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Abstract. We present a model checking algorithm for LCSA, a tem-
poral logic for communicating sequential agents (CSAs) introduced by
Lodaya, Ramanujam, and Thiagarajan. LCSA contains temporal modali-
ties indexed with a local point of view of one agent and allows to refer to
properties of other agents according to the latest gossip which is related
to local knowledge.
The model checking procedure relies on a modularisation of LCSA into
temporal and gossip modalities. We introduce a hierarchy of formulae
and a corresponding hierarchy of equivalences, which allows to compute
for each formula and �nite state distributed system a �nite multi modal
Kripke structure, on which the formula can be checked with standard
techniques.

1 Introduction

A reasonable and lucid way of formally treating distributed systems is to con-
sider them as a �xed collection of sequential components (agents) which can
operate independently as well as cooperate by exchanging information. There is
an increasing awareness, both in theory and practice, of the bene�ts of specify-
ing the requirements of such systems by localised, component based formalisms,
that allow to refer to properties of the individual components.

The operational models for localised speci�cation usually consist of local
temporal orders (sequences in the linear time case, trees in branching time)
together with an interrelation between these orders, descended from communi-
cation [LRT92,Ram95]. The most established models for the linear time case are
partial orders, whereas in the branching time setting, (prime) event structures
or closely related models like occurrence nets [NPW80,Win87] have been recog-
nised to be a suitable formalism. In these models, partial orders are extended
by an additional con
ict relation, representing the moments of choice.
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Investigating partial order models has attained the interest of researchers for
mainly two reasons: There is no distinction among computations that are equal
up to possible total orderings of independent actions, which makes it a faithful
and natural formalism for representing concurrency. Furthermore, restricting
the attention to local states mitigates one of the most tackled di�culty of model
checking, the so-called state explosion problem, which results from an explicit
computation of the global state space of a distributed system.

For a component-oriented speci�cation of behaviour, local linear time tem-
poral logics have been investigated by Thiagarajan in [Thi94,Thi95] and Niebert
[Nie98]. Local branching time logics were introduced in [LT87,LRT92,HNW98b].
While for the linear time case there now exist sound model checking procedures
based on automata [Thi94,Nie98], only recently the model checking problem for
local branching time logics has been inspected [Pen97,HNW98b].

In this paper, we investigate model checking for a local branching time logic
de�ned by Lodaya, Ramanujam and Thiagarajan in [LRT92], here called LCSA,
which is intended to specify the behaviour of communicating sequential agents
(CSAs). It allows a component i to refer to local properties of another component
j according to the latest gossip (in [LRT92] also called local knowledge), i.e., the
most recent j-local state that causally precedes the current i-local state.

Based on net unfoldings [Eng91] and McMillan's �nite pre�x construction
[McM92], we solve the model checking problem for LCSA, which remained open
since [LRT92].

McMillan's pre�x has successfully been applied to alleviate state explosion in
many veri�cation problems, for instance deadlock detection [McM92], and model
checking S4 [Esp94], LTL [Wal98], and the distributed �-calculus [HNW98b]. All
of the previous problems principally can be solved with conventional state space
exploration, but often with an exponentially higher e�ort.

The focus of this paper is to show decidability of model checking LCSA.
Generalising the techniques of [HNW98b], we demonstrate that the unfolding
approach is very suitable for model checking a wider class of local logics, for
which previously the problem appeared to be too di�cult.

Technically, we proceed as follows: We lift the semantics of LCSA from CSAs
onto net unfoldings, and factorise the net unfolding with respect to an equiv-
alence relation satisfying two key properties: It is a congruence for the LCSA-
speci�cation to be checked, and it has �nite index. Via this factorisation, the
LCSA model checking problem can be transformed into a model checking problem
for a multi modal logic on a �nite transition system constructed upon a modi�ed
McMillan pre�x, using the de�ned equivalence relation as cuto� condition. With
an appropriate interpretation of the LCSA modalities, standard model checking
algorithms, e.g. [CES86], can be applied on this transition system.

The approach follows the lines of [HNW98b], but whereas the focus there was
to derive an algorithm for calculating the transition system, the main di�culty
here is to develop an appropriate equivalence relation. The modalities of the
distributed �-calculus of [HNW98b] are purely future oriented, while the past
and also the gossip modalities of LCSA may lead to rather complex patterns
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within the past of a con�guration. As a consequence, the coarsest equivalence
preserving all LCSA properties has non-�nite index and it is not possible to con-
struct a single (�nite-state) transition system representing all LCSA properties of
a particular �nite state distributed system. However, a single LCSA formula has
a limited power of referring to the past so that we can construct an equivalence
depending on the formula. For this purpose, we introduce a syntactic hierar-
chy of formulae and a corresponding equivalence hierarchy. The construction of
these equivalences and the proof of their soundness are both complex, and the
resulting model checking complexity of the construction given here is high.

The technical presentation of the paper relies on notions from Petri net the-
ory, mainly to correspond directly to McMillan's pre�x. Note however, that the
entire method can easily be restated for other formalisms, like e.g. asynchronous
automata, coupled �nite state machines, and so forth.

