On Key Distribution and Authentication in Mobile Radio Networks

Choonsik Park, Kaoru Kurosawa, Tatsuaki Okamoto ${ }^{\dagger}$ and Shigeo Tsujii
Department of Electrical and Electronic Engineering, Faculty of Engineering, Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo, 152 Japan
Email: parkcs@ss.titech.ac.jp
\dagger NTT Network Information Systems Laboratories, Nippon Telegraph and Telephone Corporation 1-2356, Take, Yokosuka-shi, Kanagawa-ken, 238-03 Japan

Abstract

Mobile communication networks need public key cryptosystems that offer both low computation cost and user authentication. Tatebayashi et al showed such a key distribution protocol for such networks at CRYPTO's9 based on low exponent RSA. This paper shows that their protocol is not secure. We also present a new secure and efficient key distribution protocol.

1 Introduction

Security in digital mobile communication systems has two major characteristics that must be be achieved, low computation cost and user authentication. Theoretically, A (lice) and $\mathrm{B}(\mathrm{ob})$ who have never met can share a cryptographic key by using a public key cryptosystem. The disadvantage of current public key cryptosystems is that encryption and decryption take too long. This disadvantage is serious in mobile communication networks because each user has very small computational power. The user authentication problem is also important to avoid charges of fraudulent usage. Another property of mobile communication networks, which is a good news for us, is that each user communicates with each other through a network center. Our goal is to design a public key cryptosystem for such networks that realizes both low computation cost and user authentication.

Until recently, however, only slight attention has been paid to this problem. The key distribution protocol shown by Tatebayashi et al.[1] at the 1989 CRYPTO conference is the only product known to the authors.

This paper irst shows that their protocol is not secure. In the protocol of [1], A and B send initial information to the network center by using a low exponent RSA. However, we show that B can find the secret of A, needed for user authentication, easily by using this low exponent property. We then present a new key distribution protocol which realizes both low computation cost and user authentication by introducing a simple nonlinear function.

Our technical contribution is as follows. Hastad [3] showed that we can solve the following simultaneous equations,

$$
\left(\alpha_{i} X+\beta_{i}\right)^{3}=c_{i} \quad\left(\bmod N_{i}\right),(i=1, \cdots, 7)
$$

for X in polynomial time if $\operatorname{gcd}\left(N_{i}, N_{j}\right)=1$ for $i \neq j$ and if the number of equations is seven. Our analysis of [1] shows that we can obtain the following simultaneous equations,

$$
\left(\alpha_{i} X+\beta_{i}\right)^{3}=c_{i} \quad(\bmod N)
$$

Since N is common for each i, Hastad's attack cannot be applied. We show a method for this problem which finds X in polynomial time if the number of equations is three. We propose a key distribution protocol which is secure for both attacks.

- denotes concatenation. $|X|$ denotes the bit length of X.

2 Review of Tatebayashi et al.'s scheme

The key distribution scheme of [1] was developed in the following process. First, network center C' generates an RSA cryptosystem $e=3$. Let

$$
E(M)=M^{3} \bmod N(=p q)
$$

where N is the public key of C and p, q are the secret keys of C. Suppose that A and B want to share a key $K . X$ and Y are opponents.

2.1 KDP1

Their basic protocol KDP1 is as follows.
[KDP1]

1. A chooses a random number r_{1} and computes $Z_{a}=E\left(r_{1}\right)$.
A sends Z_{a} to C.
2. B chooses a key K randomly and computes $Z_{b}=E(K)$.
B sends Z_{b} to C.
3. C'decrypts Z_{a} and Z_{b}. It computes $u=r_{1}+K \bmod N$.
C send u to A.
4. A computes the key K as $K=u-r_{1} \bmod N$.

2.2 Simmons attack

Simmons showed one attack on KDP1.
[Simmons' attack]

1. X and Y monitor Z_{b}.
2. X chooses a random number R and computes $Z_{x}=E(R)$.
I sends Z_{x} to C.
3. Y sends Z_{s} to C.
4. C then sends $u^{\prime}=R+K \bmod N$ to X.
5. X can compute from u^{\prime} and R the key K of A and B.

