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Abstract. We introduce a new class of bent functions on (GF(2))" ( n even).
We prove that this class is not included in one of the known classes of bent
functions, and that, when n equals 6, it covers the whole set of bent functions
of degree 3. This class is obtained by using a result from J.F. Dillon. We
generalize this result and deduce a second new class of bent functions which we
checked was not included in one of the preceding ones.

1. Introduction

Let n = 2p (pe N*) be an even positive integer.

The bent functions on (GF(2))? ={0, 1} are those boolean functions whose Hamming
distance to the set of all affine functions on (GF(2))" (viewed as a vector space over the
field GF(2)) is maximum. They play an important role in cryptography (in stream
ciphers, for instance), as well as in error correcting coding (where they are used to define
optimum codes such as the Kerdock codes and the Delsarte-Goethals codes). They have
been studied by J. F. Dillon [5], {4] (in the wider framework of difference sets) and O.
S. Rothaus [9] in the seventies. Since then, generalizations have been studied by several
authors (cf. for instance [6], [8], and in another direction [3], see also the papers dealing
with the covering radius of the Reed-Muller code of order 1 or with bent sequences), but
very few papers lead to new results on the bent functions themselves (cf. (2]). In fact,
no paper introducing new classes of bent functions has been published since 1975.

All quadratic bent functions are known (we say that a function is quadratic if the global
degree of its algebraic normal form, cf. def. below, is at most 2, cf. [7] ch. 15). If n is
at least 4, then any bent function has degree at most n/2 (cf [9]). Therefore, all bent
functions on (GF(2))2 and (GF(2))* are quadratic. Excepted these values, the only (even)

value of n for which all bent functions are known is n = 6. In [9], O. S. Rothaus
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exhibits three classes of bent functions of degree 3 on (GF(2))% (ihe elements of a same
class are equivalent each other up to an affine nonsingular transformation on the
variable). But the problem of finding a simple characterization of the bent functions of
degree 3 on (GF(2))8 is still open.

Using a resuit from J.F. Dillon [4), we introduce (cf. corollary 1 and the definition

% on (GF())" . The

algebraic normal forms of the elements of this class are deduced from those of some of

which follows it) a new class of bent functions of degree

the elements of Maiorana-Mc Farland's class (whose definition will be recalled below)

by adding a function whose support is an %- dimensional subspace of G. We call D the

new class of bent functions. We check that it is not included in the completed versions
of Maiorana-Mc Farland's class and Partial Spread class (cf. def. below). The size of
class D has approximately same order as that of Maiorana-Mc Farland's class.

We prove that the bent functions of degree 3 on (GF(2))0 all belong to class D . That
gives a simple characterization of these functions.

Generaliiing Dillon's result, we obtain a theorem which characterizes the conditions
under which, a bent function f and a flat E being chosen, the function f + §E is bent
{where ¢ is the charateristic function of E). We deduce a second class of bent functions
that we denote by C . We check that this class is not included in the preceding ones.

We recount now with more details the definitions and known properties about bent
Sfunctions.

Let F denote the Galois field GF(2), and G the F-space F® (whose zero (0,...,0) will be
simply denoted by 0). We denote by G' the space FP. Clearly, G may be identified with
G2.

The dot product on G is defined for any elements x = (xq, ..., Xp) and s = (s, ..., Sp)
of Gby: x-s= x| §{+..+Xy 8§ € F (where the operation + is in F). We will
use the same notation to denote the dot product on G',

A well-known property which will often be used in this paper is the following :

if E is any F-linear subspace of G and a, b are any elements of G, the sum Z (-1)@*
xeb+E

is equal to IEl (-1) 't (where IE! denotes the size of E) if a belongs to the dual of E
(that is the linear space : EL = {[ye G/V x € E, x - y = 0}), and to 0 otherwise.
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We will call this property the character-sum property (it extends to more general
character sums) and denote it by (1).
Let f be a boolean function on G. We denote by F the Walsh (or Hadamard or discrete

Fourier) transform of the real-valued function (-1) fX) .

%(S) = z (_l)f(x) +X'§
xeG

It satisfies Parseval's formula (cf [7), p.416, corollary 3 ) : Z (Fs)2 =220,
s€eG

The boolean function f is called bent if (cf. [4), [5], [9]) for any element s of G, /Is(s)
is equal to: £ 2P . According to Parseval's formula and since ?(s) is related to the
Hamming distance between f and the affine function hg:x = s-x +€ (e € F) by the
relation : (-1)€ F(s) = 2" - 2 d(f, hy), that is equivalent with the fact that f is at
maximum distance from the set of all affine functions. Another equivalent definition is
(cf. [4], [7)) : for any non-zero element s of G, the function on G: x — f(x) + f(x+s) is

balanced (a boolean function g on G is called balanced if its support
{x € G/g(x) =1} has size 27, or equivalendly if the sum Y, (-1) 8(X) equals 0).
xeG

The notion of bent function is invariant under any affine nonsingular transformation on
the variable (or in other words under any linear nonsingular mapping, and any
translation). If f is bent, then for any affine function g, the function f + g is bent. We
shall say that a class of bent functions is complete if it is globally invariant under the
addition of any affine function and the composition (on the right) with any nonsingular

affine transformation.