The paper is structured as follows. In Section 2 we introduce distributed
net systems, and their unfoldings as semantic model of branching behaviour. In
Section 3 we introduce the logic LCSA and our slightly generalised version L. In
Section 4 we present McMillan's �nite pre�x, and parameterise its de�nition by
an abstract equivalence relation. Then we develop an appropriate equivalence
for L. In Section 5 we use this equivalence to compute a �nite state transition
system, on which the model checking problem for L can be solved by conventional
model checkers. In Section 6, we discuss our results and indicate future work.

2 Distributed net systems and their unfoldings

Petri nets. Let P and T be disjoint, �nite sets of places and transitions,
generically called nodes. A net is a triple N = (P; T; F ) with a 
ow relation
F � (P�T )[(T�P ). The preset of a node x is de�ned as �x :=fy2P [T j yFxg
and its postset as x� :=fy2P [ T j xFyg. The preset (resp. postset) of a set X
of nodes is the union of the presets (resp. postsets) of all nodes in X .

A marking of a net is a mapping M : P ! IN0. If M(p) = n, we say that
p contains n tokens at M . A net system � = (N;M0) consists of a net N , and
an initial marking M0. The markingM enables the transition t if every place in
the preset of t contains at least one token. In this case the transition can occur.
If t occurs, it removes one token from each place p 2 �t and adds one token to
each place p0 2 t�, yielding a new marking M 0. We denote this occurrence by

M
t
�!M 0. If there exists a chain M0

t1�!M1

t2�! : : :
tn�!Mn for n � 0, then

the marking Mn is a reachable marking.
We will restrict our attention to 1-safe net systems, in which every reachable

marking M puts at most one token on each place, and thus can be identi�ed by
the subset of places that contain a token, i.e., M�P .

In the last years, 1-safe net systems have become a signi�cant model [CEP95].
In [NRT90] it has been shown that an instance of 1-safe nets, called Elementary
Net Systems, correspond to other models of concurrency, such as (Mazurkiewicz)
traces and prime event structures. They can naturally be interpreted as a syn-
chronised product of several �nite automata, and thus they are frequently used
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as a convenient formalism for modelling distributed systems. In the following we
will exploit this compositional view by considering the notion of locations.

Distributed net systems. Let us introduce the formalism for describing dis-
tributed systems. Clearly, the behaviour of our models shall resemble the Com-
municating Sequential Agents of [LRT92]. This means, a system consists of sev-
eral distributed, autonomous agents, which mutually communicate. Each of the
agents shall behave strictly sequentially, and non-deterministically.

Let � be a 1-safe net system, and t; t0 two transitions of �. A marking M
concurrently enables t and t0 if M enables t, and (M n �t) enables t0. We call �
sequential if no reachable marking concurrently enables two transitions.

Let f�i = (Pi; Ti; Fi;M
0
i ) j i 2 Locg be a family of 1-safe, sequential net

systems (called agents, or components) with pairwise disjoint sets Pi of places,
indexed by a �nite set Loc of locations. Note that the sets of transitions are not
necessarily disjoint. In fact, we will interpret the execution of a transition that
is common to several agents as a synchronous communication action of these
agents, i.e., the communication capabilities are given by the common execution
of joint transitions. Formally, a distributed net system �Loc = (N;M0) is de�ned
as the union of its components �i:

P =
[

i2Loc

Pi ; T =
[

i2Loc

Ti ; F =
[

i2Loc

Fi ; M0 =
[

i2Loc

M0
i :

Clearly, �Loc is again 1-safe. The location loc(x) of a node x is de�ned by
loc(x) := fi 2 Loc jx 2 Pi [ Tig. A simple distributed net system consisting of
two components is depicted in Fig. 1.

In [LRT92] also asynchronous communication (message passing) is consid-
ered. However, in general this yields systems with in�nitely many states, mak-
ing an algorithmic, state space based approach to model checking impossible.
To model the asynchronous setting, we can assume some �nite-state commu-
nication mechanism like e.g. bounded channels or bu�ers, which can easily be
de�ned within the presented framework by considering a bu�er as an agent of
its own, (synchronously) communicating with both the agents that communicate
(asynchronously) via this bu�er.

Net unfoldings. As a partial order semantics of the behaviour of a distributed
net system, we consider net unfoldings, also known as branching processes. They
contain information about both concurrency and con
ict.

Two nodes x; x0 of a net (P; T; F ) are in con
ict, denoted x#x0, if there exist
two distinct transitions t; t0 such that �t \ �t0 6= ;, and (t; x); (t0; x0) belong to
the re
exive, transitive closure of F . If x#x, we say x is in self-con
ict.

An occurrence net [NPW80] is a net N 0=(B;E; F ) with the following prop-
erties: (1) for every b 2 B, j �bj � 1, (2) the irre
exive transitive closure < of F is
well-founded and acyclic, i.e., for every node x2B[E, the set fy2B[Ejy < xg
is �nite and does not contain x, and (3) no element e 2 E is in self-con
ict.
The re
exive closure � of < is a partial order, called causality relation. In occur-
rence nets we speak of conditions and events instead of places and transitions,
respectively. Min(N 0) denotes the minimal elements of N 0 w.r.t. �.
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Fig. 1. Distributed net Fig. 2. Branching process

Given two nets N1; N2, the mapping h : P1 [ T1 ! P2 [ T2 is called a
homomorphism if h(P1)�P2; h(T1)�T2, and for every t2T1 the restriction of h
to �t, denoted hj�t, is a bijection between �t and �h(t), and analogous for hjt� .

