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Abstract. We introduce a new class of bent functions on (GF(2))" ( n even). 
We prove that this class is not included in one of the known classes of bent 
functions, and that. when n equals 6. it covers the whole set of bent functions 
of degree 3. This class is obtained by using a result from J.F. Dillon. We 
generalize this result and deduce a second new class of bent functions which we 
checked was not included in one of the preceding ones. 

1. Introduction 

Let n = 2p (PEN*) be an even positive integer. 

The bent functions on (GF(2))" =(O, 1)" are those boolean functions whose Hamming 

distance to the set of all affine functions on (GF(2))" (viewed as a vector space over the 

field GF(2)) is maximum. They play an important role in cryptography (in stream 

ciphers, for instance), as well as in error correcting coding (where they are used to define 

optimum codes such as the Kerdock codes and the Delsarte-Goethals codes). They have 

been studied by J. F. Dillon [ 5 ] ,  [4] (in the wider framework of difference sets) and 0. 

S. Rothaus 19) in the seventies. Since then. generalizations have been studied by several 

authors (cf. for instance [6], [8], and in another direction [3], see also the papers dealing 

with the covering radius of the Reed-Muller code of order 1 or with bent sequences). but 

very few papers lead to new results on the bent functions themselves (cf. [2]). In fact, 

no paper introducing new classes of bent functions has been published since 1975. 

All quadratic bent functions are known (we say that a function is quadratic if the global 

degree of its algebraic normal form, cf. def. below, is at most 2, cf. [7] ch. 15). If n is 

at least 4, then any bent function has degree at most n/2 (cf [9]). Therefore, all bent 

functions on (GF(2)I2 and (GF(2))4 are quadratic. Excepted these values, the only (even) 

value of n for which all bent functions are known is n = 6. In [9], 0. S. Rothaus 
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exhibits three classes of bent functions of degree 3 on (GF(2))6 (the elements of a same 

class are equivalent each other up to an affine nonsingular transformation on the 

variable). But the problem of finding a simple characterization of the bent functions of 

degree 3 on (GF(2))6 is still open. 

Using a result from J.F. Dillon 141, we introduce (cf. corollary 1 and the definition 
n which follows it) a new class of bent functions of degree - on (GF(2))" . The 2 

algebraic normal forms of the elements of this class are deduced from those of some of 

the elements of Maiorana-Mc Farland's class (whose definition will be recalled below) 
by adding a function whose support is an - dimensional subspace of G. We call I) the 

new class of bent functions. We check that it is not included in the completed versions 

of Maiorana-Mc Farland's class and Partial Spread class (cf. def. below). The size of 
class D has approximately same order as that of Maiorana-Mc Farland's class. 

We prove that the bent functions of degree 3 on (GF(2))6 all belong to class I) . That 

gives a simple characterization of these functions. 

Generalizing Dillon's result, we obtain a theorem which characterizes the conditions 

under which, a bent function f and a flat E being chosen, the function f + $E is bent 

(where $E is the charaleristic function of E). We deduce a second class of bent functions 

that we denote by C . We check that this class is not included in the preceding ones. 

2 

We recounr now with more details the definitions and known propenies about bent 

functions. 

Let F denote the Galois field GF(2), and G the F-space F" (whose zero (O,-..,O) will be 

simply denoted by 0). We denote by G the space FP. Clearly, G may be identified with 

GI*. 

The dot product on G is defined for any elements x = (xi, ... , Xn) and s = (Si ,  ... , Sn) 

of G by : x . s = x i  sl + ... + Xn s ,, E F (where the operation + is in F). We will 

use the same notation to denote the dot product on G'. 

A well-known property which will often be used in this paper is the following : 

if E is any F-linear subspace of G and a, b are any elements of G, the sum 

is equal to IEl (-1) a'b (where IEl denotes the size of E) if a belongs to the dual Of E 

(that is the linear space : EL = ( y  E G / V x E E, x . y = 0)). and to 0 otherwise. 

(- 1) a 'x  

XE b+E 
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We will call this property the character-sum property (it extends to more general 

character sums) and denote it by (1). 

Let f be a boolean function on G. We denote by F the Walsh (or Hadamard or discrete 

Fourier) transform of the real-valued function (-1) f(x) : 
F(s) = ( -1) f (X)  + X.S . 

h 

h 

XE G 

It satisfies Purseval'sforrnula (cf [7], p.416, corollary 3 ) : (&)I2 = 2*". 
SE G 

h 

The boolean function f is called bent if (cf. [4]. [5], [9]) for any elements of G, F(s) 
is equal to: k 2P . According to Parseval's formula and since F(s) is related to the 

Hamming distance between f and the ufine function h, : x -) s . x + E (E E F) by the 

relation : (-1)€ F(s) = 2" - 2 d(f, hs), that is equivalent with the fact that f is at 

maximum distance from the set of all affine functions. Another equivalent definition is 

(cf. [4], [71) : for any non-zero element s of G, the function on G: x + f(x) + f(x+s) is 

balanced (a boolean function g on G is called balanced if its support 
{x E G / g(x) = 1)  has size 2"-l, or equivalently if the sum C (-1) g(x) equals 0). 

