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Abstract. In this paper we discuss various aspects of cryptosystems
based on hyperelliptic curves. In particular we cover the implementation
of the group law on such curves and how to generate suitable curves for
use in cryptography. This paper presents a practical comparison between
the performance of elliptic curve based digital signature schemes and
schemes based on hyperelliptic curves. We conclude that, at present,
hyperelliptic curves offer no performance advantage over elliptic curves.

Elliptic curve cryptosystems are now being deployed in the real world and
there has been much work in recent years on their implementation. A natural
generalization of such schemes was given by Koblitz [12], who described how
the group law on a Jacobian of a hyperelliptic curve can be used to define
a cryptographic system. Almost all of the standard discrete logarithm based
protocols such as DSA and ElGamal have elliptic and hyperelliptic variants.
This is because such protocols only require the presence of a finite abelian group,
with a large prime order subgroup, within which the basic group operation is
easy whilst the associated discrete logarithm problem is hard. We shall not
discuss these protocols in this paper since everything that can be said for elliptic
curve based protocols can usually be said for hyperelliptic curve based protocols.
Instead we shall concentrate more on the underlying group: In particular how
one performs the group operation and how one produces groups of the required
type.

The Jacobian of a genus g hyperelliptic curve will have roughly qg points
on it, where q denotes the number of elements in the field of definition of the
Jacobian. By choosing hyperelliptic curves of genus greater than one we can
achieve the same order of magnitude of the group order with a smaller value for
q when compared with elliptic curve based systems which have g = 1. This has
led some people to suggest that hyperelliptic curves may offer some advantages
over elliptic curves in some special situations. For example if we wanted to only
perform arithmetic using single words on a 32-bit computer we could choose
g = 5 or 6 to obtain group orders of around 160 to 192 bits.

One has to be a little careful as to how large one makes g, since for large
genus there is a sub-exponential method to solve the discrete logarithm problem
[1]. However this does not appear to affect the security of curves of genus less
than 10 over field sizes of around 32 bits.
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In this paper we give an overview of the group law on a curve of genus g in
arbitrary characteristic. We shall give a more efficient reduction method than the
standard method of Cantor [3]. This is an immediate extension of the method
of Tenner reduction from [19]. We shall then describe various techniques for
generating hyperelliptic curves for use in cryptography.

Finally we report on an actual implementation of a hyperelliptic digital sig-
nature algorithm. We will conclude that hyperelliptic systems, with current al-
gorithms, are more efficient in characteristic two but appear to offer no practical
advantage over elliptic curve systems.

1 Arithmetic

In this section we summarize the details and leave the reader to consult [12] for
a fuller explanation. A hyperelliptic curve, C, of genus g will be given in the
form

C : Y 2 + H(X)Y = F (X)

where F (X) is a monic polynomial of degree 2g + 1 and H(X) is a polynomial
of degree at most g. Both H(X) and F (X) have coefficients in IFq. Such a curve
is non-singular if for no point on C(ĪFq) does there exist a point for which the
two partial derivatives,

2Y + H(X) and H ′(X)Y − F ′(X),

simultaneously vanish. We shall always assume that the curve C is non-singular.
In odd characteristic fields we will always assume that H(X) = 0, whilst in

even characteristic fields we will assume that H(X) = 1, for reasons which will
become clear later. Notice that if H(X) = 1 then in characteristic two any choice
for the polynomial F (X) will give rise to a non-singular curve.

The above representation gives rise to a so called ‘imaginary’ quadratic func-
tion field. It is given this name since there are no units of infinite order and the
arithmetic in the Jacobian closely mirrors the arithmetic one uses for the class
group of an imaginary quadratic number field.

We can also define a hyperelliptic curve of genus g to be given by an equation,
like that above but, with deg F = 2g + 2. This gives rise to a ‘real’ quadratic
function field. It is easy to see that, unlike the number field situation, an imag-
inary quadratic function field can be viewed as a real quadratic function field
after making a change of variables. However, just as in the case of the class group
of real quadratic number fields, the arithmetic in the Jacobians of real quadratic
hyperelliptic curves is more involved and requires the use of ‘infrastructure’. The
reader should consult [18] for an explanation of the algorithms required and [19]
for a complexity analysis of the two situations. For the rest of this article we will
concentrate on the imaginary quadratic representation, which is more suited to
efficient implementations in practice.

