and continuity of TP in the lattice
(FMod(�);v) allow us to use the �xpoint semantics as a bridge between the mathe-
matical and the operational semantics. First we prove the equivalence between math-
ematical and �xpoint semantics and then between �xpoint and operational semantics
(given by `s). Speci�cally, given a �-program P , we will use the �xpoint character-
ization of the least model MP of P in terms of TP , to prove that for every �-goal
G, MP j= G if and only if P `s G. We will also show that the proof-subcalculus
`s is sound and complete with respect to the FO� derivability relation, restricted to
Horn�-programs and -goals.

De�nition 24. The immediate consequence operator TP : FMod(�) ! FMod(�) is
given by TP (Fil(I)) = Fil(fA j there exists G ! A 2 [P] such that Fil(I) j= Gg).

66 R. Arruabarrena et al.

The operator TP has been de�ned in terms of the satisfaction relation of FO�. That is,
given a �lter (generated by a set of ground atoms), it generates the head of the clauses
whose bodies are satis�ed by this �lter. We want to remark that TP is indeed a FO�

logical consequence operator because we can replace (see Remark 23) the satisfaction of
G in the model Fil(I) (or equivalently the forcing relation of G in the minimal world I)
by the logical consequence of G from I. Unlikely for Horn clauses, logical consequence
can not be replaced by set membership since goals are not just conjunction of atoms.
It is well-known that the least �xpoint and the least pre-�xpoint of a continuous op-
erator in a complete lattice is T!(?) where ? is the bottom in the lattice. In the
Appendix B we prove that the above-de�ned operator TP is monotone and continuous
in the complete lattice (FMod(�);v) and also that the models of P are the pre-�xpoints
of TP . Therefore, the least �xpoint of TP is TwP (P(B�)) which will be simply denoted
TwP . Then the correspondence between mathematical and �xpoint semantics is a direct
consequence of these results.

Theorem 25. For all �-program P , TwP =MP .

Now we will prove the equivalence between mathematical, �xpoint and operational
semantics. We need the following lemma to complete such equivalences. This result
was proved in [8] and our proof is an adaptation (for our operator TP) of the proof
given there. For that reason we will give a sketch of this proof detailing only the main
di�erences.

Lemma 26. Given a �-program P and a �-goal G, if TwP j= G then P `s G.

Sketch of the proof. Let In denote the minimal world in TnP (P(B�)), for each n � 0.
Since TwP = tn<wT

n
P (P(B�)), the minimal world in TwP is [n<wIn. Then by continuity

of TP it suÆces to prove that In
 G =) P `s G holds for each n � 0. The proof
is made by induction on the highest number m of (�)-nesting levels in P and G. If
m = 0 (there are no occurrences of � either in P or in G), then the proof can be done
by double induction on n and G. The induction hypothesis holds for at most m � 1
(�)-nesting levels in P and G. For the case m > 0, let us develop in detail only the
subcase n > 0 and G = D1 � G1. Let D

0
1 be the program In [D1 (seen the atoms

in In as clauses with empty bodies) and let ID0

1
be the minimal world in T!D0

1

. Then

ID0

1

 D1 and In � ID0

1
. Therefore ID0

1

 G1. By induction on D0

1 and G1 (note that

the highest number of (�)-nesting levels in D0
1 and G1 is less than m), In [D1 `s G1

holds. Finally, some `s-properties easy to prove (see [8] for details) are used to obtain
the following implications: In [D1 `s G1 =) In;D1 `s G1 =) In `s (D1 � G1) =)
fA j P `s Ag `s (D1 � G1) =) P `s (D1 � G1).

The following Theorem summarizes all the obtained results. In particular, the equiva-
lence between mathematical and operational semantics is given by (c), (e).

Theorem 27. For each �-program P and each �-goal G, the following sentences are
equivalent:

(a) P j= G
(b) P ` G
(c) MP j= G
(d) TwP j= G
(e) P `s G

67A Strong Logic Programming View for Static Embedded Implications

Proof. (a), (b) by the soundness and completeness of FO�

(b), (c) by the goal completeness property (Th. 22)
(c), (d) by the equivalence between mathematical and �xpoint semantics (Th. 25)
(d)) (e) by the Lemma 26
(e)) (b) by the soundness of `s w.r.t. ` (Th. 30 in Appendix A)

Corollary 28. The proof-subcalculus `s is complete with respect to the FO�-calculus
when restricted to the programming language Horn�.