If a boolean function f on G is bent, then the boolean function f defined by:
Fo=20(nf®

is bent itself. Following Dillon, we shall call it the "Fourier” transform of f. Its

properties are (cf. [1] p. 55-59, [4]) :

- the mapping f —f isan isometry (i.e. the Hamming distance between two bent

functions is equal to that of their "Fourier" transforms)

- if b is any element of G and € any element of F, let g be the boolean function defined

by : g(x) = f(x) + b - x + & (respectively g(x) = f(x+b) + €)

then g (x) is equal to : f (x+b) + € (respectively f(x) + b - x + €). 3]
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Any boolean function on G admits an algebraic normal form, that is a polynomial
expression by means of the coordinates xj, ..., X, , each coordinate appearing in any
monomial with the degree 0 or 1 (cf [7], ch.13). If n is at least 4 and f is a bent
function, then the (global) degree of its algebraic nommal form is at most p (cf {9]).
Any quadratic function f(x) = Z ajj Xj xj + h(x) ( h affine, ajj € F ) is bent if
1<i<j<n

and only if one of the following equivalent properties is satisfied (cf [7], ch 15):
- its associated symplectic form ;

o : (X, y) > f(0) + f(x) + f(y) + f(x+y)
is non-degenerate

- the skew-symmetric matrix (m; )); je {1,....n} Over F, defined by : m; j = a;  if i<j,

- f(x) is equivalent, up to an affine nonsingular transformation of the variables, to the

function on G:

X] X2+ X3 X4+ ...+Xp.1%Xpn+¢& (g€ F) 3)

A first general class of bent functions is the so-called Maiorana-Mc Farland's class (cf.
[4] p. 90, {5]) denoted by M. :
we use the identification between G and G'2, a general element of G being denoted by
(x,y) (where x and y belong to G'), and we denote by "-" the dot product on G'; the
clements of class M. are all the functions of the form :

f(x,y) = x - ®(y) + h(y)
where n is any permutation on G' and h any boolean function on G' . Notice that
function (3) corresponds to the case © = id, h = ¢ modulo a permutation of the
coordinates.
The "Fourier" transform f(x,y) is then equal to :

y - ml () +h @)
where n-! denotes the inverse permutation of xt,

Class ™ is not complete. We denote by M* its completed version.
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A second important class of bent functions is that of Partial Spreads, denoted by PS (cf.
[41p. 95, (5)): _

PS is the disjoint union of two classes PS ~ and PS *:

- the elements of PS ~ are those functions whose supports are the unions of 2p-1
"disjoint" p-dimensional subspaces of G, less the point 0, "disjoint” meaning that any
two of these spaces admit 0 as only common element, and therefore that their sum is
direct and equal to G. In other words, they are the sums of 2P-1 characteristic functions
of "disjoint" p-dimensional subspaces.

- the elements of PS * are those functions whose supports are the unions of 2p-14+ 1
"disjoint" p-dimensional subspaces of G. They are the sums of 2P-1 4 1 characteristic
functions of "disjoint" p-dimensional subspaces.

The "Fourier" transform of any function of PS is (very simply) deduced from the
function itself by replacing the spaces by their duals.

This class is not complete. We obtain the completed version, that we denote by PS¥,
by changing the subspaces into flats, two of them having a single (fixed) point in
common, and by adding affine functions.

Classes M* and PS¥ are the only "effective” known classes of bent functions : there
exist other classes of bent functions, but their definitions involve non-obvious
conditions, so that none of them leads to an explicit description of bent functions. In
fact, class PS is not really effective (the condition on the spaces which are involved in
the definition is not simple, contrary to the condition on © which stands in the
definition of class M ), but class PS contains subclasses (cf [4] p. 97...) which are

more effective.

The generalized bent functions are defined as follows (cf [6], [8]) :

let n and q be any integers greater than 1. Let Jg and G be respectively the ring Z/qZ of
all integers modulo g, and the Jg-module (J)" . Let w = e2™/4,, then a function f from
G 10 14 is called bent if it satisfies one of the following equivalent properties :

1) for any element s of G, the sum 2 w f(X) - 5 (where "-" denotes the usual dot
xeG

product on G) has modulus ™2 (f is called regular if there exists a function f from G to
Jq such that, for any s, this sum is equal t0 ¢*/2 w fs))
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2) for any element s of G\{0), the sum z w f(x+s) - f(x) jg zero (ie the value of the
xe G

autocorrelation function of f is zero on any nonzero element),
Class M generalizes to any q : if n is even and & is any permutation on G'=(Jq)“/2, the

function on G = G2 : (x,y) — x * n(y) is regular-bent.

2. A New Class of Bent Functions

The idea which is the starting point of this work is the following : if we want to obtain
new bent functions, a simple way would be to use known ones and to alter them
without losing their property.

L.F. Dillon gives in [4, remark 6.2.15 p.82] a result which may be used in this sense.
It may be stated as follows : let f be a bent function on G; suppose its support contains
a p-dimensional linear subspace E of G. Then, denoting by ¢ the boolean function of
support E, the function f + @ is bent.

Notice that, more generally, the condition : E is contained in the support of f may be
replaced by: the restriction of f 1o E is affine . Indeed, if this restriction is equal to
a - x + ¢, then E is included in the support of the (bent) function f(x) +a-x+¢e+1,
on which Dillon's remark may be applied.

We will see (cf. Corollary 1) that this result leads to new bent functions if we apply it
to the elements of Maiorana-Mc Farland's class (it does not do so if we try to apply it
to the elements of P8). We also wish to determine the "Fourier" transforms of the bent
functions that we obtain. It would be possible to deduce them from the proof given by
Dillon, but it will be almost as simple and more convenient to give a direct proof of
the whole result. To achieve it, a lemma will be useful, which is a slight generalization
of [4, theorem 6.2.11 p.79]:

Lemma 1 Let E be any linear subspace of G, f any bent function on G, and f its
"Fourier” transform. Then for any elements a and b of G, we have :
Z(_I) J(x)+b-x - p dimE-p (_I)a-b Z(_I) f(x)+a-x

xea+E xeb+EL
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If E has dimension p and {f the restriction of fix) to E is O (respectively 1) then the
restriction of f to ELis 0 ( respectively 1).

