
Validation of Object-Oriented Concurrent

Designs by Model Checking�

Klaus Schneider, Michaela Huhn, and George Logothetis

University of Karlsruhe, Department of Computer Science
Institute for Computer Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid)

P.O. Box 6980, 76128 Karlsruhe, Germany
{schneide,huhn,logo}@informatik.uni-karlsruhe.de

http://goethe.ira.uka.de/

1 Introduction

Reusability and evolutivity are important advantages to introduce object-
oriented modeling and design also for embedded systems [1,2]. For this domain,
one of the most important issues is to validate the interactions of a set of objects
with concurrent methods. We apply model checking (see [3] for a survey) for the
systematic debugging of concurrent designs to detect errors in the behavior and
interactions of the object community. As we assume a fixed finite maximal num-
ber of objects and also finite data types, we can only show the correctness for
finite instances and detect only errors that appear in such a finite setting. Nev-
ertheless, the approach is useful for embedded systems, where the system’s size
is limited by strong hardware constraints. Moreover, we claim that most errors
in the concurrent behavior already occur with a small number of components.
To handle larger designs, we emphasize that it is often obvious that several at-
tributes of an object do not affect the property of interest. Thus, there is no need
to model the objects completely. This obvious abstraction leads to significantly
better results because the resulting models are smaller. More sophisticated ab-
stractions can be found e.g. in [4,5]. In the next section, we briefly explain how to
derive in general a finite state system from an object-oriented concurrent design.
Then, we illustrate the method by a case study taken from [6].

2 From Concurrent Objects to Finite State Machines

We assume a class C with attributes a1, . . . , an of types α1, . . . , αn, respectively,
and methods τ0, . . . , τm to manipulate the attributes (there may be constructor
and destructor methods). For an object O of class C, we denote the method τi

invoked for O by O.τi and the value of the attribute ai of O by O.ai.
We are not interested in inheritance or typing issues, but in the concurrent

behavior: the methods O.τi are implemented as threads, i.e., they may be in-
voked in parallel. Their execution may be interleaved or truely concurrent. The
� This work has been financed by the DFG priority program ‘Design and Design

Methodology of Embedded Systems’.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 360–365, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Validation of Object-Oriented Concurrent Designs by Model Checking 361

methods work on the same memory (namely the attributes of O). The meth-
ods O.τi are not necessarily atomic, instead they consist of a sequence of atomic
operations. Hence, a method O.τi may be suspended, aborted or interrupted by
another method O.τj . A major concern is that the concurrent execution does
not lead to inconsistencies or runtime faults. This problem is nontrivial since
concurrent threads may modify the same attributes O.ai or interrupt such mod-
ifications before they are completed. For our finite state machine abstraction,
three different kinds of abstractions have to be applied systematically:

– Infinite data types are abstracted to a finite data domain. E.g., integers are
mapped to bitvectors of a certain length n.

– While objects may come and go dynamically, the finite state machine model
requires to fix a maximal finite number of objects that invariantly exist from
the beginning. Hence, we allocate for each class a maximal finite number
of objects in advance, and model construction and destruction such that at
each point of time at most the maximal number of these objects are in use.

– All methods Oj .τi are modeled as finite state machines Aj,i that may in-
teract with each other. As the entire system must be finite-state, we have
to restrict the maximal number of methods that may run in parallel at a
point of time. Similar to the construction and destruction of objects, we can
however model that threads are dynamically started, suspended, aborted, or
that they terminate.

Due to the description level and the properties of interest, a granularity of atom-
icity has to be chosen. For instance, for a system design given in Java, it is
reasonable to assume Java statements as atomic. Also, the treatment of write-
clashes has to be modeled: One could either nondeterministically select a value
or determine the value by a resolution function as common in many concurrent
languages. Our model is able to cope with any of these solutions.

In contrast to other formal approaches to object-oriented designs, we con-
sider methods as non-atomic and allow the concurrent methods running on the
same object. Hence, our model is closer to practical implementations in C++
or Java and even takes the thread management of the operating system into
account. In particular, we are interested in whether the design is robust wrt.
the suspension and activation of threads. We emphasize that the construction of
the finite-state model can be done automatically, when the maximal number of
concurrent threads and concurrently existing objects are fixed, and the mapping
from infinite data types to finite ones is given.