The notion of bent function is invariant under any affine nonsingular transformation on 

the variable (or in other words under any linear nonsingular mapping, and any 

translation). I f f  is bent, men for any affine function g, the function f + g is bent. We 

shall say that a class of bent functions is conzplele if it is globally invariant under the 

addition of any affine function and the composition (on the right) with any nonsingular 

affine transformation. 

h 

h 

XE G 

If a boolean function f on G is bent, then the boolean function defined by : 
h 

F (s) = 2P (-1) f (S) 

is bent iuelf. Following Dillon, we shall call it the "Fourier" frunsfornt o f f .  Its 

propedes are (cf. [ I 1  p. 55-59, [41) : 

- the mapping f + f is an isometry (i.e. the Hamming distance between two bent 

functions is equal to that of their "Fourier" transforms) 

- if b is any element of G and E any  element of F, let g be the boolean function defined 
by : g(x) = f(x) + b . x + E (respectively g(x) = f(x+b) + E) 

,. 

then (x) is equal to : (x+b) + E (respectively r (x) + b * x + E). (2) 
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Any boolean function on G admits an algebraic n o d  form, that is a polynomial 

expression by means of the coordinates X I ,  ... , x, , each coordinate appearing in any 

monomial with the degree 0 or 1 (cf [7], ch.13). If n is at least 4 and f is a bent 

function, then the (global) degree of its algebraic normal form is at most p (cf 191). 

Any quadratic function f(x) = ai,, xi X j  + h(x) ( h affine, a i j  E F ) is bent if 
lSi<jSn 

and only if one of the following equivalent properties is satisfied (cf [71, ch 15) : 

- its associated syrnplectic form : 

cpf : (x, y) + f(0) + f(x) + f(y) + f(x+y) 

is non-degenerate 
- the skew-symmetric matrix 

mij = 0 if i=j, and mi,j = aj,i if i>j, is regular 

- f(x) is equivalent, up to an affine nonsingular transformation of the variables, to the 

function on G: 

I l , . . . , , )  over F , defined by : mij = aij if icj, 

X I  ~2 + ~3 ~4 + ... + xn.1 X n  + E ( E  E F) (3) 

A first general class of bent functions is the so-called Maiorana-Mc Farland's class (cf. 

[41 p. 90, [Sl) denoted by Ft : 

we use the identification hetween G and GI2, a general element of G being denoted by 

(x.y) (where x and y belong to G), and we denote by "." the dot product on G'; the 
elements of class are all the functions of the form : 

f k y )  = x . n(y) + h(y) 

where x is any  permutation on G and h any boolean function on G' . Notice that 

function (3) corresponds to the case x = id, h = e modulo a permutation of the 

coordinates. 

The "Fourier" transform f(x,y) is then equal to : 
- 

y . K - ~  (x) + h (x)) 
where K-* denotes the inverse permutation of x .  

Class Tt is not complete. We denote by Ttn its completed version. 
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A second important class of bent functions is that of Partial Spreads, denoted by PS (cf. 

[41 P. 95. PI) : 
PS is the disjoint union of two classes PS 
- the elements of PS - are those functions whose supports are the unions of 2P-' 

"disjoint" p-dimensional subspaces of G , less the point 0. "disjoint" meaning that any 

two of these spaces admit 0 as only common element, and therefore that their sum is 

direct and equal to G. In olher words, lhey are the sums of 2P-l characteristic functions 

of "disjoint" p-dimensional subspaces. 
- the elements of P S  + are those functions whose supports are the unions of 2P-l+ 1 

"disjoint" p-dimensional subspaces of G. They are the sums of 2 - l  + 1 characteristic 

functions of "disjoint" p-dimensional subspaces. 

The "Fourier" transform of any function of PS is (very simply) deduced from the 

function itself by replacing the spaces by their duals. 

This class is not complete. We obtain the completed version, that we denote by PS", 

by changing the subspaces into flats, two of them having a single (fixed) point in 

common, and by adding affine functions. 
Classes PI," and P S "  are the only "effective" known classes of benl functions : there 

exist other classes of bent functions, but their definitions involve non-obvious 

conditions, so that none of them leads to an explicit description of bent functions. In 

fact, class P S  is not really effective (the condition on the spaces which are involved in 

the definition is not simple, contrary to the condition on x which stands in the 

definition of class l*t ), but class PS contains subclasses (cf [4] p. 97 ...) which are 

more effective. 

and PS +: 

The generalized bent functions are defined as follows (cf [61, [81) : 
let n and q be any integers greater than 1. Let J, and G be respectively the ring Z/qZ of 

all integers modulo q, and the Jq-module (Jq)" . Let w = eani/q , then a function f from 

G to J, is called bent if it satisfies one of the following equivalent prolxrties : 
1) for any element s of G, the sum w f(x) - s.x (where "." denotes the usual dot 

XE G 

prduct on G) has modulus qd2 (f is called regular if there exists a function 7 from G to 

J, such that, for any s, this sum is equal to qn'* w (s) ) 
- 
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2) for any elements of G\(O). the sum w f(x+s) - f ( X )  is zero (ie the value of the 
XE G 

autocornlation function off is zero on any nonzero element). 

Class ~tt generalizes to any q : if n is even and x is any permutation on G=(J#*, the 

function on G = G2 : (x,y) + x * a(y) is regular-bent. 

2. A New Class of Bent Functions 

m e  idea which is the starting point of this work is the following : if we want to obtain 

new bent functions, a simple way would be to use known ones and to alter them 

without losing their property. 

J.F. Dillon gives in [4, remark 6.2.15 p.821 a result which may be used in this sense. 

It may be stated as follows : let f be a bentfunction on G; suppose its support contains 
a p-dimensional linear subspace E of G. Then, denoting by 4~ the boolean function of 
support E, the function f + & is benr. 