2.3 User authentication

We should also consider the problem of user anthentication because it is important to avoid charges of fraudulent usage. To eliminate this problem, KDP1 can be modified as follows. Let f be a psendorandom function which is the secret of C. Let $I D_{a}$ and $I D_{b}$ be the identity of A and B, respectively. In the preprocessing stage, C computes

$$
S_{a}=f\left(I D_{a}\right), \quad S_{b}=f\left(I D_{b}\right)
$$

C sends S_{a} to A secretly. Similarly, C sends S_{b} to B secretly. [KDPl^{*}]

1. A chooses a random number r_{1} and computes $Z_{a}=E\left(S_{a} \circ r_{1}\right)$.
A sends Z_{a} and $I D_{a}$ to C.
2. B chooses a key K randomly and computes $Z_{b}=E\left(S_{b} \circ K\right)$.
B sends Z_{b} and $I D_{b}$ to C.
3. C decrypts Z_{a} and Z_{b}. It checks that $S_{a}=f\left(I D_{a}\right)$ and $S_{b}=f\left(I D_{b}\right)$.

It the check passes, C computes $u=r_{1}+K$ and send u to A.
4. A computes the key K as $K=u-\tau_{1}$.

It is easy to see that Simmons' attack can also be applied to KDP1*.

2.4 KDP2

Finally, Tatebayashi et al. developed the following protocol KDP2 which uses timestamps to avoid Simmons' attack.
[KDP2]

1. A chooses a random number r_{1} and computes $Z_{a}=E\left(T_{a} \circ S_{a} \circ r_{1}\right)$, where T_{a} is A's timestamp information. A sends Z_{a} and his identity $I D_{a}$ to the center C.
2. C decrypts the ciphertext and verifies the identity of A and the timestamp information. C then calls B.
3. B chooses a key K randomly and computes $Z_{b}=E\left(T_{b} \circ S_{b} \circ K^{\circ}\right)$, where T_{b} is B 's timestamp information.
B sends Z_{b} and his identity $I D_{b}$ to the center C.
4. C checks T_{b} and S_{b}. C then computes $u=r_{1}+K$ and sends u to A.
5. A computes K as $K=u-r_{1}$.

3 Attack on KDP2

This section shows that $\operatorname{KDP} 2[1]$ is not secure. Actually, we show that B can find A 's secret information S_{a} if B executes KDP2 with A three times.

After repeating KDP2 three times, B obtains

$$
Z_{n i}=E\left(T_{a i} \circ S_{n} \circ r_{1 i}\right), \quad u_{i}=r_{1 i}+K_{i}, \quad(i=1,2,3)
$$

by listening to the conversation between A and the center C. B then gets

- $r_{1 i}$ from u_{i} and K_{i}.
- $T_{a i}$ because it is the time at which A sends $Z_{a i}$ to C.

The unknown constant is only S_{a}. Suppose that

$$
\left|r_{1 i}\right|=l, \quad\left|S_{a}\right|+\left|r_{1 i}\right|=m
$$

$Z_{a i}$ is written as follows.

$$
\begin{aligned}
& \left(T_{a 1} \times 2^{m}+S_{a} \times 2^{l}+r_{11}\right)^{3}=Z_{a 1}(\bmod N) \\
& \left(T_{a 2} \times 2^{m}+S_{a} \times 2^{l}+r_{12}\right)^{3}=Z_{a 2}(\bmod N) \\
& \left(T_{a 3} \times 2^{m}+S_{a} \times 2^{l}+r_{13}\right)^{3}=Z_{a 3}(\bmod N)
\end{aligned}
$$

Let $X_{a}=S_{a} \times 2^{\prime}$ and $Y_{i}=T_{n i} \times 2^{m}+r_{1 i}$. We then obtain

$$
\begin{aligned}
& X_{a}^{3}+3 X_{a}^{2} \times Y_{1}+3 \times\left(Y_{1}\right)^{2} \times X_{a}=Z_{a 1}-\left(Y_{1}\right)^{3}(\bmod N), \\
& X_{a}^{3}+3 X_{a}^{2} \times Y_{2}+3 \times\left(Y_{2}\right)^{2} \times X_{a}=Z_{a 2}-\left(Y_{2}\right)^{3}(\bmod N), \\
& X_{a}^{3}+3 X_{a}^{2} \times Y_{3}+3 \times\left(Y_{3}^{\prime}\right)^{2} \times X_{a}=Z_{a 3}-\left(Y_{3}\right)^{3}(\bmod N) .
\end{aligned}
$$

The only unknown constant is X_{a}. We can view the above equations as linear simultaneous equations on X_{a}^{-3}, X_{a}^{-2} and X_{a}, B can easily solve these equations in polynomial time. B can compute S_{a} from the solution X_{n}.

This attack works even if T_{n}, S_{a} and r_{1} are interleaved. It also works for $E(M)=M^{e} \bmod N$ if e is small.

Similarly, A can find the secret information S_{b} of B because KDP2 is symmetric for A and B.