3 Interrupt-Transparent Lists

We now present a case study taken from an embedded operating system ker-
nel [6]. The objects are single-linked lists. The methods to modify the list may
be interrupted at any time. Therefore, naive sequential list operations can not
be used, since the list could become inconsistent (in particular, some items get



362 Klaus Schneider et al.

class Chain

{public:Chain* next};

class Cargo:public Chain

{public:

Chain* tail;

Cargo();

void enqueue(Chain* item);

};

Cargo::Cargo()

{next = 0;

tail = (Chain*) this;}

void Cargo::enqueue(Chain* item)

{Chain *last;

Chain *curr;

s1 : item->next = 0;

s2 : last = tail;

s3 : tail = item;

s4 : if (last->next)

s5 : { curr = last;

s6 : while (curr->next)

s7 : curr = curr->next;

s8 : last = curr;

}

s9 : last->next = item;

}

Figure1. Implementation of Interrupt-Transparent Lists

lost). Due to the lack of space, we only consider the enqueue method. C++
implementations are given in figure 1.
Cargo-objects consist of two pointers: next points to the first list element, and
tail points to the last one. The Cargo constructor assigns next to 0, and tail
to the current object. To ensure robustness against interrupts, we need a sophis-
ticated implementation of the enqueue method due to [6]. Given a Chain object
item, enqueue resets the next-pointer of the argument (s1), and stores the cur-
rent end of the list (s2). In line s3, it assigns the tail-pointer to the argument.
If the thread is not interrupted last->next must be 0 at s3. Otherwise an in-
terrupting enqueue thread may have inserted some elements. Then, the current
end of the list has to be found (loop s5, . . . , s8). Finally, the argument is added
to the list (s9).

Modeling Lists of Bounded Length. To derive a finite-state model, we
consider a maximal number of n enqueue threads E1, . . . , En manipulating in
an interleaving execution one Cargo object. Analogous to the C++ code, we
abstract from the items and simply enumerate them: Ei inserts item i. The
tail pointer of the Cargo object is represented by the variable tail, the next
pointer by pt[0]. The C++ expressions a->next and a->next->next correspond
in our model with the terms pt[a] and pt[pt[i]], respectively. We start with the
initial values pt[0] = 0 and tail = 0.

type enum Item: 1, . . . , n; var pt : array Address of Address;
type enum Address: 0, . . . , n; var tail : Address;

Modeling the Enqueue Threads. Each Ei is modeled as a finite state ma-
chine that manipulates two local variables lasti and curri of type Address. The
states directly correspond C++ code of figure 1. States s0 and s10 are added to
model that Ei has not yet started or has already terminated.



Validation of Object-Oriented Concurrent Designs by Model Checking 363

s0 : s6 : if pt[curri]=0gotos8else gotos7

s1 : pt[i] := 0 s7 : curri := pt[curri]; goto s6

s2 : lasti := tail s8 : lasti := curri

s3 : tail := i s8 : lasti := curri

s4 : if pt[lasti] = 0 goto s9 else goto s5 s9 : pt[lasti] = i
s5 : curri := lasti s10 :

As the threads E1, . . . En run in an interleaved manner, at most one thread
manipulates the Cargo object at each point of time. Without loss of generality, we
assume that Ei starts before Ej iff i < j. If Ej starts when Ei is still running, Ei

will be interrupted, since Ej has a higher priority due to the interruption. The
interruption is modeled by the following signals: runi :=

∨9
k=1 Ei.sk, endi :=

Ei.s10, aci :=
∧n

k=i+1 ¬runk, and permi :=
∧i−1

k=1 startk. runi holds iff thread Ei

is currently running. endi holds iff thread Ei has terminated. aci indicates that Ei

is activated, i.e., no thread Ek with higher priority (i < k) is currently running.
Finally, permi implements the priorities, i.e. Ei may only start if all Ej with j < i
have started before. Using these control signals, we obtain the state transition
diagram as given in figure 2.