A branching process [Eng91] of a net system �=(N;M0) is a pair �=(N 0; �)
where N 0=(B;E; F ) is an occurrence net and � : N 0 ! N is a homomorphism,
such that the restriction of � toMin(N 0) is a bijection betweenMin(N 0) andM0,
and additionally for all e1; e22E: if �(e1) = �(e2) and

�e1 =
�e2 then e1 = e2.

Loosely speaking, we unfold the net N to an occurrence net N 0, such that each
node x of N 0 refers to node �(x) of N . Two branching processes �1; �2 of �
are isomorphic if there exists a bijective homomorphism h : N1 ! N2 such that
the composition �2 � h equals �1. In [Eng91] it is shown that each net system �
has a unique maximal branching process up to isomorphism, which we call the
unfolding of �, and denote by Unf� = (N 0; �).

In distributed net systems, the location loc(x) of a node x of N 0 is given by
loc(x) = loc(�(x)). By Ei := fe2E j i2 loc(e)g, we denote the set of i-events.

Let N 00 = (B00; E00; F 00) be a subnet of N 0, such that e 2 E00 implies e0 2 E00

for every e0 < e, and B00 = Min(N 0) [ E00�, and let �00 be the restriction of �
onto the nodes of N 00. We call �00 = (N 00; �00) a pre�x of Unf� . Fig. 2 shows a
pre�x of the in�nite unfolding of the net system drawn in Fig. 1.

Con�gurations and Cuts. For the remainder of the section, let us �x the
unfolding Unf� = (N 0; �) of the distributed net system � with N 0 = (B;E; F ).

A con�guration C � E is a causally downward-closed, con
ict-free set of
events, i.e., 8 e 2 C: if e0 � e then e0 2 C, and 8 e; e0 2 C : :(e#e0). A �nite
con�guration describes the initial part of a computation of the system. If we
understand the states of the system as moments in time, then con�gurations
represent the past (by exhibiting all the events that have occurred so far, and
the causal structure among them), as well as the present and the future, as
formalised in the following.

Two nodes of N 0 are concurrent if they are neither in con
ict nor causally
related. A set B0 � B of conditions of N 0 is called a cut if B0 is a maximal
set of pairwise concurrent conditions. Every �nite con�guration C determines a
cut Cut(C) := (Min(N 0) [ C�) n �C. The corresponding set �(Cut(C)) � P of
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places is a reachable marking of �, denoted byM(C) and called the state of C.
Notice that for every reachable marking M of �, there exists a (not necessarily
unique) �nite con�guration with state M . We will often identify con�gurations
with their state. Given a con�guration C and a disjoint set E0 of events, we call
C �E0 an extension of C if C [ E0 is a con�guration.

Let "C := fx 2 (B [ E) j 9b 2 Cut(C): b � x and 8y 2 C: :(x#y)g.
The (branching) future of a con�guration C is given by the branching process
�(C) := (N 0

C ; �C), where N
0
C is the unique subnet of N 0 whose set of nodes

is "C, and �C is the restriction of � onto the nodes of N 0
C . Let us call two

con�gurations M-equivalent , denoted C �M C 0, if M(C) = M(C 0). It is easy
to show that if C �M C 0 then there exists an isomorphism IC

0

C from �(C) to
�(C 0). It induces a mapping from the extensions of C onto the extensions of C 0,
mapping C �E0 onto C 0 � IC

0

C (E0), which are again M-equivalent.

Local states and views. The notion of local state arises by considering con-
�gurations that are determined by single events. For an event e, we call the set
#e := fe0 2E j e0 � eg the local con�guration of e. It is indeed a con�guration,
because no event is in self-con
ict. If e2Ei is an i-event, we consider #e to be an
i-local state. It determines the local past of component i, as well as the local past
of every component that communicated with i so far | directly, or indirectly
via other components.

In distributed net systems, we de�ne the i-view #iC of a con�guration C as
#iC := fe 2 C j 9ei 2 (C \ Ei): e � eig. Notice that the sequentiality of the
components implies that for each i2Loc, the i-events form a tree in Unf, i.e., in
each con�guration the i-events are totally ordered. Thus, the i-view of C is the
local con�guration of the unique, causally maximal i-event in C. Intuitively, #iC
can be understood as the most recent i-local con�guration that the whole system
is aware of in the (global) con�guration C. The i-view of a local con�guration
#e is written as #ie. Note that #ie = #e i� i2 loc(e). We will interpret the empty
con�guration as the local con�guration of a virtual event ?, which can be seen
as initial event with empty preset and Min(N 0) as postset. We assume the set
of events of Unf� to contain this virtual event, ?2E, and set loc(?) := Loc.

Let Cloc(Unf ) denote the set of local con�gurations of Unf (abbreviated Cloc
if Unf is clear), and let C i

loc
:= f#e j e2Eig be the set of i-local con�gurations.

Correspondence of CSAs and unfoldings. Originally in [LRT92], the entire
formalism relies on CSAs, a subclass of prime event structures. We note that net
unfoldings as presented here, directly correspond to rooted CSAs. The di�erences
are only technical. For details of this correspondence, cf. [HNW98a].