Notice that, more generally, the condition : E is contained in the support off may be 

replaced by: the restriction off to E is aJfine . Indeed, if this restriction is equal to 

a . x + E. then E is included in the support of the (bent) function f(x) + a . x + E + 1, 

on which Dillon's remark may be applied. 

We will see (cf. Corollary 1) that this result leads to new bent functions if we apply it 

to the elements of Maiorana-Mc Farland's class (it does not do so if we try to apply it 

to the elements of PS ). We also wish to determine the "Fourier" transforms of the bent 

functions that we obtain. It would be possible to deduce them from the proof given by 

Dillon, but it will be almost as simple and more convenient to give a direct proof of 

the whole result. To achieve it. a lemma will be useful, which is a slight generalization 

of [4, theorem 6.2.1 1 p.791: 

Y 

Lemma 1 Let E be any linear subspace of G, f any bent funcfion on G, and f its 

xea+E XE b+ E l  
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If E has dimension p and if the restriction of f i x )  to E is 0 (respectively I) then the 

restriction of f to E1 is 0 (respectively 1). 
- 

Proof: 

According to the definition o f  the "Fourier" transform, we have : - 
f ( x ) + a . x  = 2 - P  c f ( Y ) + Y . X  + a . x  = 

XE b+El  xcb+E* y€G 

2 - P C  (-1) f(Y) ( &1) ( Y  + a )  . x  ). 
YEG XE b+E* 

According to the character-sum property (l) ,  h e  sum ( 

to IEll ( -1)  (Y + a) ' if y + a belongs to E, and to 0 otherwise. Therefore, we have : 

( - 1 )  ( Y  + a) ' ") is equal 
XE b+El  

- 
C(-1) f ( x ) + a . x  = I E ~ I ~ - P  C(-1) f ( ~ ) +  ( ~ + a ) * b  and the first part 

XE b+El  YE a+E 

of the lemma holds, since IEll is equal to 2 *PdimE. 

If E has dimension p. the restriction of f(x) to E is 0 (respectively 1) if and only if 
is equal to 2P (respectively - 2P), and the conclusion holds, applying 

XE E 
(-1) 

the preceding equality with a = b = 0. 0 

Proposition 1 Let E be a p-dimensional linear subspace of G and # E  its 

characteristic function. Let f be a bent function on G whose restriction to E is aflne. 
Then the function on G : 

f i x )  + $E (1) 

is bent, and ifs "Fourier" tranflonn is : - 
f ( X h  $EL (X + a), 

where a is any elentent of G such that the restriction to E o f j (x )  is equal to a x + E 

( E  E F). 

Proof: 
Replacing f(x) by f(x) + a . x + E, and using property (2) (of section 1). we may 
without loss o f  generality assume : a=O, E=O. 

For any h in G, we have : 
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c (-1) f(X)+t+E(X) + i * x  = 

'c (-1) f(x) + L x  - 2 c (-1) f(x) + L x  . 
X E  G 

XE G XE E 

The sum : c (-1) f(x) + A . x  is equal to : 

C (-1) f(x) + X.X = C (-1) X.X 

character-sum properly (1). 

SO, if 5 does not belong to EL, then the sum : 

2P (-1) 

-2p = 2 ~  (-1) f ( l ) + l ,  since according to lemma 1, 7 (1) is equal to 0. 

SO, f is bent and 

2P (-1) , and the sum : 

is equal to : 2~ + E ~ ( A ) ,  according to the 

XE G 

XE E XE E 

(-1) f ( X ) + h ( X ) + ~ . X  is equal to 

and if h belongs to EL, it is equal to 2P (-1) (l) - 2P+l which is equal to 

XE G - - 

(-1) f(X)+%(X) + L X  is equal to : 2P (-1) '7 (1) + kl(b). 0 
XE G 

In next corollary, we identify G with GI2, so that we denote by (x.y) any element of G 

(X,Y E G I .  

Corollary 1 Let E he a p-dimensional linear subspace of G and n a permutalion on 

G' such ihai, for any (x, y )  in E, the number : x . z ( y )  equals 0. Then ihe funciion 

defined on G as : 
x ' dy) -t #E (-& Y )  

is bent, and its "Fourier" transform is lhe function: 

y ' , - I  (x) -+ # E l  (-& y) .  

Proof: 

IC being a permutation, the function f defined by : 

f (x, y) = x . x(y) 
belongs to Maiorana-Mc Farland's class. and so is bent. Its "Fourier" transform is the 
function : 

7 (x,y) = y . IC-'(x). 

SO. the result follows directly from proposition 1 with a = o e = 0. 
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Remark 

1) The class of bent functions that we obtain cannot be considered as an effective one 

since there is no simple description of all the subspaces and permutations satisfying the 

condition of Corollary 1. But  there is a simple subcase : when E is equal to the 

Cartesian product of two subspaces El and E2 of G' such that dim El + dim E2 = p and 

x(E2) = Ell. This will lead to our first new class of bent functions (whose definition is 

below). 
When El is equal to the trivial space (0). (and therefore E2 = GI), the condition 

x (E2) = El is obviously satisfied. This special case leads to a subclass. 