s0 s1 s2 s3 s4 s5 s6 s7

s10 s9 s8

permi aci aci aci ϕ4,5 aci
ϕ6,7

aci

ϕ6,8

aci

ϕ4,9

aci

∗ ¬aci ¬aci ¬aci ¬aci ¬aci ¬aci ¬aci

¬aci

¬aci∗

ϕ4,5 := aci ∧ (pt[lasti] �= 0)
ϕ4,9 := aci ∧ (pt[lasti] = 0)
ϕ6,7 := aci ∧ (pt[curri] �= 0)
ϕ6,8 := aci ∧ (pt[curri] = 0)

Figure2. The enqueue thread as finite state process

Prop erties to be Checke d The properties we checked using McMillan’s SMV
system1 are as follows:

S1: All items are enqueued: G
[
(
∧n

i=1 endi) →
(∧n

i=1

∨n
j=0 pt[j] = i

)]
S2: All items are enqueued at most once:

G



(

n∧
i=1

endi

)
→

 n∧

i=1

n∨
j=0

pt[j] = i →
n∧

k=0

pt[k] = i → k = j






S3: Absence of deadlocks: G [
∧n

i=1 starti ∧ permi → Fendi]
S4: The threads are started in order E1, E2, . . . En: G

∧n−1
i=1 Ei.s0→

∧n
j=i+1 Ej .s0

1 Available from http://www-cad.eecs.berkeley.edu/˜kenmcmil/



364 Klaus Schneider et al.

S5: If E1, . . . Ek have terminated before any of the threads Ek+1, . . . En has
started, the first k elements have been enqueued:

G
n−1∧
k=1



(

k∧
i=1

endi

)
∧
(

n∧
i=k+1

Ei.s0

)
→

k∧
j=0

k∨
i=0

pt[i] = j




∧k
j=0

∨k
i=0 pt[i] = j means pt[0], . . . , pt[k] is a permutation of 0, . . . , k, which

means that each element of 0, . . . , k is contained in the list.
S6: If E1, . . . Ek have terminated before any of the threads Ek+1, . . . En has

started, then the elements 1, . . . , k will occur before the elements k+1,. . . ,n
in the final list. Moreover, the k-prefix of the list is stable from the moment
where all E1, . . . Ek have terminated:

G
n−1∧
k=1



(

k∧
i=1

endi

)
∧
(

n∧
i=k+1

Ei.s0

)
→ G

k∧
j=1

k∨
i=0

pt[i] = j




The experiments were made on a Intel Pentium with 450 MHz and 512 MByte
main memory under Linux. For the results marked with *, we had to use the
dynamic sifting option of SMV which increases the runtime due to optimization
of the BDD sizes. All properties were checked with moderate resources, besides
the deadlock detection.

Property/threads Runtime BDD Nodes
[seconds]

S1/4 7.68 584141
S1/5 95.29 7682664

S2/4 7.64 584580
S2/5 95.97 7683911

S3/4 3 40.10 1897469
S3/5

∗ 20383.78 30593433

Property/threads Runtime BDD Nodes
[seconds]

S4/4 21.20 1976314
S4/5

∗ 554.55 823411

S5/4 8.19 599318
S5/5 105.75 9592257

S6/4 17.69 1216240
S6/5 205.25 10724191

Acknowledgment

We thank Prof. Schröder-Preikschat, Ute and Olaf Spinczyk from Magdeburg
University, and Friedrich Schön from GMD-FIRST for the example and helpful
discussions.

References

1. W. Nebel and G. Schumacher. Object-oriented hardware modelling: Where to apply
and what are the objects. In Euro-Dac ’96 with Euro-VHDL ’96, 1996. 360

2. J. S. Young, J. MacDonald, M. Shilman, P. H. Tabbara, and A. R. Newton. Design
and specification of embedded systems in Java using successive, formal refinement.
In Design Automation Conference (DAC’98), 1998. 360



Validation of Object-Oriented Concurrent Designs by Model Checking 365

3. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking. volume 152 of Nato
ASI Series F. Springer-Verlag, 1996. 360

4. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and systems, 16(5):1512–1542, September
1994. 360

5. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, February 1995. 360

6. F. Schön and W. Schröder-Preikschat. On the interrupt-transparent synchroniza-
tion of interrupt-driven code. Arbeitspapiere der GMD, GMD Forschungszentrum
Informatik, 1999. 360, 361, 362


	Introduction
	From Concurrent Objects to Finite State Machines 
	Interrupt-Transparent Lists 