3 Temporal Logic for Communicating Sequential Agents

In [LRT92], Lodaya, Ramanujam, and Thiagarajan de�ned and axiomatised the
temporal logic LCSA that allows to express properties referring to the latest
gossip of the agents in a distributed system. Let us give a brief idea of the logic,
related to unfoldings of distributed net systems. For details, cf. [LRT92].
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Basically, LCSA consists of propositional logic. Additionally, it provides two
temporal operators 3i, resp. 3�i, for each i2Loc, referring to the local future,
resp. local past, of agent i. All formulae are interpreted exclusively on the local
con�gurations of a given unfolding.

Intuitively, 3�i ' holds at #e if some i-local con�guration in the past of e
satis�es '. When e is a j-event, this can be read as \agent j has at its local state
#e enough gossip information to assert that ' was true in the past in agent i".

The local con�guration #e satis�es 3i ' i� some i-local con�guration in the
i-local future of #e satis�es ', i.e., if there is some con�guration #e0 (e0 2 Ei)
such that #e0 � #ie and #e0 satis�es '. For e2Ej , this can be read as \at the
j-local state where e has just occurred, agent j has enough gossip information
about agent i to assert that ' may hold eventually in i".

Typical speci�cations are properties like 3i(xi !
V
j2Loc 3j xj): \whenever

xi holds in i, then agent i knows that xj may hold eventually in all other agents
j". For more detailed examples, cf. [LRT92].

A generalised syntax { L. We now introduce a slightly extended language in
which the temporal modalities 3;3� are separated from the gossip modality @ i :.
The separation yields a higher degree of modularity in the technical treatment
and also saves redundant indices in nested formulae residing at a single location.
The abstract syntax of L is

' ::= p j :' j ' _ ' j 3' j 3�' j @ i : '

where p ranges over a set of atomic propositions, and i over Loc. We require
that every occurrence of a temporal modality lies within the scope of a gossip
modality. The operators 3 and 3� are now seen as temporal future and past
modalities within a single location, which is determined by the next enclosing
gossip modality @ i :. For example, 3i2j' will be written as @ i : 3@ j : 2'0

in our syntax. Formally, the connection to the original LCSA syntax is given in
[HNW98a].

Like in LCSA, formulae are interpreted at local con�gurations only. The mod-
els of L are unfoldings of distributed net systems. The interpretation of the
atomic propositions relies on the state function M, i.e., we identify the atomic
propositions with the set P of places of the system under consideration (with-
out loosing expressive power by this convention), and evaluate a proposition at
con�guration #e according to M(#e).

Formally, we de�ne two satisfaction relations: a global relation j=, de�ned for
the local con�gurations of arbitrary locations, and for each agent i2Loc a local
relation j=i, exclusively de�ned for the i-local con�gurations. These relations are
inductively de�ned as follows:

#e j= p i� p 2M(#e) #e j= ' _  i� #e j= ' or #e j=  
#e j= :' i� #e 6j= ' #e j= @ i : ' i� #ie j=i '

#e j=i p i� p 2M(#e) #e j=i ' _  i� #e j=i ' or #e j=i  
#e j=i :' i� #e 6j=i ' #e j=i 3�' i� 9e0 2 Ei : e

0 � e and #e0 j=i '
#e j=i @ j : ' i� #je j=j ' #e j=i 3' i� 9e0 2 Ei : e

0 � e and #e0 j=i '
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We say that the system � satis�es a formula ' if the empty con�guration #?
of Unf� satis�es ', i.e., if #? j= '. The future fragment L+ of L consists of all
formulae without past-operator 3� .

4 Factorisation of the Unfolding

In general, the unfolding of a net system is in�nite, even if the net is �nite-
state. Therefore, many model checking algorithms cannot directly be applied on
a modal logic de�ned over the unfolding. One way to overcome this problem is
to look for a factorisation of the unfolding by a decidable equivalence relation �
that is �ner than the distinguishing power of the formula to be evaluated, i.e.,
C � C 0 shall imply C j= ', C 0 j= '. The second requirement on � is that a set
of representatives of its �nitely many equivalence classes and a representation of
the (transition) relations between the classes can be computed e�ectively. Then
we can decide C j= ' on Unf by transferring the question to the model checking
problem (C=�) j= ' on (Unf=� ; �!).

The �nite pre�x. The �rst construction of an appropriate �nite factorisation
was given by McMillan [McM92]. He showed how to construct a �nite pre�x of
the unfolding of a safe, i.e. �nite-state, net system in which every reachable mark-
ing is represented by some cut. In terms of temporal logic, his approach means
to consider formulae of the type 3 where 3 is \global reachability" and  is
a boolean combination of atomic propositions P . The key to the construction is
that if the pre�x contains several events withM-equivalent local con�gurations,
then their futures are isomorphic, i.e., they cannot be distinguished by the logic.
Consequently, only one of them needs to be explored further, while the others
become cuto� events. The �nite pre�x Fin is that initial part of the unfolding,
that contains no causal successor of any cuto�, i.e., an event e0 belongs to Fin
i� no event e < e0 is a cuto�.

In general, the formal de�nition of a cuto� requires two crucial relations on
con�gurations: An instance of the equivalence relation �, and a partial order �.
On the one hand, this partial order shall ensure that the expanded pre�x con-
tains a representative for each equivalence class. On the other hand, it shall
guarantee that the pre�x remains �nite. The requirements for an adequate par-
tial order � (in conjunction withM-equivalence) were examined very detailed in
[ERV96]. They are as follows: it must be well-founded, it must respect set inclu-
sion (C � C 0 implies C � C 0), and it must be preserved under �nite extensions,
i.e., if C � C 0 and C � C 0 then C �E0 � C 0 � IC

0

C (E0).