We have used an abstract formulation of the operational semantics, given by the proof-
subcalculus `s. The e�ectiveness of such subcalculus means the capability for imple-
menting it. This task is out of the scope of this paper, however we would like to mention
here some works giving the main ideas towards such implementation. In [8] a less ab-
stract operational semantics is given by using notions of substitution, uni�cation and
variable renaming for the notation [P]. Whereas this semantics is equivalent to the
given one, it provides an abstract interpreter for the language Horn�. In [1] are also
shown, by means of examples, some of the most relevant points taken into account to
make a concrete implementation.

5 Conclusions and Related Work

We have presented a new characterization for the language Horn� of Horn clauses
extended with static embedded implication (introduced in [8]). Our characterization
is based on the methodology proposed in [14, 15] for de�ne logic programming lan-
guages. Hence, we have enriched the underlying logic (FO) of the original language
(Horn clauses) with intuitionistic implication, in a very natural way, obtaining the
complete logic FO�. Then we have given a FO�-axiomatization of Horn�, showing
that it satis�es all the desirable mathematical and computational properties. The fact
of �xing the underlying logic FO� allows us to deal with Horn�-programs as special
FO�-theories. Therefore, metalogical properties of programs and goals can be studied
in a clean and sound way relative to �xed notions (as model, satisfaction, morphism,
derivability, etc.) in the underlying framework. Following this methodology, we have
obtained a subclass (FMod(�)) of logical structures powerful enough for dealing with
Horn�-programs, like the subclass of Herbrand interpretations is for Horn clauses in
the �rst-order case. Indeed, we show that a program (as a theory) has a (general) model
i� it has a model in the subclass FMod(�). We believe that this is an important result
about the model-theoretic semantics of Horn�. Actually, the equivalence between the
two model-theoretic semantics presented in [8] is a direct consequence of the de�nition
of FMod(�). Moreover, FMod(�) is crucial for both: the initial and the �xpoint seman-
tics. On one hand, for any program P , FMod(P) has a least element MP which can be
obtained by intersection of all models of P and also as the !-iteration of a continuous
immediate consequence operator TP de�ned on FMod(�). Our �xpoint semantics is
essentially equivalent to the �xpoint semantics of [8], although it is obtained in a very
di�erent way. As we pointed out in Subsection 4.2, the operator TP is indeed based
on the logical consequence of the underlying logic (or equivalently on its satisfaction
relation). However, the immediate consequence operator of [8] is based on the notion
of environment and it requires an ad-hoc satisfaction relation between Herbrand in-
terpretations and goals. Moreover, we prove that the operational semantics of Horn�

is equivalent to the underlying logical derivability relation. In fact, this derivability