Of course, when El = G (and E2 = (0)). the condition on R is empty too, but in that 

case, the function that we deduce belongs to Maiorana-Mc Farland's class, and we so 
obtain no new bent function, 

2) Corollary 1 may be extended to some non-binary cases : let q be any positive even 
integer, let Jq. G' and G be respectively Z/qZ, (Jq)P and (Jq)" = G 2  (n =2p). Let E be 

any subgroup of order qP of G and R any permutation on (Jq)P . Suppose that, for any 

(x,y) in E : x . x(y) = 0. Then h e  function : 

(X,Y) + x . M Y )  + ; 4 d X . Y )  

is bent : 

let w = eZni/q, we have (since W9l2 = -1) : 

(X.Y)E G 

(X.Y)E G (X.Y)E E 
The sum : 

c w x.NY)+(qm9&.Y) - L x  - 1.y = 

c w X N Y )  - 1.x - P'Y 2 c w x-n(Y) - h.x - P.Y. 

- W is equal to : qP w pc .x -* (k )  (cf.[6], p.100) w x'MY) - 
' (x.y)~G 

and the sum : C w - A,X - P.Y is equal to : qp + E L ( A , ~ ) ,  (Lemma 1 generalizes). 
(X.Y)E E 

That completes his sketch of proof. 

Definition 1 We call D the class of all the boolean functions of the form : 

(4 Y) E G + $E fx, y) + X . f f  fy) 
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where E is a subspace of G equal to E l  x E2 , El and E2 are subspaces of G' such that 

dim El  + dim E2 = p .  and K is any pertnutation on G' such that n (E2) = El l. 

We call W ,, the subclass of 011 the functions of the form : 
D 

Do corresponds to the case : E = (0) x G'. 

Example : 

Assume x(0) = 0. Let z be any nonzero element of G'. Let El be the linear hyperplane 

x(z)* and E2 the line (0,z). The function: 

belongs to class D . 

Remark 

1) Both classes H," and PS" are invariant under the "Fourier" transform f + f . 
According to Corollary 1. that is still the case of classes D o# and I)" (the completed 

2) The sizes of D and 'M, have approximately same order since the number 2$ of 

boolean functions on Fp is small, compared with the number of permutations on the 

same space : (PI!  . 

classes of D 0 andD) . 

We check now that class D is not included in class 7%" . We shall obtain this result as 

a corollary of next proposition. 

Proposition 2 If p 1 4 and if the restriction of pertnutation R lo uny linear 
hyperplane of G' is not aflne. then the following funcrion does not belong to class ?L#: 

i = I  

(where I denotes the all-one word). 
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Proof: 
We know that if a function f belongs to Tt', then there exists a p-dimensional 

subspace E of G, such that, for any elements (a,a') and (b,b) of E, the function : 

x + f(x,y) + f(x+a,y+a') + f(x+b,y+b') + f(x+a+b,y+a'+b') 

is equal to 0 , Indeed, if f(x,y) is equal to x . ~ ' ( y )  + h(y), where X' is a permutation, we 
may lake E = G' x { O ) ,  and any element of Tt' is equivalent to such a function, up to a 

nonsingular affine transformation on the variable . 

Suppose that, two elements (a,a') and (b,b') being chosen in G, the function : 

f (X,Y) = fi x i  + (x + 1) .  x ( y )  
i = 1  

satisfies the condition : 

V (x,y) E G, f(x,y) + f(x+a,y+a') + f(x+b,y+b') + f(x+a+b,y+a'+b') = 0. 

That implies that the degree of the function : 

i = 1  i = I  i = 1  i = I  

is at most 1 (since the degree relative to x of : (x+ I)  . x (y) + (x+a+ 1) . x (y+a') + 
(x+b+ 1) * x (y+b') + (x+a+b+ I) . x (y+a'+b') is at most 1). 

For any pair ( i j  of indices, the coefficient of n Xk in that expression is : 
k#i.j 

aiaj + bibj + (ai+aj)(bi+bj) = aibj + ajbi 

and must be equal to 0, since p 2 4. So, any two elements (a,a') and (b,b) of E are such 

that a and b are linearly dependent (ie one of them is 0. or they are equal each other).We 

deduce that E is either equal to (0) x G' or to the direct sum of a line (0,cr) (where a is 
a nonzero element of G' ) and of an hyperplane H of G'. In any case, there exists at least 

a linear hyperplane H of G' such that (0) x H is included in E. This hyperplane 

satisfies that for any elements a' and b' of H, and any elements x and y of G', we have : 

(x + I)  . (X (y) + x (y+a') + TC (y+b') + x (y+a'+b) ) = 0. 

Since the restriction to H of at least one of the coordinate functions of x is not affine, 

we arrive to a contradiction. 0 

Corollary 2 Classes D 0 und D ure in generul not included in class N' , 
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Proof: 
D 

The function IT x i  + (x + 1) . R (y) 
i =1  

is equivalent to the function 

fi (Xi+l) + x . x (y) which belongs to class D 0 . So. all we need to prove is that 
i = I  

there does exist in general a permutation R whose resuiction to any linear hyperplane is 

not affine. 

Let us identify G with the Galois field of order 2P. Let i be any integer prime to 2P - 1. 

The mapping on G' : x -+ xi is a permutation on G. Its reuiction to a linear 

hyperplane ( x  E G / tr (ax) = 01 (where tr is the trace function from G to F and a is 

any nonzero element of G') is affine if and only if its restriction to the linear hyperplane 

Ho = (x E G' / tr (x) = 0) is affine (since x(ax) = ai x(x) ). 

Ho being equal to the image of the linear mapping : x + x2 + x, that is true if and 

only if the mapping : x + (x* + x)i is affine. 

It is a simple matter to show that there exists in general i such that this last mapping is 

not affine. Take for instance i = 1 + g. Suppose 2j is prime to p (and so, p is odd), 

then i is prime to 2P-1. Suppose 2i+l+2 c 2P. Then (x2 + x)' , equal to :x2j+1+2 + 
x2j+'+l + x2i+2 + x2j+l cannot be affine since it is a non-affine polynomial of degree 

at most 2P-1 (cf [7] p. 402). 