Proof :

According to the definition of the "Fourier" transform, we have :

2(-1) f(x)+a-x _9pp E 2(_1) f(y)+y-x +a-x -

xeb+EL xeb+EL yeG
2-PZ (-1) T 2(-1)(y+a)'X),
yeG xeb+EL

According to the character-sum property (1), the sum ( z (-1) (¥ +3) X} jg equal
xeb+EL

to [EL1 (-1) (Y + @) b if y + a belongs to E, and to 0 otherwise. Therefore, we have :

Z(-l) fx)+a-x gLy 2-p 2(-1) f{y)+ (y+2) b ang the first part
X€b+EJ‘ yea+E

of the lemma holds, since IEL is equal to 2 2P-dimE_

If E has dimension p, the restriction of f(x) to E is 0 (respectively 1) if and only if

Y (-1) fX) s equal to 2P (respectively - 2P), and the conclusion holds, applying
xeE

the preceding equality witha=b=0. O

Proposition 1 Let E be a p-dimensional linear subspace of G and $E ils
characteristic function. Let f be a bent function on G whose restriction to E is affine.
Then the function on G :

J(x) + ¢ (x)
is bent, and its "Fourier" transform is :

F(x)+ Ol (x + a),
where a is any element of G such that the restriction 10 E of f{x) is equal toa - x + €
(e€F),

Proof :
Replacing f(x) by f(x) + a - x + €, and using property (2) (of section 1), we may
without loss of generality assume : a=0, £=0.

For any A in G, we have :



z (-1) f(X)+g(x) + A-x =

xeG

Z 'S)) f(x) +Ax _9 2 -1 fx) + Ax

xeG xeE

The sum : 2 -1) f&) + 2x s equal to : 2P (-1) f(A) | and the sum :

xeG
2 (-1) fx) + Ax = Z (-1) *x s equal to : 2P ¢gL()), according to the

xeE xeE
character-sum property (1).

So, if A does not belong to EL, then the sum : 2 (-1) fx)+ép(x)+A-x jg equal to
xeG

20 (-1) £, and if A belongs to EL, it is equal to 2P (-1) f) . 2P+1 which is equal to
-2P =2P (-1) f (7*)*’1, since according to lemma 1, t (A) isequal to 0.

So, f is bent and 2 (-1) f(x)+8e(x) + XX s equal to : 2:)(1)f M)+ 1) O
xeG

In next corollary, we identify G with G'2, so that we denote by (x,y) any element of G
(x,y € G).

Corollary 1 Let E be a p-dimensional linear subspace of G and 7 a permutation on
G' such that, for any (x, y) in E, the number : x - n (y) equals 0. Then the function
definedon Gas :

x- wy) + Qg (x, y)
is bent, and its "Fourier” transform is the function:

y: -l (x)+ ¢rL (x, y).

Proof :
n being a permutation, the function f defined by :
f(x,y)= x-mn(y)
belongs to Maiorana-Mc Farland's class, and so is bent. Its "Fourier" transform is the
function :
f xy) =y nlx).
So, the result follows directly from proposition 1 witha=0and € =0. O
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Remark
1) The class of bent functions that we obtain cannot be considered as an effective one
§ince there is no simple description of all the subspaces and permutations satisfying the
condition of Corollary 1. But there is a simple subcase : when E is equal to the
cartesian product of two subspaces Ej and E; of G' such that dim E; + dim E; = p and
7(Ep) = Ey-L. This will lead to our first new class of bent functions (whose definition is
below).
When E; is equal to the trivial space {0}, (and therefore E; = G'), the condition
n (E2) = E4 Lis obviously satisfied. This special case leads to a subclass.
Of course, when Eq = G' (and E; = {0}), the condition on x is empty too, but in that
case, the function that we deduce belongs to Maiorana-Mc Farland's class, and we so
obtain no new bent function.
2) Corollary 1 may be extended to some non-binary cases : let ¢ be any positive even
integer, let J¢, G’ and G be respectively Z/qZ, (Jg)Pand (Jg)" = G'2 (n =2p). Let E be
any subgroup of order ¢P of G and & any permutation on (Jo)P . Suppose that, for any
(x,y) in E : x - n(y) = 0. Then the function :
(xy) = x-n(y) + %¢E(X,Y)

is bent :
let w = €2™/9, we have (since w42 = -1) :

Y, w xR+ Dbg(y) - Ax - oy =

(x.y)eG
2 w XR(Y) - Ax -y | 2 2 w XR(y) - Ax- Ky,
(x,y)eG (x,y)e E
The sum : 2 wXTY) - AX- WY jsequal to: P wHT IR (cf[6], p.100)

(x,y)eG

and the sum : z woAX- Ry g equal to : P ¢pL(A,1), (Lemma 1 generalizes).
(x.y)eE

That completes this sketch of proof.

Definition 1 We call D the class of all the boolean functions of the form :
X, y)e G 9p(x,y)+x 7 (y)
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where E is a subspace of G equal to E; x E;, E; and Ej are subspaces of G’ such that
dim Ej + dim E3 = p, and rt is any permutation on G’ such that = (E2) = E; L.
We call D , the subclass of all the functions of the form :

(x. y)— IEI (xi +1)+ x ~m(y) .

i=1

D, corresponds to the case : E= {0} x G'.

Example :
Assume 7(0) = 0. Let z be any nonzero element of G'. Let E{ be the linear hyperplane
n(z)1 and E; the line {0,2}. The function:
P
X R(y) + 9, (X) OE,(y) = x " m(y) + (x " n(z) + 1) (H (yi+1) + IP_I (yi+zi+1))
i=1 i=1

belongs to class D .