Following Cantor and Koblitz, an element of the Jacobian of C will be given
by two polynomials a, b ∈ IFq[x] which satisfy
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i) deg b < deg a ≤ g.
ii) b is a solution of the equation b2 + Hb − F (mod a).

Addition in the Jacobian is accomplished by two procedures: Composition and
Reduction. Given (a1, b1) and (a2, b2) the composition of these two elements in
the group of divisors is given by (a3, b3) using the following algorithm due to
Cantor and Koblitz:

Composition

1. Perform two extended gcd computations to compute
d = gcd(a1, a2, b1 + b2 + H) = s1a1 + s2a2 + s3(b1 + b2 + H).

2. Set a3 = a1a2/d2 and
3. b3 = (s1a1b2 + s2a2b1 + s3(b1b2 + F ))/d (mod a3).

Note that a3 will have degree at most 2g and hence (a3, b3) will most probably
need to be reduced. We shall return to this later. Notice, however, that for
cryptography the most important composition step is doubling, where a1 = a2

and b1 = b2. This is because in discrete logarithm based systems we wish to
perform a multiplication operation on the Jacobian. Using window techniques
this involves mainly the doubling of elements rather than a general composition.
Hence it is important that doubling an element can be accomplished efficiently.

With our above choice of curves in odd and even characteristic we find:

Doubling in Odd Characteristic Fields

Since we have chosen H(X) = 0 the doubling operation simplifies to: Put d =
gcd(a1, 2b1) = s1a1+s3(2b1) then a3 = (a1/d)2 and b3 = (2s1a1b1+s3(b2

1+F ))/d.

Doubling in Even Characteristic Fields

Now since we have H(X) = 1 the doubling operation simplifies to: Put a3 = a2
1

and b3 = b2
1 +F (mod a3). This is much simpler than the odd characteristic step

and contributes to much faster times for the verifying of messages using curves
over even characteristic fields, see below for details.

We shall now describe the reduction step, which given the result (a3, b3) of a
composition will return an element, (a, b), of the Jacobian with deg a ≤ g. The
element (a3, b3) represents an element in the group of divisors. Since we are in
an imaginary quadratic situation every divisor class (and so every element in
the Jacobian) can be represented by a unique, so called reduced, divisor. The
reduction step takes the divisor represented by (a3, b3) and returns the unique
reduced divisor (a, b) in the same divisor class as (a3, b3). As mentioned above
we use a variant of Tenner reduction which is more efficient than the method
given by Cantor and Koblitz.
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Reduction

1. a = (b2
3 + b3H − F )/a3.

2. (u, b) = quo/rem(−b3 − H, a).
3. While deg a > g
4. a∗ = a3 + u(b3 − b).
5. a3 = a, a = a∗, b3 = b.
6. (u, b) = quo/rem(−b3 − H, a).

This is exactly the same as the standard method except for Step 4. In this
step we have replaced the division a∗ = (b2+Hb−F )/a with simpler operations,
on noticing that u in general will have small degree whilst deg a in Step 4 could
be at most 2g − 2. To see that Step 4 is equivalent to the standard method we
notice that u = (−b3 − H − b)/a and so

a∗ = a3 + (b3 − b)
(−b3 − H − b

a

)

= (b2 + Hb − F )/a.

In [6] the extended Euclidean algorithm is analyzed in the context of hyper-
elliptic cryptosystems. As we have already pointed out for even characteristic
fields for the most important operation, point doubling, no extended Euclidean
algorithm is required. Most of the effort in performing a sign or verify operation
is in the reduction step. Hence analyzing the reduction step is far more impor-
tant, luckily this has already been done in [19], where it is shown that the above
reduction step takes 12g2 + O(g) field operations, in [18] the standard method
is stated to take 3g3 + O(g2) field operations. However, a complexity analysis
can often be inapropriate since complexity only deals with the assymptotics of
an algorithm. In real life the relative performance of algorithms in small ranges
can depend on factors such as cache size and processor type.