We now wish to prove that class D is not included in class PS" . That is much more 

difficult since there does not seem to exist simple necessary conditions for a function to 
belong to PS". That is perhaps why i t  has never been proved until now that class PI. 
is not included in class PS" (J.F.Dillon has only proved in his thesis [4 p.531 that 

class Tc is not included in class PS 1. 

Proposition 3 I f p  i s  any odd integer at least equal to 5, rhe function: 

i = I  

does nor belong to class PS# . 
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Proof: 
We have to prove that, for any affine function g .on G, the function : 

f(x,y) = fi xi + (x+l) * y + g(x,y) is not equivalent. up to a nonsingular &fine 

transformation, to a function of PS . 
Suppose first that it is equivalent to a function of PS-. There exist k=2P1 flats HI, .... 
Hk of G such that any two of them intersect in a single (fixed) point (a&) , and that 

the support off  is their union less the point (a,b) . 
Let i be any element of (1. ..., k ) .  The intersection between Hi and the support of f is 

Hi \ ((a.b)) and so has an odd n u m k r  of elements. Therefore, denoting by hi the 

boolean function of support Hi, the function f hi (whose value in x is f(x)hi(x)) has an 

odd weight, and so has degree 2p. Consequently, since n X i  is the only monomial in 

the algebraic normal fonn of f (x,y) whose degree is p, and since hi has degree p, the 

product of the function hi with any function n (xi+&) has degree 2p. Applying this 

result to hi = ai + 1 (i=l ...p), we deduce that the flat (aJxG has an odd number of 

elements in commun with Hi. That means that it has the point (a,b) only in commun 

i =1 

P 

i=l 

P 

i= 1 

with Hi. 

Wededuce: 
Vy E G', f(a.y) = 0, 

So, replacing g(x.y) by 

f (X.Y) = fi x i +  
i= 1 

its value, we obtain : 

fr aj + (x+a) . y , 

i= 1 

The translation (x,y) + (x+a,y+b) translates the point (a,b) in (0.0) and changes f (x.Y) 

in: 

(Xi+ai) + fi aj + x . (y+b), 
i=l 

R i= 1 
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The subspace E = (0)xG is disjoint from the support off  and so is "disjoint" from any 

of the Hi. Using an idea from J. F. Dillon [4, p.531, we may deduce that there exist 

linear mappings Qi on G such that, for any i, Hi is equal to the set : {(X,$i(X)), XE G I .  

Since for any i. the set Hi \ (<O,O)] is included in the support off ,  we deduce : 

V i j  V x E G , f(x,4i(x)) = f(x,$j(x)), and therefore : 

V i j  'd x E G , x . ($i(x)+Q,(x)) = 0. 

That implies that the matrix of the linear mapping $i+$j is skew-symmetric. If i#j , Hi 

and Hj admit 0 as only commun element. So, this matrix is regular. The dimension p 

being odd. that is impossible. 

Suppose now that the function : 

is equivalent to a function o f p s  +. IU support is the union of 2~-1+1 p-dimensional 

flats, any two of them intersecting in a single fixed point (ab). 

We may suppose without loss of generality that g depends only on y (if g(x,y) = u . x + 
v . y + E, change y in y + u ). The restriction of f to the flat H = [ (qy), YE G') is the 

function : 

y +  fi ai + ( a + n ) .  y + g (y) . 
i = 1  

This function is affine. Suppose it is not the constant function 1, then its weight is at 

most V-l, and at least two spaces Hi have (a,b) as only commun point with H. We can 

apply the translation of vector (ab) and complete the proof as previously. 
P 

Otherwise, f(x,y) is equal to : fi x i  + (x+a) . y + n ai + 1. Let us apply 

again the  translation of vector (a,b). so that f(x,y) becomes : 

i = 1  i = 1  
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P P 
Let abeanelementofG'such that: n (ai+ai) + a . b + n ai = 1 (such 

i = 1  i = 1  
P P n (xi+a;) + x . b + n ai is not the 

i = I  i = 1  
an element exists since the function 

zero function). 
Let E denote the linear hyperplane of G' : (x  E G / a * x = 0) = aL . 
The restriction off to the space : (0,a) x E is balanced since it is equal to 1 on {O) x E 
and to 0 on (a) x E. Therefore, there exist at least two spaces Hi (say H1 and H2) 

which are "disjoint" from the space [ 0,a) x E . 
We shall now compose f on the right by an automorphism w of G which maps 

[O) x G onto (0.a) x E. so that we can apply on f OW the Same technique as the one 

we applied previously on f. Let p be an element of G' such that a p = 1, and E = pl. 

We have : G = ((O,a}@ E )  x C(O,P)@ El. 

Let 

V E, q E F. \d u EE, V v E E .  y ( ~  a + v, q p + u) = (q a + v, e p + u). 

\I, maps (0) x G' onto [O,a) x E 

The function ( fi (xi+ai) ) o w  has support : w( [a+P 1 x GI), since fi (xi+ai) 

has support { a+l ) x G and y - 1 = yf. If y and w are the elements of F and E' 

(respectively) such that a+l is equal to : y a + w , this support is the set : 

( ( E  a + w, y p + u), EE F, UE E ) .  