Remark

1) Both classes M* and PS¥ are invariant under the "Fourier" transform f — f.
According to Corollary 1, that is still the case of classes D ¥ and D* (the completed
classes of D oandD) .

2) The sizes of D and M have approximalely same order since the number 22p of
boolean functions on FP is small, compared with the number of permutations on the

same space : (20)! .

We check now that class D is not included in class M¥ . We shall obtain this result as

a corollary of next proposition.

Proposition 2 If p > 4 and if the restriction of permuration m to any linear

hyperplane of G’ is not affine, then the following function does not belong to class ¥
P
(xy) - H Xi +(x+1) n(y)

i =1

(where 1 denotes the all-one word).
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Proof :
We know that if a function f belongs to M ¥, then there exists a p-dimensional
Subspace E of G, such that, for any elements (a,a") and (b,b") of E, the function :

x = f(x,y) + f(x+a,y+a’) + f(x+b,y+b) + f(x+a+b,y+a'+b")
is equal to 0 . Indeed, if f(x,y) is equal to x - ®'(y) + h(y), where &' is a permutation, we
may take E = G' x {0}, and any element of M*¥ is equivalent to such a function, up to a

nonsingular affine transformation on the variable .

Suppose that, two elements (a,a”) and (b,b’) being chosen in G, the function :
f(xy)= IK[ xj + (x+1) 7w (y)
i=1
satisfies the condition :
VY (x,y) € G, f(x,y) + f(x+a,y+a’) + f(x+b,y+b") + f(x+a+b,y+a'+b’) = 0.

That implies that the degree of the function :

ﬁ Xi+ IRI (xj+a;) + ﬁ (xj+b;) + IEI (xj+aj+b;)

i=1 i=1 i=1l i=1
is at most 1 (since the degree relative to x of : (x+ 1) 't (y) + (x+a+ 1) - ®(y+a') +
(x+b+ 1) - w (y+b) + (x+a+b+ 1) = (y+a'+b’) is at most 1).

For any pair {i,j} of indices, the coefficient of H Xk in that expression is :
k#i.j

ajaj + bibj + (aj+aj)(bj+b;j) = ajb; + ajb;
and must be equal to 0, since p 2 4. So, any two elements (a,a’) and (b,b’) of E are such
that a and b are linearly dependent (ie one of them is 0, or they are equal each other).We
deduce that E is either equal to {0} x G’ or to the direct sum of a line {0, (where &t is
a nonzero element of G' ) and of an hyperplane H of G'. In any case, there exists at least
a linear hyperplane H of G' such that {0} x H is included in E. This hyperplane
satisfies that for any elements a’ and b’ of H, and any elements x and y of G', we have :
(x+ 1) (m(y) + m (y+a) + 7 (y+b") + 7 (y+a'+b) ) = 0.
Since the restriction to H of at least one of the coordinate functions of x is not affine,

we arrive (o a contradiction. O

Corollary 2 Classes D gand D are in general not included in class M* .
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Proof :
p

The function H xj + (x + 1) ® (y) is equivalent to the function
i=1

P
H (xj+1) + x - 7 (y) which belongs to class Dg . So, all we need to prove is that
i=1

there does exist in general a permutation 1t whose restriction to any linear hyperplane is
not affine.

Let us identify G’ with the Galois field of order 2P. Let i be any integer prime to 2P - 1.
The mapping on G' : x — x! is a permutation on G'. Its retriction to a linear
hyperplane {x € G'/ur (ax) = 0} (where tr is the trace function from G'to F and a is
any nonzero element of G') is affine if and only if its restriction to the linear hyperplane
Hg = {x € G'/tr (x) = 0} is affine (since n(ax) = al n(x) ).

Hg being equal to the image of the linear mapping : x — x2 + x, that is true if and
only if the mapping : x — (x2 + x)l is affine.

[t is a simple matter to show that there exists in general i such that this last mapping is
not affine. Take for instance i = 1 + 2i. Suppose 2j is prime to p (and so, p is 0dd),
then i is prime to 2P-1. Suppose 2i*14+2 < 2P. Then (x2 + x)i , equal to AR I
x2 414 x 242 4 241 canpot be affine since it is a non-affine polynomial of degree
at most 2P-1 (cf (7] p. 402). O

We now wish to prove that class D is not included in class PS¥ . That is much more
difficult since there does not seem to exist simple necessary conditions for a function to
belong to PS#. That is perhaps why it has never been proved until now that class M.
is not included in class PS* (J.F.Dillon has only proved in his thesis {4 p.53) that

class M is not included in class PS ).

Proposition 3 If p is any odd integer at least equal to 5, the function:

p
(xy) e G - Hx,- + (x+1)-y
i=1

does not belong 10 class PS* .
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Proof:

We have to prove that, for any affine function g.on G, the function :

f(x,y) = IP-I xj + (x+1) -y + g(x,y) is not equivalent, up to a nonsingular affine
i=1

transformation, to a function of PS .

Suppose first that it is equivalent to a function of PS”. There exist k=2P-! flats Hy,...,

Hy of G such that any two of them intersect in a single (fixed) point (a,b) , and that

the support of f is their union less the point (a,b) .