Such an adequate partial order is particularly useful, if it is total, such that
for each two equivalent local con�gurations #e � #e0 either e or e0 can be discrim-
inated as a cuto�. For 1-safe nets, a total order satisfying the above requirements
was de�ned in [ERV96], yielding a minimal pre�x.

In [McM92,ERV96] justM-equivalence is considered. In conjunction with an
adequate order �, the de�nition of Fin guarantees that each reachable marking
is represented by the state of a con�guration contained in Fin.
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It was already observed in [HNW98b] that re�ning M-equivalence yields
an extended pre�x, which { although being possibly larger than the pre�x of
[McM92,ERV96] { allows to apply a standard �-calculus model checker for a lo-
cation based modal logic called the distributed �-calculus. We de�ned an equiva-
lence �M-loc by #e �M-loc #e0 i� #e �M #e0 and loc(e) = loc(e0), and proved that
�M-loc-equivalence equals the distinguishing power of the distributed �-calculus.

Generalised cuto�s. Now we look for more general conditions on equivalence
relations that ensure that all equivalence classes can be computed by a pre�x
construction. Let us call a decidable equivalence relation � on con�gurations of
Unf to be adequate if it re�nes M-equivalence and has �nite index. I.e., C � C 0

implies C �M C 0 and � has only �nitely many equivalence classes on Unf. We
give a generalised de�nition of a cuto� event by

e2E is a cuto� i� 9e02E, such that #e0 � #e and #e0 � #e

where � is an adequate equivalence relation and � is an adequate partial order.
The �nite pre�x Fin constructed for � is given by the condition: e0 belongs to
Fin i� no event e < e0 is a cuto�. It is obvious from the cuto� de�nition that
Fin constructed for � contains a representative for each �-class of Unf.

Proposition 1. The pre�x Fin constructed for an adequate � is �nite.

An adequate equivalence �ner than L. In di�erence to S4 as used in [Esp94]
and the distributed �-calculus in [HNW98b], an equivalence �ner than the distin-
guishing power of L has in�nite index. However, by each �nite set of L-formulae
we can only distinguish �nitely many classes of con�gurations. Thus we can
hope for a model checking procedure following the outline from the beginning
of the section, if we �nd an equivalence which is at least as discriminating as
the Fisher-Ladner-closure of a L-formula ', because this is the set of formulae
relevant for model checking ' on Unf. First, we need some technical de�nitions.

Let us denote the gossip-past-depth of a formula ' 2 L by gpd('). It shall
count how often in the evaluation of ' we have to change the local view or to
go back into the local past. The inductive de�nition is

gpd(p) = 1 gpd(:') = gpd(')
gpd(' _  ) = maxfgpd('); gpd( )g gpd(3') = gpd(')
gpd(@ i : ') = gpd(') + 1 gpd(3�') = gpd(') + 1

Now we are ready to de�ne the crucial equivalence relation �n
i , which is the

basis for model checking L. It is parameterised by a natural number n (which will
be the gossip-past-depth of a given formula) and by a location i (at which the
formula is interpreted). Formally, we de�ne �n

i � Ciloc � Ciloc to be the coarsest
equivalence relation satisfying:

#e �0
i #f implies 8p 2 Pi : p 2 M(#e) , p 2M(#f)

#e �1
i #f implies 8j; k 2 Loc : #je � #ke , #jf � #kf
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and for all n � 0 moreover

#e �n+1
i #f implies 8j 2 Loc : #je �n

j #jf
(*) and 8e02(#e \ Ei) : 9f 02(#f \ Ei) : #e0 �n

i #f
0

and 8f 02(#f \Ei) : 9e02(#e \ Ei) : #e0 �n
i #f

0

The �rst condition is an i-localised version of M-equivalence. The second one
refers to the latest information concerning agents other than i, and the third
condition inductively lifts the equivalence with respect to the levels of the gossip-
past-depth. Let us brie
y collect some important facts about the equivalence.

Observation 2. The equivalence relation �n
i is decidable and of �nite index for

every n � 0. Furtheron, �n+1
i is re�ning �n

i , i.e., �
n+1
i � �n

i for all n. Finally,
it respects M-equivalence, i.e., #e �n

i #f implies M(#e) =M(#f) for all n > 0.

Remark 3. Note that the last two lines of the third condition after (*) can be
omitted if we restrict ourselves to the (still very useful) sublanguage L+, yielding
considerable savings: With this condition, the number of equivalence classes of
�n
i may grow non-elementarily with n, forbidding any consideration of practi-

cability, whereas without this condition the number of equivalence classes grows
exponentially with n.

The most important property of the equivalence used in the proof of the
main result is that it is preserved by local successors, as stated in Lemma 4.

Lemma 4. Let e � e0, and f � f 0 be i-events, such that #e �n
i #f , and let I

be the isomorphism from �(#e) onto �(#f). If f 0 = I(e0) then also #f 0 �n
i #e

0.