68 R. Arruabarrena et al.

relation is induced by a calculus (Figure 1) designed as an extension of the operational
semantics of Horn�. On the other hand, we have showed that Horn�-programs are
FO�-theories with initial semantics: MP (or equivalently T!P) is the initial object in
the class Mod(P) of all (general) models of the program P . Hence, our characterization
of Horn�, �rstly, places some well-known results into the logical framework given by
FO� and, secondly, it extends these results to a strong axiomatization providing a
well-established model-theoretic semantics and an initial semantics.
We believe that further extensions of this logic programming language, for example with
some kind of negation, could be better developed using the logical foundation provided
by this strong FO�-axiomatization. With respect to this matter, there are several
papers dealing with dynamic intuitionistic implication and some kind of negation, e.g.
[3, 5, 9, 10, 12, 13]. We plan to investigate also a possible FO�-axiomatization of the
dynamic scope language of [16] in order to place both languages (from [8] and [16])
into the common underlying logic FO�. FO� and intuitionistic logic are essentially
equivalent to deal with the latter language. We mean, although these two logics di�er
in the universal quanti�er interpretation, both coincide in clause interpretation over
structures with constant universe, and it is well-known (cf. [2, 7]) that these structures
are powerful enough. In [16] it is proved that the operational semantics of its language
corresponds to intuitionistic derivability. In [2] it is shown that the canonical model (of
a program), obtained in [16] by a �xpoint construction, is indeed an intuitionistic model
of the program. They also give an intuitionistic (Kripke's based) model-theory for this
language. Apart from the di�erence in the considered programming language, there
are three most remarkable di�erences with our Kripke's based approach: their logical
structures are generated by terms, our notions of satisfaction and logical consequence
are di�erent, and the worlds of their canonical model are indexed by programs.
A di�erent approach to give logical foundations to this kind of logic programming
languages (or in general to Horn clause extensions) is the transformational one which
consists in translating programs to the language of some well-known logic. In [7] the
language de�ned in [8] is translated to S4-modal logic. They also translate the language
de�ned in [16] in order to set both languages into a common logical framework.
The transformational approach is also taken in [19, 20] where logic programs with em-
bedded implications are translated to Horn clause programs. In [20] the de�nition of a
predicate in a new module overrides its de�nition in previous modules, therefore nested
de�nitions are independent of de�nitions in outer modules. The semantics of such lan-
guages can be de�ned by a direct mapping from programs in the extended language
to Horn clause programs. Then, Horn clause theory can be used to give logical and
computational foundation to the extended language. However, as it is pointed in [2,
20], when predicate extension is allowed, the translation of each predicate de�nition
(inside a module) raises di�erent predicate de�nitions, each one depending on the col-
lection of modules that have to be used. In dynamic scoped languages this collection
can only be determined in run-time, forcing to add new arguments to the translated
predicates to represent the modules currently in use. This makes the transformational
approach inadequate for both semantics and implementation issues. For static scoped
languages, such as the language studied in this paper, this approach could be still use-
ful for implementation issues, since there is a lexical way to determine such collection
of modules (for each goal). However, the translation would not be so direct because of
the multiple transformation of each original predicate. Therefore, in our opinion, for
semantical foundation it is more adequate the model-theoretic approach started in [8],
whose results we have enriched by setting a well-stablished logical framework.

69A Strong Logic Programming View for Static Embedded Implications

Acknowledgment: The authors are greatly indebted to Fernando Orejas for fruitful
discussions and suggestions.

References

1. Arruabarrena, R. and Navarro, M. On Extended Logic Languages Supporting Pro-
gram Structuring, In: Proc. of APPIA-GULP-PRODE'96, 191-203, (1996).

2. Bugliesi, M., Lamma, E. and Mello, P., Modularity in Logic Programming, Journal
of Logic Programming, (19-20): 443-502, (1994).

3. Bonner, A. J., and McCarty, L. T., Adding Negation-as-Failure to Intuitionistic
Logic Programming, In: Proc. of the North American Conf. on Logic Programming,
MIT Press, 681-703, (1990).

4. Bonner, A. J., McCarty, L. T., and Vadaparty, K., Expresing Database Queries
with Intuitionistic Logic. In: Proc. of the North American Conf. on Logic Program-
ming, MIT Press, 831-850, (1989).

5. Gabbay, D. M., N-Prolog: An Extension of Prolog with Hypothetical Implications.
II. Logical Foundations and Negation as Failure, Journal of Logic Programming
2(4):251-283 (1985).

6. Gabbay, D. M. and Reyle, U., N-Prolog: An Extension of Prolog with Hypothetical
Implications. I., Journal of Logic Programming 1(4):319-355 (1984).

7. Giordano, L., and Martelli, A.; Structuring Logic Programs: A Modal Approach,
Journal of Logic Programming 21:59-94 (1994).

8. Giordano, L., Martelli, A., and Rossi, G., Extending Horn Clause Logic with Im-
plication Goals, Theoretical Computer Sscience, 95:43-74, (1992).

9. Giordano, L., and Olivetti, N.; Combining Negation as Failure and Embedded
Implications in Logic Programs, Journal of Logic Programming 36:91-147 (1998).