Let i be any element of {1,....k}. The intersection between H; and the support of f is

H; \ {(a,b)} and so has an odd number of elements. Therefore, denoting by h; the

boolean function of support H;, the function f h; (whose value in x is f(x)h;(x)) has an

p
odd weight, and so has degree 2p. Consequently, since J] x; is the only monomial in
i=1l

the algebraic normal form of f (x,y) whose degree is p, and since h; has degree p, the

p
product of the function h; with any function J] (x;+A;) has degree 2p. Applying this
i=1

result to A; = a; + 1 (i=1...p), we deduce that the flat {a)xG' has an odd number of
elements in commun with H;. That means that it has the point (a,b) only in commun
with H; .
We deduce :
Vye G, f(a,y) =0,
Vy, IE! aj+ (a+l) - y+g(x,y)=0.

i=

So, replacing g(x,y) by its value, we obtain :
f(x,y)= IE[xi+ IE[ a; + (x+a) 'y.
i=1 i=1

The translation (x,y) — (x+a,y+b) translates the point (a,b) in (0,0) and changes f (x,y)
in:

P
ﬁ (xj+aj) + H a; +x- (y+b)

i=1 i=1
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The subspace E = {0}xG' is disjoint from the support of f and so is "disjoint” from any
of the H;. Using an idea from J. F. Dillon [4, p.53], we may deduce that there exist
linear mappings ¢; on G' such that, for any i, Hj is equal to the set : {(x,9;(x)), xe G').
Since for any i, the set H;\ {(0,0)} is included in the support of f, we deduce :
VijVxe G, f(x,0i(x)) = f(x,0j(x)), and therefore :

VijVxe G, x- @(x)+¢;(x)) = 0.

That implies that the matrix of the linear mapping ¢;+¢; is skew-symmetric. If i#j , Hj
and Hj admit O as only commun element. So, this matrix is regular. The dimension p

being odd, that is impossible.

Suppose now that the function :
p
f:(xy) — H xji +(x+1) 'y + g (x,y)
i=1 '
is equivalent to a function of P8 Y Its support is the union of 2P-1+1 p-dimensional
flats, any two of them intersecting in a single fixed point (a,b).
We may suppose without loss of generality that g depends only on y (if g(x,y) =u ' x +
v 'y + g, change y in y + u ). The restriction of f to the flat H = {(a,y), ye G'} is the
function :
P
y— H a; +(a+l) y+ g (y).
i=tl
This function is affine. Suppose it is not the constant function 1, then its weight is at
most 2P-1, and at least two spaces H; have (a,b) as only commun point with H. We can
apply the translation of vector (a,b) and complete the proof as previously.
P P
Otherwise, f(x,y) is equal to : H Xi+ (x+a) "y + H a;j + 1. Let us apply
i=1 i=1
again the translation of vector (a,b), so that f(x,y) becomes

p p
H (xj+a;) + x - (y+b) + H a; + 1L

i=1 i=1
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P P
Let a be an element of G' such that : H (aj+aj)+ o b+ H a; =1 (such
i=1 . i=1
P |4
an element exists since the function H (xj+aj) +x b+ a; is not the
i=1 i=1

zero function).
Let E denote the linear hyperplane of G': {x e G'/a-x=0} = al.
The restriction of f to the space : {0,0.} x E is balanced since it is equal to 1 on {0} x E
and to 0 on {a} x E. Therefore, there exist at least two spaces Hj (say H; and Hj)
which are "disjoint” from the space {0,a} xE.
We shall now compose f on the right by an automorphism W of G which maps
{0} x G'onto {0,a) x E, so that we can apply on f o\ the same technique as the one
we applied previously on f. Let B be an element of G'such thata. - B =1, and E' = gL,
We have : G= ({0,0}® E") x ({0,8)® E).
Let y be the involutive isomorphism of G defined by :
Vene FYueE Vve E,yea+v,nB+u)= Ma+v,ef+u).
y maps {0} x G'onto {0,a} x E.
p
The function ( IE[ (xj+aj) ) o W has support : y({a+1} x G'), since H (xj+aj)
i=1 i=1
has support {a+1} x G' and y-! = . If y and w are the elements of F and E'
(respectively) such that a+l isequalto: yo + w , this support is the set :
{ea+w,YB +u), eeF, ueE}.
p P
Remember that f(x,y) is equal to H (xj+aj) + x - (y+b) + H a;j + 1. We
i=1 i=1
deduce : Ve,me F,VYueE Vve E,
P
foy Ea+v,MB+u)=M+y+l) xw(V)+ne+v-u+(ma+v) b+ H aj + 1
i=1

where Zu ) = g ouherwise .
We know that there exist (at least) two linear subspaces W(H1) and y(H>) (since yl=
) of G which are "disjoint" from each other and "disjoint" from the space {0} x G' and
which are included in the support of foy. We deduce that there exist two linear
mappings ¢, and ¢ from G’ to itself such that :

Vee FVveE fwy(ea+v,p(ea+v)=foy (ea+v, ¢2(e a + V).
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Let I; and L; (i=1, 2) be respectively the boolean function on G' and the linear mapping
from G' onto E such that : ;e + v) = (e x + v) B + L. (€ a + v). We have :

V ee F,VveE,

QG+ Ea+v) xwM+({(1+l)a+v))e+v-[(L+L) a+V)]+
h+hEa+v)[a-bl=0.

We shall prove that this is impossible.

If v is different from w, then for any €, we have :

M+ Ea+)e+v- [Li+L) Ea+V]+[1;+1)) (€a+v)[e b =0
That means that the function of the variable (g,v) which is equal to the LHS of that
equality has weight at most 2. But, this function is quadratic, and we know (cf. [7] ch
15) that if a function is quadratic, then either its weight is at least 2P-2 (ans so is at

Jeast 8) or it is the zero function. We deduce that it is the zero function. But this

function is equal to : x - (p1(x) + 2(x)), where x =g a + v,
Thus, the matrix of the linear mapping ¢; + ¢, is skew-symmetric and regular, a

contradiction. O

Corollary 3 Classes D ,, D and M are not included in class PS¥* .