Proof. This the most involved proof, and a main result of the paper. Please note
that (for reasons of readability) the proof given here only deals with the pure
future fragment L+ of the logic L, i.e. the third condition of the de�nition of
the equivalence relation �n

i has to be read without the last two lines after the
(*). For the (even more involved) proof for the full logic L, i.e., inclusive the
condition (*) of the �n

i de�nition, see [HNW98a].
Let us de�ne some notions and notations: Since we will often talk about a

number of view changes in sequence, we introduce \paths" through the locations
of the system: Let � = l1l2 : : : ln be a sequence of locations (called location
path), i.e., lj 2 Loc for all 1 � j � n. Given any con�guration C, we de�ne
#�C := #l1(#l2(: : : (#lnC) : : : )). We set #"e := #e, where " is the (empty) sequence
of length 0. Note that a location path may include repetitions, i.e., li = lj for
i 6= j is allowed. Given an event g and some location path �, we denote by g�
the event that determines the �-view of #g, i.e., #�g = #g�.

Now let e � e0 and f � f 0 be events of Ei, and n � 1, as in the assumptions of
the Lemma. First of all, we note that the required isomorphism I exists because
�n
i -equivalence implies M-equivalence.
We have to show #f 0 �n

i #e
0. A key observation is the following: for every

location path �, it holds that if e0� 6� e then I(e0�) = f 0� 6� f .
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This is the basis for the induction on m � n: for each sequence � of length
n�m with e0� 6� e (and also f 0� 6� f), it holds that #e0� �

m
j #f 0�, where j is either

the �rst location occurring in the sequence � (if n > m), or j := i (if n = m
and the empty sequence " is the only sequence of length n �m). In the latter
case, #ie0 = #e0 (because e0 2 Ei), and #if 0 = #f 0, we thus obtain #e0 �n

i #f
0

as required. The induction relies on a case analysis according to the following
cases: m = 0, n = m = 1, n = m > 1, n > m = 1, and �nally n > m > 1.
� For m = 0 we have to show that #e0� �

0
j #f

0
�. This is clear, because I(e

0
�) =

f 0� 2 Ej and thus the j-local part of the markings of #e0� and #f 0� coincide,
because �(e0�)

�
= �(f 0�)

�
.

� For n = m = 1 we have to show that #e �1
i #f implies #e0 �1

i #f
0, i.e., (1) for

all j2Loc: #je0 �0
j #

jf 0, and (2) for all j; k 2 Loc: e0j � e0k i� f 0j � f 0k.
If e0j � e then #e0 n #e contains no j-event, which means that e0j = ej and
similarly f 0j = fj , so (1) follows easily. If e

0
j 6� e then also f 0j 6� f , in which case

#je0 �0
j #

jf 0 follows by induction.
So consider (2). Let j; k 2 Loc. We show that e0j � e0k i� f 0j � f 0k, using a
similar case analysis. If e0j ; e

0
k 6� e, then the isomorphism preserves the order. If

e0j ; e
0
k � e, then e0j = ej and e

0
k = ek, (and similarly f 0j = fj ; f

0
k = fk), and so

the order is inherited from the corresponding local views of #e and #f , which
by assumption match. The third case is e0j � e, but e0k 6� e, and thus similarly
f 0j � f , but f 0k 6� f . Since this is the most sophisticated argument and used also
in the other cases, the situation is illustrated in Figure 3. e0j � e implies e0j = ej .
Now we choose an l 2 Loc, such that ej � el � e0k, and moreover el is (causally)
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��
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�

����
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��
��
��

e0j = ej

e0k

e

e0

assumption: �

el: selected

<

�

� �

�: induced by the e's and ind.

f 0j = fj

fl

conclusion: �

f 0

f

<: induced by the e's

f 0k

Fig. 3. Situation: e0k 6� e and e0j � e

maximal with this respect. For at least one of the possible choices of l, there
exists an event e00 2 El, such that e00 2 (#ke0 n #e). By the isomorphism, we have
that I(e00) = f 00 2 (#kf 0 n #f). By assumption on the equivalence of e and f we
can conclude f 0j = fj � fl � f 0l � f 0k, i.e., #

jf 0 � #kf 0 as desired.
� For n = m > 1 the reasoning is similar to the case n = m = 1, except that the
argument for the gossip aspect of the equivalence is not needed.
� For n > m = 1, let � = (i0�0) be a sequence of length n � 1 with e0� 6� e.
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Again, we have to show #�e0 �1
i0 #

�f 0. Let j 2 Loc. For the case of e0j� 6� e the

�0
j -equivalence is a consequence of I(e0j�) = f 0j� . For e

0
j� � e there exists again

an l 2 Loc with e0j� � el � e0�, so that el is maximal in this respect, and as above
we also obtain f 0j� � fl � f 0�. Moreover, in this case it holds that ejl = e0j� and

similarly fjl = f 0j� . By assumption, we have #(ejl) �
n�2
j #(fjl), and because of

n � 2, in particular #(ejl) �0
j #(fjl), as desired.

The argument concerning the relative orders of j-views and k-views of e� and
e0� is the same as for the case of n = m = 1.
� For n > m > 1 let � be of length n �m, such that � has j as �rst element,
and such that e0� 6� e, and similarly f 0� 6� f . We have to show that for each
k 2 Loc it holds that #ke0� �m�1

k #kf 0�. For e
0
k� 6� e and similarly f 0k� 6� f

this follows from the induction hypothesis. For e0k� � e there exists (again) a
location l, such that e0k� � el � e0� and el is causally maximal in this respect.
Then #ke0� = #kel �

n�2
k #kfl = #kf 0�, where n � 2 � m � 1, so that the desired

claim follows from the observation �~n+ ~m
k � �~n

k . 2

Theorem 5. Let ' be an L-formula of gossip-past-depth n, and let e; f 2 Ei

with #e �n
i #f. Then #e j=i ' i� #f j=i '.