10. Harland., J. Succecs and Failure for Hereditary Harrop Formulae, Journal of Logic
Programming, 17:1-29, (1993).

11. Lucio, P. FO�: A Complete Extension of First-order Logic with Intuitionistic
Implication, Technical Research Report UPV-EHU/LSI/TR-6-98, URL address:
http://www.sc.ehu.es/paqui, Submitted to a journal for publication.

12. McCarty, L. T., Clausal Intuitionistic Logic I. Fixed-Point Semantics, Journal of
Logic Programming, 5:1-31, (1988).

13. McCarty, L. T., Clausal Intuitionistic Logic II. Tableau Proof Procedures, Journal
of Logic Programming, 5:93-132, (1988).

14. Meseguer, J., General Logics, In: Ebbinghaus H.-D. et al. (eds), Logic Collo-
quium'87, North-Holland, 275-329, (1989).

15. Meseguer, J., Multiparadigm Logic Programming, In: Proccedings of ALP'92,
L.N.C.S. 632. Springer-Verlag, 158-200, (1992).

16. Miller, D., A Logical Analysis of Modules in Logic Programming, In: Journal of
Logic Programming, 6:79-108, (1989).

17. Miller, D., Abstraction in Logic Programs. In: Odifreddi, P. (ed), Logic and Com-
puter Science, Academic Press, 329-359, (1990).

18. Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A., Uniform Proofs as a Foun-
dation for Logic Programming, Annals of Pure and App. Logic, 51:125-157, (1991).

19. Monteiro, L., Porto, A., Contextual Logic Programmming, In: Proc. 6th Interna-
tional Conf. on Logic Programming, 284-299, (1989).

20. Moscowitz, Y., and Shapiro, E., Lexical logic programs, In: Proc. 8th International
Conf. on Logic Programming, 349-363, (1991).

21. van Dalen, D., and Troelstra, Constructivism in Mathematics: An Introduction
Vol.1 and Vol.2, Elsevier Science, North-Holland, (1988).

70 R. Arruabarrena et al.

A Appendix: Soundness of the proof-subcalculus

We prove here that the proof-subcalculus `s is sound with respect to the FO�-calculus
when restricted to the programming language Horn�. In the following, the rules in the
FO�-calculus and the rules in `s will be respectively called the logical and operational
rules.

Lemma 29. Let � be a sequence of �-programs P0; :::; Pn (n � 0) and G be a �-goal.
If � `s G then � ` G.

Proof. Soundness of `s w.r.t. ` would be obvious if each operational rule was a logical
rule, but there is a slight di�erence: the use of (8L) and (^L) logical rules is com-
pensated by the use of notation [�] in operational rules (1) and (2). So that, each of
the operational rules (1) through (5) is derivable in the FO�-calculus in the following
way: Rule (1) is derivable using a number of steps of (8L) and (^L) and one step of
(Init). Rule (2) can be seen as a particular case of (! L) when � = . For this reason
Rule (2) does not need a second premise which holds by (Init). Therefore, Rule (2) is
a combination of (8L), (^L), (! L) and (Init). Rule (3) is (R^), Rule (4) is (R9) and
Rule (5) is (R �).
Now, a proof of the sequent � B G can be made by substituting the corresponding
step(s) in the FO�-calculus for each step in the proof of � `s G.

As a particular case of this lemma, for � being a single program P , the following result
is obtained:

Theorem 30. Given a �-program P and �-goal G, if P `s G then P ` G.

B Appendix: Fixpoint Semantics

In this part, we prove the results that are suÆcient to establish that T!P is the least
�xpoint of the operator TP de�ned in Subsection 4.2 and that T!P is the least model of
P .

Proposition 31. TP is monotone.

Proof. Suppose that Fil(I1) v Fil(I2), that is I1 � I2. Then (by Proposition 13(a))
fA j G ! A 2 [P], I1
 Gg � fA j G ! A 2 [P], I2
 Gg holds. Therefore
TP (Fil(I1)) v TP (Fil(I2)).