Proof :

It is straightforward, according to Proposition 3, since the function

P
xy)e G- H x; + (x+1) -y of Proposition 3 belongs to classes D A

i=1

and M¥, . ad
3. Generalization of Dillon's result
We shall now extend Dillon's result to cases where E is a flat whose dimension is not

necessarily equal to p. That will lead us to new bent functions.

Before we state the theorem, we need some preliminary definition and lemmas.
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Lemma 2 Let f be any boolean function on G. Let E be any flat of G and k its
dimension. Let y be any affine mapping from F * to G such that E = W (F*). Then the
degree of the boolean function f oy on F ¥ does not depend on the choice of y.

Proof :

Suppose that y; and \, are two affine mappings from FP to G such that y(FK) =
2(FK) = E. The boolean functions foy| and foy, are then equivalent and so have same
degree (cf [4], p.39, [7] ch.13). O

Definition 2 Let f be any boolean function on G and E any flat in G. We call degree
of the restriction of f to E the degree of the function f oy on F k where k is the

dimension of E and v is any affine mapping from F* to G such that wFk) = E.

Lemma 3 Let f be any boolean function on G and E any k-dimensional flat in G. If

there exists an integer r such that, for any element a of G, the sum :
2(_1)f(x) +d-x

xeE

is divisible by 2 7, then the degree of the restriction of fto E is at most : k-r + 1.

Proof :
We just adapt the proof due to Rothaus [9] on the degrees of the bent functions.

We may suppose that E is equal to FK (otherwise, we can compose by an appropriate
affine nonsingular mapping). Let d be the degree of the restriction of f to E and [] x;

iel
one of its monomials of degree d (I is a subset of {1,...,k} of size d).
The sum : Z (-1) f®) is equal to the size 29 of the linear subspace {xeE /
xe E/x=0,Viel
xj =0, Vie I} minus twice the weight of the restriction of f to this subspace, which is

odd, since the degree of this function is equal to the dimension of this subspace (cf. [7],
ch 13 or [9]) . Therefore, Z (-1) ) is divisible by 2 but not by 4 .

xe E/x=0,Vig I
Foranyain G, let A, = 2 (-1) fx)y +a-x

xeE
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According to the inverse formula of the Walsh transform (cf. [7], p. 127), for any x in
E, we have: (-1) X)) =2 -k ) 4, (-1)2 %, and therefore :

acE
Z (_l)f(x) - 2 2-k21a(_1)a.x =
xe E/x;=0,Vie | xeEm=0Viel acE
2kY A, (Y, (pax) =211k Y Aa(according to
acE xe E/mx;=0,Vigl aeE/a;=0,Viel
the character-sum property (1)).
So, the sum Y, (1) f0 s divisible by 2 'T1-k+r=pd-k+r ang
xe E/x;=0,Vie 1
therefore, d - k + ris at most 1. We so have proved : d <k -r+ 1. a

Theorem Let E = b + E' be any flat in G = F 2P (E', its direction, is a linear
subspace of G). Let ¢g be the boolean function whose support is E and f(x) any bent
function on G. Then the function f* = f + ¢ is bent if and only if one of the following
equivalent conditions is satisfied :
1) for any xin G\E', the function:
y = fiy) + fix+y)
is balanced on E
2) for any A in G, the restriction of the function f (x) + b xtothe flat A + E-L is
either constant or balanced,
If one of these conditions is satisfied, then E has dimension at least p and the degree of
the restriction of fto E is at most dimE -p + 1.
If E has dimension p, then this last condition is also sufficient and the function 7*(x)
is equal to :
F) +arpeln)

where a is any element of G such that forany xinE: fix)=a -x + €.

Proof :
1) The function f* is bent if and only if, for any x in G \ {0}, the function

y = [*(y) + f*(x+y) is balanced on G, that is :
2 (-1) P + f*(x+y) = 9,
yeG
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If x belongs to E', then we have for any y in G : £*(y) +f*(x+y) =f(y) +f(x+y) and
therefore : .

z (-1) T*(y) + [*(x+y) = z (-1) f(y) + f(x+Y) = 0 (since f is bent).

yeG yeG

If x does not belong to E', then the flats E and x+E are disjoint, the function

OE(y) + ¢op(x+y) Lakes the value 1 on E U (x+E) and :
Z (-1) f¥(0) + f*(x+y) =

yeG
Z (-1) f(y) + f(x+y) _ 2 Z (-1) f(¥) + f(x+y) _ 2 Z (-1) f(y) + f(x+y) =
yeG yeE yex+E
-4 Z (-1) () + f(x+y),
yeE

We deduce that f* is bent if and only if, for any element x of G \ E', the function
y = f(y) + f(x+y) is balanced on E.

2) We have :
2(-1)f"‘(x)+l-x = Z(_l)f(x)+l-x_2 Z(_l)f(x)q»k-x
xeG xeG xeE
=2p(_1)f(l)_2 2(_1) f(x)+ A x
xeE

So, f* is bent if and only if for any A in G, the sum z (-1) f ) +A x5 equal
x€E

either to 0 or to 2P (-1) T ),
According to Lemma 1, we have :
Z(-l)f(x)"';"":lEIZ'P(-l) A-b Z(_l)f(x)+b-x

xeE xe A+EL

That sum is equal to 2P (-1) £ if and only if z (1) fG)+b-x g equal to:
xe M+EL

2p p - 2p
%—(—l) £ +X-b (hat is if and only if f(x) +b - x is constant on A + E'-, since %

is equal to the size of E'L. This same sum is equal to zero if and only if f x)+b-x

is balanced on A + E'L. That completes the proof of part 2.
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If f and f* are bent, then the degrees of their algebraic normal forms are at most p (cf.
[9]). and therefore, ¢ has degree at most p. That is equivalent with the fact that the
dimension of E is at least p.