2 Curve Generation

There are many ways, in theory, that one could proceed if one wanted to produce
curves suitable for use in cryptography. Many of the methods are analogues of
those used in the elliptic curve case. The order of |J(IFq)| can be computed in
polynomial time using methods due to Adleman, Huang and Pila, see [2] and [20],
which are themselves generalizations of the method of Schoof [25] used in the
elliptic case. There is no implementation of this method for genus greater than
one at the present time. This is probably because the algorithm, although easy
to understand, appears very hard to implement. Another reason is that there
is no known analogue of the improvements made by Atkins and Elkies to the
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original Schoof algorithm. Hence only the ‘naive’ Schoof algorithm is available in
genus greater than one. Such an algorithm appears hopeless as a method, since
the ‘naive’ Schoof algorithm is far too inefficient even for elliptic curves.

The fact that it seems unlikely that anyone can compute the order of J(IFq)
for a general curve of genus 5 or 6 could lead one to propose that one should not
worry. For example, if I do not believe that someone can compute the order of
J(IFq) then I do not need to worry about many of the attacks on such systems,
since most attacks such as Pohlig-Hellman require knowledge of the group order.
This of course also means that our protocols need to be changed so that they
do not require knowledge of the group order. Although this is a possible ap-
proach, it is to be rejected as it is assumes that someone will not make a known
polynomial time algorithm run efficiently. Our security is therefore not built on
the difficulty of some underlying mathematical problem but on the difficulty of
programming a known algorithm efficiently.

Just as for elliptic curves one can compute hyperelliptic curves using the
theory of Complex Multiplication (CM). This has been worked out in detail for
the case of g = 2 in [30] and uses the class groups of complex quadratic extensions
of real quadratic number fields, which are the quartic CM fields. Clearly the class
numbers of any such field used should be small, and hence the curves which are
produced will in some sense be ‘special’. In the CM method for hyperelliptic
curves multi-variable analogues of the Hilbert polynomial are constructed, the
roots of which modulo p gives the j-invariants of the curve. The curve is then
recovered from its j-invariants.

This method is only currently effective in genus two since the j-invariants of
a hyperelliptic curve have only been worked out for genus less than three. The
invariants used are the Igusa Invariants [11] which are linked to the classical
19th Century invariants of quintic and sextic polynomials. After the demise of
classical invariant theory at the end of the 19th Century the drive to compute
invariants of the higher order quantics, as they were then called, died out. Even
today with the advent of computer algebra systems this seems a daunting task.
One way around this problem, which still uses CM, is to use reductions of hy-
perelliptic curves defined over Q which have global complex multiplication, see
[4]. However, here one is restricting to an even more special type of hyperelliptic
curve than the general CM method above.

Another technique is to use the theory of the modular curves, X0(N), see
[8] and [15]. Such curves are well studied and much is known about them. This
enables us to compute the orders of the Jacobians of such curves in a much easier
way than other general curves. However, paranoid readers should beware since
they are well understood curves with special properties they may be susceptible
to some new attack which makes use of the fact that they are modular.

Koblitz, in [13], suggests using curves of the form

v2 + v = un,
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over some finite prime field IFp. Given such curves he then gives a procedure to
determine the group order by evaluating a Jacobi sum of a certain character.
We refer the reader to Koblitz’s book for details. However once again we are
restricting to a very special type of curve which may be susceptible to some, as
yet unknown, attack.

In characteristic two one can use curves defined over subfields [12] just as
one can do for elliptic curves. For example a simple search found the curves in
Table 1, which all have subgroups of their Jacobians of ‘large’ prime order; We
could also use such a technique to generate curves over IFp, where p is a small
odd prime and look at the Jacobian over IFpn .