In order to prove the continuity of TP , we �rst establish the following key lemma:

Lemma 32. For every chain I1 � I2 � ...� Ij �..., of Herbrand �-interpretations,
every �-clause D and every �-goal G,

(a) [jIj
 G =) there exists j0 such that Ij0
 G

(b) [jIj 6
 D =) there exists j0 such that Ij0 6
 D

71A Strong Logic Programming View for Static Embedded Implications

Proof. We proceed by simultaneous induction. For atoms (a) and (b) are trivial since
I
 A i� A 2 I. (a) for G = 9xG1 and (b) for D = D1 ^D2, D = 8xD1 can be easily
proved by the induction hypothesis.
To prove (a) for G = G1 ^ G2 suppose that [jIj
 G1 ^ G2. Then for some indices
j1,j2: Ij1
 G1 and Ij2
 G2. Hence Ij
 G1 ^G2 holds for j = max(j1; j2).
Now, consider (b) for D = G1 ! A1. If [jIj 6
 D then [jIj
 G1 and A1 =2 [jIj . By
induction, there exists j0 such that Ij0
 G1 and A1 =2 Ij0 . Therefore Ij0 6
 D.
In order to prove (a) for G = D1 � G1, we proceed by contradiction. Let us suppose
that for all index j: Ij 6
 D1 � G1. Then, for each j, there exists I

0
j such that Ij � I 0j ,

I 0j
 D1 and I 0j 6
 G1. Considering, for each j, the non-empty set of interpretations
Cj = fI j Ij � I, I
 D1, I 6
 G1g and taking, for each j, the interpretation I 0j =
\fI j I 2 Cjg, the following facts are veri�ed:

(i) Ij � I 0j , for all j
(ii) I 0j
 D1 and I 0j 6
 G1, for all j
(iii) fI 0jgj form the chain I 01 � I 02 � ...� I 0j �...

By applying the induction hypothesis onD1,G1 and the chain fI
0
jgj , we have [jI

0
j
 D1

and [jI
0
j 6
 G1. Since [jIj � [jI

0
j , then [jIj 6
 D1 � G1, in contradiction with the

hypothesis.

Theorem 33. Let Fil(I1) v Fil(I2) v ...v Fil(Ij) v... be a chain of elements in
FMod(�). Then TP (tjFil(Ij)) = tjTP (Fil(Ij)).

Proof. tjTP (Fil(Ij)) v TP (tjFil(Ij)) holds by monotonicity. The reverse inclusion
is equivalent to prove that fA j G ! A 2 [P], [jIj
 Gg � [jfA j G ! A 2 [P],
Ij
 Gg. Let A 2 fA j G ! A 2 [P], [jIj
 Gg. Then, for some G: G ! A 2 [P]
and [jIj
 G. Since I1 � I2 � ...� Ij �..., there exists an index j0 such that Ij0
 G.
Then A 2 fA j G! A 2 [P], Ij0
 Gg � [jfA j G! A 2 [P], Ij
 Gg.

The following lemma states that the models of P are the pre-�xpoints of TP .

Lemma 34. Let P be a �-program and Fil(I) 2 FMod(�). Then Fil(I) 2 FMod(P)
i� TP (Fil(I)) v Fil(I).

Proof. Let Fil(I) 2 FMod(P) and let us show that fA j G! A 2 [P], I
 Gg � I. If
A 2 fA j G! A 2 [P], I
 Gg, then there exists some G such that G! A 2 [P] and
I
 G. Therefore A 2 I, since I
 [P]. Conversely, let fA j G! A 2 [P], I
 Gg � I.
We have to show that Fil(I) j= G ! A, for each G ! A 2 [P]. Suppose Fil(I) j= G.
Then A 2 fA j G! A 2 [P], I
 Gg � I. Hence Fil(I) j= A.

72 R. Arruabarrena et al.

	Introduction
	Preliminaries
	The Logic FO
	The Logic Programming Language Horn
	Mathematical Semantics and Goal Completeness
	Operational Semantics

	Conclusions and Related Work
	A Appendix: Soundness of the proof-subcalculus
	B Appendix: Fixpoint Semantics