For any X in G, since f and f* are bent and since 2 (-1) I* (x) + 2Xjg equal to :
xeG

2 (-1 f(x)+AiAx _ 22 -1 f(x)+Ax , the number 2 z -1) f(x)+ Ax
xeG xeE xeE

is the difference between two numbers which are both equal to + 2P, So, it is divisible
by 2P*+! and lemma 3 (with r = p) may be applied. Thus the restriction of f to E has
degree at most dimE-p + 1,

If E has dimension p, then the restriction of f (o E is affine (that is the converse of
Dillon's result). There exist a in G and € in F such that, forany x in E: f(x)=a-x +¢€.

Proposition 1 and property (2) complete the proof. O

Remark

1) If E is the whole space G, then conditions 1 and 2 in the theorem are obviously
satisfied. That corresponds to the fact that for any bent function f, the function f+1 is
bent.

If E is an hyperplane, then ¢g(x) is of the form : a-x+¢ (aeG, €€ F). So
conditions 1 and 2 must be satisfied (since if f(x) is any bent function then
f(x) + a x + € is bent). It is a simple matter to check it. Notice that, in that case,
f*(x) is equal to : E(x+a) + €. We see that the expression of E*(x) by means of 'f'(x)
may be quite different depending on whether E has dimension p or not.

2) The characterization by condition 1 of those bent functions f such that f + ¢E is bent
generalizes to non-binary cases the following way :

let n and q be any integers greater than 1. Let Jq and G be respectively the groups ZiqZ
and (Jg)", f a bent function from G to J4, E' any subgroup of G, b any element of G, E
the set b + E' and A any element of J5. Then the function f* = f + A ¢E is bent if and

only if, for any x in G\ E', the element of J, equal to:
w-*.1 Z w fx+y) - f(y) ¢ (wh . 1) 2 w fX+y) - f(y) is zero. Indeed, let x
yeE ye -x+E

be any nonzero element of G, the sum :
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Z w [¥(x+y) - f*(y)

. yeG
is equal to : 2 w f(x+y) - f(y) = 0 if x belongs to E' (since x + E is then equal to
yeG
E), and to:
Z w fx+y) - (¥) 4 (w-* . 1) Z w f(x+y) - f(y) 4 (wh - 1) 2 w f(x+y) - f(y)
yeG yeE y€-x+E
otherwise.

Condition 2 may also be generalized to some non-binary cases, but only for regular-

bent functions. .

We deduce now the existence of another superclass of D g whose elements are bent

functions :

Corollary 4 Let L be any linear subspace of G' = FP and rt any permutation on G’
such that, for any element A of G', the set ©-1(A + L) is a flat. Then the function on G:
X my) + ¢rL(x)

is bent.

Proof :

Let E be the subspace of G : L+ x G'.

The function f(x,y) = x - 7(y) belongs to Maiorana-Mac Farland's class and so is bent.
Its "Fourier" transform is E (x,y) = y - ©-}(x). Let (A, p) be any element of G. The size
of the support of the restriction of f (x,y) to the set (A, p) + EL = 4 + L) x (u} is
equal to that of the support of the restriction of the function

X — i - x to the flat ©-} (A + L), which is either balanced or constant, since this

function is affine. So, condition 2 of the theorem is satisfied. O

Definition We call C the class of all the functions of the form :
x-mly) + ¢l (x),

where L and n satisfy the conditions of the preceding corollary.
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Class C contains D g (which corresponds to the case L = G'), and so is not included in
classes M* and PS*.
Notice that class € is not included in class D¥, since it contains functions of degrees

less than p.

4. A simple characterization of the bent functions on F6

We shall deduce from the theorem a characterization of the bent functions of degree 3 on
FS.

Proposition 4 Let f be any boolean function of degree 3 on F 6 of the form :
F(xp,....x6) = X1 X2 X3 + X1 hp(x4,x5,%6)+ X2 ha(xg,x5.x6)+ x3 h3(x4,x5,%6) +
8(x4.x5,x5)

where hj, hy, and h3 are three (quadratic) functions on F 3, and g is a boolean function
onF3,

Then £ is bent if and only if :

1) the mapping (x7.x2.x3) = (h (x7,X2,x3) , h3 (x1,%2,x3) , h3 (x},x2,x3)) is a
permutation on F 3

2) the function hy + hy + h3 + g is affine.

Any bent function of degree 3 on F 6 is equivalent, up to a nonsingular affine

transformation on the variables, to such a function .

Proof :

Suppose f is bent, then the functions on FS :

f(xq, x2,....X6) + f (x1+1, X3,...,X6) = x2X3 + h{(x4,X5,X¢)