Remember that f(x,y) is equal to 

deduce : V e, q E F. V u EE, V v E E ,  

be the involutive isomorphism of G defined by : 

i = 1  i = 1  

P P n (xi+ai) + x . (y+b) + n a i  + 1. We 
i = I  i = 1  

i = 1  
l i f v = w  
0 otherwise where xw (v) = 

We know that there exist (at least) two linear subspaces y ( H 1 )  and y(H2)  (since ye1 = 

w) of G which are "disjoint" from each olher and "disjoint" from the space (0) x G and 

which are included in the support of fay. We deduce that there exist two linear 
mappings $1 and Q2 from G to itself such that : 

V e E F, V v E E ,  f q  ( E  a + v, Q ~ ( E  a + v)) = f o y  (E a + v, + 2 ( ~  a + 4). 
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Let li and Li (i=l, 2) be respectively the boolean function on G' and the linear mapping 

from G onto E such that : @i (E a + v) = li (e a + v) p + L+(E a + v). We have : 

V E E F, V v EE', 
(11 + 12) (E a + v) xw(v) + ((11 + 12) (E a + v)) E + v . [(Ll + La) (E a + v)l + 
[(I1 + 12) (E a + v)] [a . bl = 0. 

We shall prove that this is impossible. 

If v is different from w, then for any e, we have : 

((11 + 12) (E a + v)) E + v * [(Ll + L2) (e a + v)] + [(11 + 12) (E a + v)] [a bl = 0. 

That means that the function of the variable (E.v) which is equal to the LHS of that 

equality has weight at most 2. But, this function is quadratic, and we know (cf. [71 ch 

15) that if a function is quadratic, then either its weight is at least 2p-2 ( ans so is at 

least 8) or it is the zero function. We deduce that it is the zero function. But this 

function is equal to : x . ( C $ ~ ( X )  + +2(x)), where x = E a + v. 

Thus, the matrix of the linear mapping $1 + 4 2  is skew-symmetric and regular, a 

contradiction. 0 

Corollary 3 Classes D o, D a d  3T are not included in class PS# . 

Proof: 

It is straightforward, according to Proposition 3, since the function 

(x,y) E G + n xi + (x+l)  . y of Proposition 3 belongs to classes D d,  D'. 

andN#, . 0 

P 

i = 1  

3. Generalization of Dillon's result 

We shall now extend Dillon's result to cases where E is a flat whose dimension is not 

necessarily equal to p. That will lead us to new bent functions. 

Before we state the theorem. we need some preliminary definition and lemmas. 
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Lemma 2 LRt f be any boolean function on G. Let E be any flat of G and k its 

dirnension. Let y be any aflne mopping from F to G such that E = y~ (F kJ Then the 

degree of the boolean function f o y o n  F kdoes not depend on’the choice of y. 

Proof: 

Suppose that y ~ l  and \y2 are two affine mappings from FP to G such that yl(Fk) = 

w2Fk) = E. The boolean functions f o w l  and foy2 are then equivalent and so have same 

degree (cf [41, p.39. [7] ch.13). 0 

Definition 2 Let f be any boolean function on G and E anyflat in G. We call degree 

of thE resrriclion off to E the degree of the function f D W  on F k, where k is the 

dimension of E and y is any afine titapping front F to G such that ~ p i F  k, = E. 

Lemma 3 Let f be any boolean function on G and E any k-dimensional flat in G. If 

there exists an integer r such that, for any eletiwnt a of G, the sum : 

X E  E 

is divisible by 2 r, then the degree of the restriction off to E is at nwst : k - r + I .  

Proof: 

We just adapt the proof due to Rolhaus [91 on the degrees of the bent functions. 

We may suppose that E is equal to Fk (otherwise, we can compose by an appropriate 
affine nonsingular mapping). Let d be the degree of the restriction of f to E and n x i 

ie I 

one of its monomials of degree d (I is a subset of (1, ..., k) of size d). 

The sum : c 
XE E/xi=O,Vie I 

(- 1) f(x) is equal to the size 2d of the linear subspace ( XE E / 

xi = 0, Vie I )  minus twice the weight of the restriction of f 10 this subspace. which is 

odd, since the degree of this function is equal to the dimension of this subspace (cf. [71, 

ch 13 or [9]) . Therefore, (-1) f(x) is divisible by 2 but not by 4 . 
XE Uxi=O.Vie I 

ForanyainG,letA,= c (-1) f ( x )  + a ‘ x  . 
XE E 
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According to the inverse formula of the Walsh transform (cf. [7], p. 127), for any x in 
E. we have: (-1) f(x) = 2 - 1, (-1) a ' , and therefore : 

a€ E c ( - 1 )  f(x) = c 2-k c ?La(-l) a . x  = 

XE E/x,=O,Vit I XE E/x,=O,Vie I a€ E 

2 - k C A a  ( c ( - I ) - )  = 2 1 1 1 - k  C  according to 
a€ E XE Uxi=O,Vie I a€ Ua&Vie I 

the character-sum property (1)). 
So, the sum ( - 1 )  f(x) is divisible by 2 I ' + = 2 - + and 

XE Uxi=0,Vic I 

therefore, d - k + r is at most 1 .  We so have proved : d I k - r + 1. 0 

Theorem Let E = b + E' be any flat in G = F 2P (E',  its direction, is a linear 

subspace of C). Let $E be rhe boolean function whose support is E andflx) any bent 

function on G. Then the funcf ionp = f + $E is  bent ifand only ifone of the following 

equivalent conditions is satisfied : 

1 )  for any x in G \ E', the function: 

Y -j f l y )  + f l X + Y )  

is balanced on E 

2) for any 1 in C, the restriction of the function 7 (x) + b . x to the flat A + El1 is 

either constant or balanced. 

lf om of these conditions is sati.fled, then E has ditiwnsion at least p and the degree of 
the restriction of f  to E is at tnost dim E - p + 1. 