4 Proposed scheme

The reason why our attack succeeds is that B can obtain $r_{1 i}$ (A can obtain K_{i}) from the equation

$$
\begin{equation*}
u_{i}=r_{1 i}+K_{i} \tag{1}
\end{equation*}
$$

We can prevent our attack if we introduce a nonlinear function h and modify eq.(1) as Sollows.

$$
u_{i}=h\left(r_{1 i}\right)+h\left(\kappa_{i}\right) .
$$

For example, the following simple h is enough.

$$
h\left(x_{1} \circ x_{2}\right)=x_{1}+x_{2} \bmod 2^{1 / 2}
$$

where $\left|x_{1}\right|=\left|x_{2}\right|=1 / 2$ and o denotes concatenation.
It is information theoretically impossible to determine x_{1} and x_{2} from $x_{1}+x_{2}$. Based on this observation, we propose a key distribution protocol as follows.
(E is the public key of the center. See the beginning of section 2.)

1. A chooses random numbers (r_{1}, r_{2}) such that $\left|r_{1}\right|=\left|r_{2}\right|=1 / 2$ and computes $Z_{a}=E\left(T_{a} \circ S_{a} \circ r_{1} \circ r_{2}\right)$, where T_{a} is A's timestamp information.
A sends Z_{a} and his identity $I D_{a}$ to the center C.
2. C decrypts the ciphertext and verifies the identity of A and the timestamp information. C then calls B.
3. B chooses $\left(K_{1}, K_{2}\right)$ randomly and computes $Z_{b}=E\left(T_{b} \circ S_{b} \circ K_{1} \circ K_{2}\right)$, where T_{b} is B 's timestamp information.
B sends Z_{b} and his jdentity $I D_{b}$ to the center C.
4. C checks T_{b} and $S_{b} . C$ then computes $u=r_{1}+r_{2}+K_{1}+K_{2} \bmod 2^{1 / 2}$ and send u to A.
5. The session key is given by $K=K_{1}+K_{2} \bmod 2^{\prime / 2}$. A computes K as $K=u-r_{1}-r_{2} \bmod 2^{1 / 2}$.

We can use the Rabin cryptosystem instead of RSA because the plaintext has a special data structure.

Security

Suppose that the proposed protocol is executed I times. Let the i th parameters be $Z_{a i}, T_{a i}, r_{1 i}, r_{2 i}, Z_{b i}, T_{b i}, K_{1 i}$ and $K_{2 i} . B$ knows that

$$
Z_{a i}=E\left(T_{a i} \circ S_{a} \circ r_{1 i} \circ r_{2 i}\right) .
$$

He knows the values of $Z_{a i}, T_{a i}$ and $r_{1 i}+r_{2 i}\left(\bmod 2^{i / 2}\right)$ by monitoring A's communication. However, he cannot know $r_{1 i} \circ r_{2 i}$. (o denotes concatenation.) Therefore, what B can have is the following type of equations,

$$
\left(\alpha_{i} X+Y_{i}+\beta_{i}\right)^{3}=c_{i} \quad(\bmod N),(i=1, \cdots, I)
$$

where $X=S_{a}, Y_{i}=r_{1 i} \circ r_{2 i}, \alpha_{i}=2^{\prime}, \beta_{i}=T_{n i} \times 2^{\left(l+\left|S_{a}\right|\right)}, c_{i}=Z_{a i}$. Here, X and Y_{i} are unknown variables. α_{i}, β_{i} and c_{i} are known values.

Then, the number of equations is I and that of unknown variables is $I+1$. Hence, B cannot find $X\left(=S_{a}\right)$. Similarly, A cannot find S_{b}.

References

1. Tatebayashi, M., Matsuzaki, N., Newman, Jr., D.B.: Key Distribution Protocol for Digital Mobile Communication Systems. Advances in Cryptology: Proceedings of Crypto'89 (1989) 324-334
2. Moore, J. H.: Protocol Failures in Cryptosystems. Proc. of IEEE, Vol.76, No. 5 (1988) 594-602
3. Hastad, J.: On using RSA with Low exponent in a public key network. Advances in Cryptology, Proceedings of Crypto'85 (1985)403-408
4. Simmons, G.J.: A 'weak' privacy protocol using the RSA cryptoalgorithm. Cryptologia, Vol. 7 (1983) 180-1 82
5. Beller, M.J. Chang,L.F., Yacobi, Y. : Privacy and Authentication on a Portable Communication System. IEEE GLOBECOM '91 conference (1991) 1922-1927