Table 1. Curves of the form Y 2 + Y = F (X)

IFq F (X) log2 p
where p|#J(IFq)

IF231 X11 + X5 + 1 150

IF229 X13 + X11 + X3 + X 157
IF229 X13 + X11 + X7 + X + 1 153
IF229 X13 + X11 + X7 + X3 + 1 169
IF229 X13 + X11 + X9 + X5 + 1 170
IF229 X13 + X11 + X9 + X7 + X3 + X + 1 152

IF231 X13 + X11 + X7 + X3 + X 162
IF231 X13 + X11 + X9 + X + 1 154
IF231 X13 + X11 + X9 + X5 158
IF231 X13 + X11 + X9 + X7 178
IF231 X13 + X11 + X9 + X7 + X3 + X + 1 181

IF231 X15 + X 207
IF231 X15 + X5 + X3 + X 200

Apart from the, currently unimplemented, method of Schoof, Pila et al the
above methods do not seem very pleasing. It is a good general principle never to
choose a curve with ‘special structure’, and all of the above schemes use ‘special’
properties of the curves to make the group order computation easier.

To see why one should avoid special curves one only has to look at the history
of elliptic curve cryptography. In the past various authors proposed using super-
singular or anomalous curves as they offered some advantages over other more
general curves. However, both types of curves are now known to be weak, see
[14], [24], [26] and [27]. Hence it is probably worth adopting the principle of al-
ways avoiding special curves of any shape or form. In the current authors opinion
this is the major open problem with using hyperelliptic curves for cryptographic
purposes: How to choose a suitable curve efficiently ?
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3 The Discrete Logarithm Problem in Hyperelliptic
Jacobians

The security of hyperelliptic cryptosystems is based upon the difficulty of solving
the discrete logarithm problem in the Jacobian of the curve. We summarize
the main characteristics of the possible attacks on the hyperelliptic discrete
logarithm problem below. The reader should note that in all but one case they
closely mirror analogues for the elliptic curve discrete logarithm problem.

Apart from the generic discrete logarithm algorithms such as the baby-step /
giant-step and the rho/kangaroo method there are three known methods which
are specific to hyperelliptic curves. Two of these give rise to two weak classes of
hyperelliptic curve cryptosystems:

1. Curves of order n over IFq such that ql ≡ 1 (mod n) for some small value
of n. This is due to a generalization of the method of Menezes et al [14] for
supersingular elliptic curves due to Frey and Rück [9].

2. Anomalous curves over IFp and in general curves which have a large subgroup
of order p in a field of characteristic p. This attack uses a generalization due
to Rück [21] of the anomalous curve attack for elliptic curves due to Semaev,
Satoh, Araki and Smart, see [24], [26] and [27].

However, such cases are easy to check for and only eliminate a small fraction of
all possible curves.

For hyperelliptic curves the most interesting case, from a theoretical stand-
point, is when the genus is large in comparison to the size of the field of definition
of the Jacobian. In this case there are conjectured subexponential methods. The
first of these was due to Adleman, De Marrais and Huang which is based on the
number field sieve factoring method.

Paulus [17] and Flassenberg and Paulus [7] have implemented such a method
for solving discrete logarithms in Jacobians of hyperelliptic curves. Flassenberg
and Paulus did not, however, use the method of Adleman, De Marrais and
Huang directly. Instead they made use of the fact that our hyperelliptic curves
correspond to real quadratic function field extensions. Using the analogy between
quadratic function fields and quadratic number fields, Flassenberg and Paulus
adapt the class group method of Hafner and McCurley [10] (see also [5]). Then
combining this with a sieving method they obtain a working method which can be
applied to hyperelliptic curves of relatively small genus. It should be pointed out
that although Flassenberg and Paulus do not actually solve discrete logarithm
problems their methods are such that they can be easily extended so that they
do.