If E has dirnension p ,  then this last condition is also suflcient and the function f * (x)  

is equal to : 

- 
- 
f (XI + 4 a + ~ $ 1  (I), 

where a is any elentent of G such thut for any x in E : fTx)  = a . x + E .  

Proof: 

1) The function f* is benl if and only if, for any x in G \ (0). the function 

Y + P(y) + P(x+y) is balanced on G, that is : c ( -1) f * ( Y )  + f ' (X+Y)  = 0. 

YE G 
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If x belongs to E ,  then we have for any y in G : P ( y )  +P(x+y) =f(y) +f(x+y) and 

therefore : 

YEG YEG 

If x does not belong to E', then the flats E and x+E are disjoint, the function 

(-1) f*(Y) + f*(x+Y) = c (-1) f(Y) + f (x+Y)  = 0 (since f is bent). 

+ $E(x+Y) lakes the value 1 on E u (x+E) and : c (-1) f*(Y)  + f * ( x + y )  = 

YE x+E 

YE E 

We deduce that rC is bent if and only if, for any element x of G \ E ,  the function 

y + f(y) + f(x+y) is balanced on E. 

2) We have 

XE G XE G XE E 

XE E 

so, P is bent if and only if for any in G, the sum c (- 1 ) f (X I  + 5 x is equal 
XE E - 

either to o or to 20 (-1) f(1). 

According to Lemma 1. we have : 

XE E XE X+EJ- 

That sum is equal to w (-1) i (A) if and only if c (- 1) i (XI + b . x is equal to: 

- (-1) + h .  b, hat is if and only if 7 (x) + b . x is constant on h + EL, since - IEl IEl 

is equal to the size of E*. This same sum is equal to zero if and only if i (x) + b - x 

is balanced on h + EL. That completes the proof of part 2. 

XE X + E l  
22P - 22P 
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If f and f"' are bent, then the degrees of their algebraic normal forms are at most p (cf. 
[9]). and therefore, $E has degree at most p. That is equivalent with the fact that the 

dimension of E is at least p. 
For any 1 in G, since f and f* are bent and since (- 1) f*  ( X )  + is equal to : 

XE G 

XE G XE E XE E 

is the difference between two numbers which are both equal to k 2. So, it is divisible 

by 2P+' and lemma 3 (with r = p) may be applied. Thus the restriction off to E has 

degree at most dim E - p + 1. 

If E has dimension p, then the restriction of f to E is affine (that is the converse of 

Dillon's result). There exist a in G and E in F such that, for any x in E: f(x) = a . x + E. 

Proposition 1 and property (2) complete the proof. 0 

Remark 

1) If E is the whole space G, then conditions 1 and 2 in the theorem are obviously 

satisfied. That corresponds to the fact hat for any bent function f, the function f+l is 

bent. 

If E is an hyperplane, then $E(x) is of the form : a . x + E (a E G, e E F). SO 

conditions 1 and 2 must be satisfied (since if f(x) is any bent function then 

f(x) + a . x + E is bent). It is a simple matter to check it. Notice that, in that case. 

f*(x) is equal to : (x+a) + E. We see that the expression of 'i*(x) by means of k x )  

may be quite different depending on whether E has dimension p or not. 

2) The characterization by condition 1 of those bent functions f such that f + $E is bent 

generalizes to non-binary cases the following way : 
let n and q be any integers greater than 1. Let J, and G be respectively the groups ZlqZ 

and (Jq)", f a  bent function from G to Jq, F any subgroup of G, b any element of G, E 

the set b + E and 1 any element of J,. Then the function f* = f + A $E is bent if and 

only if, for any x in G \ E ,  the element of J, qua1 to: 
(w - - 1) C w ~ ( x + Y )  - f(y) + (w 1 - 1) C w f(x+y) - f(y) is zero. Indeed, let x 

be any nonzero element of G, h e  sum : 

YE E YE -x+E 
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YE G 
is equal to : C w f(x+y) - f(y) = o if x belongs to E' (since x + E is then equal to 

E), and to: 
YE G 

YE G YE -x+E 

otherwise. 

Condition 2 may also be generalized to some non-binary cases, but only for regular- 
bent functions. . 
We deduce now the existence of another superclass of Do whose elements are bent 

functions : 

Corollary 4 Let L be any linear subspace of G' = FP and R any permutation on G' 

such that, for any element I of G', the set x - I ( A  + L) is a Jar. Then rhe function on G: 

x ' no) + 4JLl (x) 

is bent. 

Proof: 
Let E be the subspace of G : LL x G'. 

The function f(x,y) = x . z(y) belongs to Maiorana-Mac Farland's class and so is bent. 

Its "Fourier" transform is f (x.y) = y x-'(x). Let (A, p) be any element of G. The size 
of the support of the restriction of i (x,y) to the set (A, p) + EL = (A + L) x (p) is 

equal to that of the support of the restriction of the function : 

x + p x to the flat x - I  (A + L), which is either balanced or constant, since this 
function is aftine. So, condition 2 of the theorem is satisfied. 0 

Definition We call C the class of all the functions of rhe form , 

X '  M Y )  + 4JLL ( X I ,  

where L and asatisfy the conditions of the preceding corollary. 
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Class C contains D 0 (which corresponds to the case L = G"), and so is not included in

ClassC M* and Do (w

Notice that class C is not included in class D # , since it contains functions of degrees

less than p.