Proof. By structural induction on ': For atomic propositions, note that #e �1
i

#f implies #e �M #f (cf. Observation 2), and hence #e j=i p i� #f j=i p. The
induction for boolean connectives is obvious.

For gpd(3') = gpd(') = n let #e j=i 3' and #e �n
i #f . We have to show

that also #f j=i 3' (all other cases follow by symmetry). By de�nition, there
exists e0 � e with e0 2 Ei and #e0 j=i '. By Lemma 4 the event f 0 = I(e0) 2 Ei

obtained from the isomorphism I due to theM-equivalence of #e and #f satis�es
f � f 0 and #e0 �n

i #f
0. By induction, #f 0 j=i ' and �nally #f j=i 3'.

Now let ' = @ j :  with gpd(') = gpd( ) + 1 = n. If #e j=i ' then
#je j=j  , and by de�nition #je �n�1

j #jf . Thus, by induction, #jf j=j  , and
�nally #f j=i '.

Finally, let ' = 3� , with gpd( ) = n�1, and #e j=i 3� , i.e., there exists an
event e02Ei, s.t. e

0 � e and #e0 j=i  . Due to the third condition (*), there exists
an f 0 2Ei, s.t. f

0 � f and #f 0 �n�1
i #e0. Hence, by induction, also #f 0 j=i  ,

and thus #f j=i '. 2

Based on the local equivalences, we de�ne an adequate equivalence relation
for the construction of a �nite pre�x by #e �n #f i� loc(e)= loc(f) and #e �n

i #f
for all i2 loc(e). The next and last step to transfer the L model checking prob-
lem from the unfolding to an equivalent model checking problem over a �nite
structure is the de�nition of the transitions between the �n-equivalence classes
of Unf. This is done in the next section.

5 Model checking

In this section we propose a veri�cation technique for L. Following the lines of
[HNW98b], we will sketch a reduction of a given instance of the problem to a
suitable input for well investigated model checkers like e.g. [CES86].
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Let us consider a distributed net system � and an L-formula ' of gossip-
past-depth n. We have shown so far how to construct a �nite pre�x Fin of the
unfolding Unf� that contains representatives for all �n

i equivalence classes. Now
we want to compute a �nite, multi modal Kripke structure on the representatives
that is equivalent to Unf� with respect to the evaluation of '. What is missing
are the transitions between the representatives.

Computing a �nite Kripke structure. Let n 2 N, and Unf� = (N 0; �)
with N 0 = (B;E; F ) be �xed, and let �n be the equivalence relation used for
the construction of Fin. The state space Sn of the desired Kripke structure
consists of one representative of each �n equivalence class. Note that by using
the adequate total partial order � of [ERV96], these representatives are unique,
and so the state space is given by Sn := f#e j e 2 Fin and e is not a cuto�g. If
the used order � is not total, we �x one non-cuto� (resp. its local con�guration)
of the pre�x as the representative of each �n equivalence class. For every local
con�guration #e of Unf� , let rep(#e) 2 Sn denote the unique representative.

Now let us consider the transitions of the Kripke structure. We introduce a
transition relation for each of the modalities of the logic. Let #e; #f 2 Sn.

#e 3i�!n #f i� e; f 2 Ei and 9f 0 2 Ei : f
0 � e ^ rep(#f 0) = #f

#e
@j

�! #f i� e 2 Ei; f 2Ej ^ #je = #f

#e
3�i
�! #f i� e; f 2 Ei ^ f � e

Note that the de�nitions of
@j

�! and
3�i
�! rely on the fact that the set of con-

�gurations in Fin (and thus also in Sn) is downward closed, i.e., the j-view
of any element of Sn is again in Sn for every j, and of course past con�g-
urations as well. On the whole, we obtain the multi modal Kripke structure
Tn = (Sn; f

3i�!n ;
@i�! ;

3�i
�! j i 2 Locg; #?) with root #?.

As a corollary to Theorem 5 we obtain the following characterisation of the
semantics of L formulae over Tn:

Corollary 6. Let ' 2 L be a formula of gossip-past-depth m � n, and let
#e 2 Sn be an i-local con�guration, i.e., e 2 Ei.

1. If ' = 3 then #e j=i ' i� 9 #f 2 Sn with #e 3i�!n #f and #f j=i  .

2. If ' = @ j : then #e j=i ' i� 9 #f 2 Sn with #e
@j

�! #f and #f j=j  .

3. If ' = 3� then #e j=i ' i� 9 #f 2 Sn with #e
3�i
�! #f and #f j=i  .

Proof. (1) follows from the semantics of 3 and the fact that by construction of
Tn for any pair of states #f 0 and #f = rep(#f 0), we have that #f j=i ' i� #f 0 j=i '
for any formula ' with gpd(') = m � n. (2) and (3) are trivial. 2

Thus, if we are able to actually compute (the transitions of) Tn then we
can immediately reduce the model checking problem of L to a standard model
checking problem over �nite transition systems, applying e.g. [CES86].