£ (x1, X2, X3,...,Xg) + £ (X141, x2+1, X3,..., Xg) = (X1 +X2+1)x3 + hj(x4, X5, X6)+
ha(x4, x5, x6)

f (X1, X2, X3, X4, X5, Xg) + £ (x1+1, x2+1, x3+1, x4, X5, Xg) =
X1X2+X[X3+X2X3+X1+X2+X3+1 + hy(x4, X5, Xg)+ ha(xg, X5, Xg)+ h3(x4, x5, Xg)=
(x1+x2+1)(x)4+x3+1) + Dy (x4, x5, Xg)+ ha(x4, X5, X6)+ h3(x4, X5, X6)

are balanced.
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We have (cf [2]) : Z (-1)%2X3 + h(X X5.X¢) = 2 Z (-1) by(x4x5.%x6)
(x3.....x5)e F3 (x4.xs5.x5)€ F
Thus, hp is balanced. Similarly, hs, h3, hy + ha , hy + h3, ho + h3, and hy + hs +
h3 are balanced.
It is then a simple matter to prove that (hy, ha, h3) is a permutation on F:
let us denote by h the real-valued function on F3 whose value on any element
(a1,a2,a3) of F3 is equal to the size of the set :
{(x4,Xx5,X6) € F3/ ( hy(x4,x5.%6) = a1, h2(x4,X5,X6) = a2 , and h3(x4,x5,x6) = a3 }.
The Walsh transform of h is the function :
(x1, x2, X3) > 2 h(ay, az, az) (-1)X131+X23,+X333 =
(aj,33,a3)e F
Z X1 P (X X5 X )+ X505 (X, X5, Xg)+X 3h3(X 4. X50X),
(x4,%5.%¢)€ F?
So, it is equal to 8 if x;=x2=x3=0, and to 0 otherwise (since the functions hy, hs, hj,
hy + hy, hy + h3, hy + h3, and h; + hy + h3 are balanced). According to the inverse
formula of the Walsh transform (cf.[7]), h is the conslant function equal to 1, and the
mapping :
(x4,X5.%6) € F3 (b1 (x4,%5,%6) , h2 (x4,%5.X6) , h3 (x4.%5,x6)) € F?
is therefore a permutation.
So, the function x1 hi(x4,xs5,x6)+ x2 ha(x4,x5,x6)+ X3 h3(x4,x5,x6)+ g(x4,X5,X¢)
belongs to class M. It is equal to f(x) + x1x2x3 .
x1x2x3 is the algebraic normal form of the 3-dimensional flat of equations
x1=x2=x3=1. According to the theorem, the restriction of f(x) to this flat must be
affine, and so, hy + hy + h3 + g is affine. So, 1) and 2) are satisfied.
The converse is straightforward, according to the theorem.
Let f be now any bent function of degree 3 on F6- We may without loss of generality
suppose that its algebraic normal form contains the monomial xyx2x3. Let
g1(x4,x5,x6), g82(x4,x5,%x¢), and g3(x4,X5,Xg) be the factors in f(xy,...,xg) of
respectively xax3, x1x3, and x1x2. Then f(xi,...,xg) is equal to :
X1X2X3 + x1X2 £3(X4,X5,X6) + X1X3 82(x4,X5,X6) + X2X3 g1(X4,X5,X6) plus an
expression whose (global) degree relative to xy, X2 and x3 is at most 1. So, there exist

boolean functions hy, hy, hj, and g on F3 such that :

f (x1,...,x6) =
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(x1+81(x4,x5,X6)) (X2+82(x4,X5,X6)) (x3+g3(X4,X5,%6)) + (x1+81(x4.X5,%6))
hy(xq,x5,X6)+ (X2+ 82(x4,%5,%6)) h2(x4,X5,x6)+ (x3+83(x4,X5.X6)) h3(X4,X5,X6)+
8(x4.x5,X6).

Thus, f(x1,...,X) is equivalent to :

X1 x2 x3 + X1 h1(x4,X5,x6)+ X3 ha(x4,X5,X6)+ x3 h3(x4,X5.X6)+ g(x4,X5,Xg)

up to the nonsingular affine transformation :

(X1ye000X6) = (X1+81(X4,X5,X6), X2+22(x4,X5,X6), X3+83(X4,X5,X6), X4, X5, X6) . O
Corollary 5 The bent functions of degree 3 on F 6 all belong 1o class D o *.

Conclusion

We have now twice more classes of bent functions than we had before.

We have also obtained new generalized bent functions, but the extension to non-binary
cases has only been sketched in this paper. That gives a direction in which a research

may be done.

Acknowledgement

We wish to thank J. Wolfmann for having drawn our attention to Dillon’s remark.

References

[1] C. Carlet, Codes de Reed-Muller, codes de Kerdock et de Preparata , thése ,
publication du LITP n° 90.59 (1990), Institut Blaise Pascal, Université Paris 6,

4 place Jussieu, 75005 Paris, France.

2] C. Carlet, A transformation on boolean functions, its consequences on some
problems related to Reed-Muller codes , EUROCODE '90, Lecture Notes in
Computer Science 514, 42-50 (1991).

[3] C. Carlet, Partially Bent Functions , Designs, Codes and Cryptography, 3, 135-145
(1993) , presented at Crypto'92, Santa Barbara, USA.



101

[4] 1. F. Dillon, Elementary Hadamard Difference Sets, Ph. D. Thesis, Univ. of
Maryland (1974).

(5] J. F. Dillon, Elementary Hadamard Difference Sets, in Proc. Sixth S-E Conf.
Comb. Graph Theory and Comp., p 237-249, F. Hoffman et al. (Eds), Winnipeg
Utilitas Math (1975)

6] P. V. Kumar, R. A. Scholtz, and L. R. Welch, Generalized Bent Functions and their
Properties, Journal of Combinatorial Theory, Series A 40, 90-107 (1985)

[7] F. ]. Mac Williams & N. J. A. Sloane, The Theory of Error Correcting Codes,
North Holland 1977.

[8] Kaisa Nyberg, Constructions of Bent Functions and Difference Sels,
EUROCRYPT'90, Lecture Notes in Computer Science 473, 151-160 (1991).

(9] O. S. Rothaus, On Bent Functions , J. Comb. Theory, 20A, 300- 305 (1976)



	Two New Classes of Bent Functions
	Introduction
	A New Class of Bent Functions
	Generalization of Dillon's result
	A simple characterization of the bent functions on F6
	Acknowledgement
	References