4. A simple characterization of the bent functions on F*>

We shall deduce from the theorem a characterization of the bent functions of degree 3 on

F 6 .

Proposition 4 Let f be any boolean function of degree 3 on F6 of the form :

f(X],...,x<s) = xi X2 X3 + X] hi(X4,xs,X6)+ X2 h2(X4,X5,X6)+ X3

where hj, \i2, and h$ are three (quadratic) functions onF3, and g is a boolean function

onF3.

Then f is bent if and only if:

1) the mapping (X1.x2.x3) -> (hj (xj.x2.x3) , h2 (xj.x2.x3), h3 (xltx2,X3)) is a

permutation onF3

2) the function hj + h2 + h3 + g is affme.

Any bent function of degree 3 on F & is equivalent, up to a nonsingular affme

transformation on the variables, to such a function .

Proof:

Suppose f is bent, then the functions on F6 :

f (xi, x 2 X6> + f ( x i + l , x 2 , . . . ,x 6) = X2X3 + h l(x4,xs,x6)

f (XJ.X2, X3,...,X6)+ f (xi+1, X2+I, X3 xg) = (xi+X2+l)x3 + hi(x4, X5, X6>+

t>2(x4. X5, x6)

f (xi, X2, X3, X4, X5, xg) + f (xi+1, X2+1, X3+I, X4, X5, x6) =

hi(x 4 , X5, Xf,)+ h2(x4 , X5, X6>+ h3(x4, X5, X6>=

4, X5, X6)+ h2(x4, X5, x$)+ h3(x4, X5, X6>

are balanced.
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Thus, h i  is balanced. Similarly, h2, h3, hi  + h2 , h i  + h3, h2 + h3, and h i  + h2 + 
h3 are balanced. 

It is  then a simple matter to prove that (hi, h2. h3) is a permutation on F3 : 

let us denote by h the real-valued function on F3 whose value on any element 

(al,a?,as) of F3 is equal to the size of the set : 

( (X4J5J6)  E F3 1 ( h i ( x 4 J 5 J 6 )  = ai, h2(x4,x~,x6) = a2 , and h3(x4,x5,x6) = a3 1. 
The Walsh transform of h is the function : 
(x i ,  x2, x3) + h(a1. a2. a3) ( - l ) x ~ a i + x z a 2 + x 3 a 3  = 

(a l ,a2 ,a3)~  F3 
( - ~ ) X ~ ~ , ( X ~ , X ~ , X ~ ) + X ~ ~ ~ ( X ~ . X S . X ~ ) S X ~ ~ ~ ( X ~ ~ X S , X ~ ) .  

(Xq,Xg.Xg)E F3 

So, it is equal to 8 if xl=x2=x3=0, and to 0 otherwise (since the functions hi. h2, h3. 

h i  + h2, h i  + h3, h2 + h3, and hi + h2 + h3 are balanced). According to the inverse 

formula of the Walsh transform (cf.[7]), h is the conslant function equal to 1, and the 

mapping : 

(X4J5J6) E F3+ (hi (X4J5J6)  , h2 ( X 4 ~ 5 J 6 )  I h3 ( ~ 4 ~ 5 ~ x 6 ) )  E F3 
is therefore a permutation. 

so, the function X i  hi(X4,x5,x6)+ x2 h2(x4,x5,x6)+ X 3  h3(xq,xg,x6)+ g(X4J5J6)  

belongs to class Tz.. It is equal to f(x) + ~ 1 x 2 ~ 3  . 
~ 1 x 2 ~ 3  is the algebraic normal form of the 3-dimensional flat of equations 

xi=x2=x3=l.  According to the theorem, the restriction of f(x) to this flat must be 

affine, and so, h l  + h2 + h3 + g is affine. So, 1) and 2) are satisfied. 

The converse is straightforward, according to the theorem. 

Let f be now any bent function of degree 3 on F6. W e  may without loss of generality 

suppose that its algebraic normal form contains the monomial ~ 1 x 2 ~ 3 .  Let 

s i ( x 4 ~ 5 , x 6 ) ,  g2(X4,X5,X6). and S3(X4,X5,X6) be the factors in f(xi  ,....x 6) of 

respectively ~ 2 x 3 ,  ~ 1 x 3 ,  and ~ 1 x 2 .  Then f(X1, ..., Xg) is equal to : 

xlx2X3 + X l x 2  S3(x4qX5,X6) x l x 3  g2(X4.X5,X6) + X 2 X 3  gi(X4,X5.X6) PIUS an 

expression whose (global) degree relative to X I .  x2 and x3 is at most 1. So, there exist 

boolean functions h l ,  h2, h3, and g on F3 such that : 

f ( X i ,  ..., X 6 )  = 
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h1(x4,X5,x6)+ (x2+ g2(X4.X5.X6» h2(x4,x5,x6)+

g(x4,x5,x6).

Thus, f(xi,...,X6) is equivalent to :
x l X2 X3 + *1 hi(X4,X5,X6)+ X2 1)2(X4,X5,X6)+ X3

up to the nonsingular affine transformation :

5,X6), X4, X5, *$) . D

Corollary 5 The bent functions of degree 3 on F <* all belong to class D 0 *.

Conclusion

We have now twice more classes of bent functions than we had before.

We have also obtained new generalized bent functions, but the extension to non-binary

cases has only been sketched in this paper. That gives a direction in which a research

may be onlybeen
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