Computing the transitions #e
@j

�! #f in Tn is trivial: #f = #je. Similarly
computing the

3�i
�! successors of #e is very easy. It is more di�cult to compute

the transitions #e 3i�!n #f , if only Fin is given. To achieve this, we use a modi�ed
version of the algorithm proposed in [HNW98b].
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An algorithm to compute the
3i

�!n transitions. We assume in the fol-
lowing that the algorithm for constructing the pre�x Fin uses a total, adequate
order �. The construction of Fin provides some useful structural information:
each cuto� e has a corresponding event e0, such that #e0 �n #e, and #e0 � #e.
Clearly, we choose rep(#e) := #e0 for each cuto� e, and for non-cuto�s f , we set
rep(#f) := #f . For technical reasons, we extend the de�nition of 3i�!n : we de-
�ne C 3i�!n #e for any local or global con�guration C � #e0, with rep(#e0) = #e
and e; e0 2 Ei. The construction of Fin also provides a function shift�, which
maps any con�guration C = C1 of Unf� containing some cuto�, onto a con�g-
uration shift�(C) = Cm not containing a cuto�, hence being present in Fin.

This function works by repeatedly applying Ck+1 := #e0k � I
#e0k
#ek

(Ck n #ek) with

ek 2 Ck being a cuto� of Fin, and e0k being its corresponding, equivalent event.
This iterative application terminates, because the sequence C1; C2; :: decreases
in the underlying (well-founded) order �. Obviously, this function implies the
existence of an isomorphism I between �(C) and �(shift�(C)), which is the com-

position of the isomorphisms I
#e0k
#ek

induced by the chosen cuto� events. Moreover,

shift�(#e) � #e for any e 2 �(C), and hence for any e for which C 3i�!n #e.
The most important part of the algorithm (cf. Fig. 4) is the recursive proce-

dure successors which, when called from the top level with a pair (#e; i), returns
the 3i�!n -successors of #e in the �nite structure. More generally, successors
performs a depth �rst search through pairs (C; i), where C is an arbitrary, not
necessarily local con�guration not containing a cuto� and i is a location. It
determines the subset of local con�gurations in Sn that represent the 3i�!n -
successors of C. Formally, #e 2 successors(C; i) i� there exists #e0 in Unf, which
is �n-equivalent to #e, and C 3i�!n #e0.

Proposition 7. Compute Multi Modal Kripke Structure computes the 3i�!n -,
3�i
�! -, and

@j

�! -transitions.

The proof can be found in [HNW98a]. Note that at top level, successors is
always called with a local con�guration #e as parameter, but the extension of
#e with cuto�s requires that we can also handle global con�gurations. In this
paper, we focus on decidability but not on e�ciency. For heuristics on e�ciency
improvements we refer the reader to [HNW98b].

6 Conclusion

We have shown the decidability of the model checking problem for L, a location
based branching-time temporal logic including temporal and gossip modalities.
The method is based on a translation of the modalities over net unfoldings (or
prime event structures) into transitions of a sequential transition system, for
which established model checkers for sequential logics can be applied.

While the method as presented is non elementary for the full logic L, the
restriction to the future fragment L+ has \only" exponential complexity but
still allows to express interesting properties.
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type Vertex = fC: Con�guration; i: Location; pathmark: bool; (* for dfs *) g

pre�x successors(C; i) = frep(#e) j #e 2 Sn ^ C
3i�!n #eg

compatible cuto�s(C) = fe j e is cuto� and #e [ C is a con�guration in Fing

proc successors(C; i): Con�gurationSet;

f var result: Con�gurationSet; (* result accumulator for current vertex *)
Vertex v := �ndvertex(C,i); (* lookup in hash table, if not found then *)

(* create new vertex with pathmark= false *)
if v.pathmark then return ;; � (* we have closed a cycle *)
result := pre�x successors(C; i); (* directly accessible successors *)
v.pathmark:=true; (* put vertex on path *)
for ec 2 compatible cuto�s(C) do (* �nd successors outside Fin behind ec *)

result := result [ successors(shift�(C [ #ec); i);
od ;
v.pathmark:=false; (* take vertex from path *)
return result;

g

proc Compute Multi Modal Kripke Structure;

f InitializeTransitionSystem(Tn;Fin); (* extract state space from Fin *)
for #e 2 Sn; i 2 Loc do

add transition #e @i�! #ie;
for i 2 Loc; #e; #f 2 Sn \ C

i
loc; #f � #e do

add transition #e
3�i
�! #f ;

for #e0 2 successors(#e,i) do

add transition #e 3i�!n #e
0;

od

od
g

Fig. 4. The conceptual algorithm to compute the transitions of Tn.

We also hope that the presented results can be used as a methodological
approach to model checking temporal logics of causal knowledge [Pen98].

The main di�culty, the solution of which is also the major contribution of the
paper, was to �nd an adequate equivalence relation on local states that allows
to construct a �nite transition system containing a representative for each class
of equivalent local states. If the method really is to be applied, then re�nements
of the equivalence bring it closer to the logical equivalence and thus leading to a
smaller index will be crucial. We believe that the potential for such improvements
is high at the price of much less understandable de�nitions.

For the treatment of past an alternative and potentially more e�cient ap-
proach in the line of [LS95] { elimination of past modalities in CTL { might come
to mind, but the techniques used there can at least not directly be transferred
to LCSA because of the intricate interaction between past and gossip modalities.
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