Flassenberg and Paulus compared their algorithm to the baby-step / giant-
step approach. Over finite prime fields, IFp, their implementation of the Hafner-
McCurley method beat the baby-step / giant-step method, as soon as 3g > log p.
However, this is only given a very small sample size. But it would appear, for
theoretical reasons as well, to be a good rule of thumb to avoid curves for which
2g > log q. Hence if q ≈ IF231 then we should avoid curves whose genus is larger
than eleven.
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4 Implementation

In [22] the number of bit operations for implementing a hyperelliptic cryptosys-
tem is studied and compared with both ECC and RSA systems which offer
roughly the same level of security. It is concluded that hyperelliptic cryptosys-
tem could be efficient enough in practice to use in real life situations. Following
on from this work in [23] an implementation of such a system is described. How-
ever this implementation makes no use of Tenner reduction and generally uses
field sizes which require more than a single word to represent each field element.

We decided to implement the group law in the Jacobian for curves of arbitrary
genus over IF2n and IFp, where p is a prime. We decided to choose values of p
and n such that p and 2n are less than 232. This choice was to make sure that
our basic arithmetic could all be fitted into single words on our computer. Such
curves and fields have attracted some interest in the community in recent years
since they may offer some implementation advantages. In even characteristic
we used a trinomial basis while in odd characteristic we used a small in-lined
machine code subroutine to perform the modular multiplication. Field inversion
in both cases was carried out using a modification of the binary method.

The general multiplication algorithm on the Jacobian for curves defined over
odd characteristic fields ended up being around twice as slow as that for even
characteristic fields, of an equivalent size, in genus two. In genus five the odd
characteristic fields were nearly three times slower. This fact led us to only
implement a full digital signature scheme in characteristic two.

For the signing operation the multiplication performed is on the fixed group
generator. Hence this can be efficiently accomplished using a precomputed table
of powers of the generator. The verification step requires two multiplications,
one of the generator and one of a general point. Hence for verification we cannot
use precomputed tables and the difficulty of doubling an element will dominate
the computation. For the general multiplication, used in the verification step, we
used a signed window method, since negation in the Jacobian of a hyperelliptic
curve comes virtually for free.

Our timings, in milliseconds, for a hyperelliptic variant of the DSA method
(HCDSA) are given in Table 2. These timings were obtained on a Pentium Pro
334MHz, running Windows NT, using the Microsoft Visual C++ compiler. We
also give an estimate of the timings for an elliptic curve (ECDSA) system with
approximately the same group order.

The elliptic curve implementation made no use of special field representa-
tions, such as using the subfield structure. The even characteristic field repre-
sentation for the elliptic curve system was a standard polynomial basis. The odd
characteristic field (of size approximately 2161) used for the elliptic curve system
used a Montgomery representation.

So we see that even though the finite field elements fit into a single word the
extra cost of the polynomial arithmetic needed for operations in the Jacobian
makes the time needed to perform the complete set of hyperelliptic curve op-
erations over four times slower than in the elliptic curve case. If more efficient
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Table 2. HCDSA and ECDSA Timings in Milliseconds

Curve Field Sign Verify

HCDSA g = 5 IF231 18 71
HCDSA g = 6 IF231 26 98
HCDSA g = 7 IF231 40 156

ECDSA IF2161 4 19
ECDSA IFp 3 17

elliptic curve techniques were used then the relative performance of the HCDSA
algorithm would degrade even more.

Given the relative difficulty of finding hyperelliptic curves for use in cryp-
tography which do not possess some addition structure and the relatively poor
performance of the HCDSA algorithm when compared to ECDSA there seems
no benefit in using hyperelliptic curves.

Of course further work could result in significant speed improvements for
hyperelliptic systems. For example at present there appears to be no notion akin
to the projective representation in elliptic curves. Another possible avenue for
improvement is to use Frobenius expansions. Not as much work has been car-
ried out in the hyperelliptic case to the study of Frobenius expansions compared
to the elliptic curve case. These are useful for curves defined over small sub-
fields, such as those used above. The only cases having been considered in the
hyperelliptic case are in [12]. However, for elliptic curves Frobenius expansions
techniques can be made very fast in all characteristics, see [16], [28] and [29].
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