Mechanized Formal Methods: Where Next?*

John Rushby

Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

1 Where Are We Now?

An author who elects to use the phrase “Where Next?” in a title clearly has
predictive or prescriptive intent. In my case it is the latter: I cannot say how
formal methods will develop in the next few years, still less whether or how they
will be adopted in practice, but I do have views on how they should develop and
what ought to encourage their adoption in practice, and this World Congress
seems an excellent opportunity to impose these views on the public.

To offer a prescription for the future requires the presumption to assess the
present and my bias here is indicated in the first part of my title: “mechanized
formal methods.” While mathematically-based methods can provide several ben-
efits and have elucidated the basic concepts of our field—what it means for a
design to be correct with respect to a specification, or for one design to refine an-
other, or for a proof to establish one or another of these relationships—the value,
to my mind, of specifically formal methods is that they allow some properties
of a software or hardware system to be deduced from its design or specifica-
tion by a process of mechanized logical calculation, in much the same way that
mechanized numerical calculation is used to predict the properties of traditional
engineering artifacts such as bridges and turbine blades. I find engineering calcu-
lations a more illuminating analogy for the role of formal methods in computer
science than formalized mathematics or logic as practiced by mathematicians
and logicians. In particular, the engineering perspective highlights the necessity
of efficient, automated, calculation: the stresses in a bridge are calculated by
computer, not by pencil and paper, and the calculations are used during design
exploration, not just for verification.

So, I consider the most useful technical developments in formal methods to
have been those that provide efficient mechanized calculation in logical domains:
static analysis, model checking, decision procedures, and so on. And I consider
the most useful formal methodologies to be those that help cast analysis of signif-
icant properties of a design (or of certain types of design) into forms that allow
effective use of these mechanized logical calculations: abstract interpretation,

* Based on research supported by DARPA through USAF Rome Laboratory Contract
F30602-96-C-0204, and by the National Science Foundation contract CCR-9509931.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 48-51], 1999.
© Springer-Verlag Berlin Heidelberg 1999



Mechanized Formal Methods: Where Next? 49

extended static checking, well-formedness checks for tabular specifications, and
a host of domain-specific methods for pipelines and other hardware structures,
for railroad switching, for translation validation, and for protocols and certain
other classes of concurrent systemsEI

These tools and methods have demonstrated a certain effectiveness, and have
been voluntarily adopted by industry to a modest degree (most notably for
hardware and communications protocols).

2 Where Should We Go Next?

My prescription for further development of mechanized formal methods is a
continuation of the successful trends identified above. I break it into several
related headings.

2.1 Mechanize Everything

Some current formal methods, for example those that use model checkers or
SAT solvers, are described as “automatic,” meaning that they perform their
logical calculations without needing interactive guidance (unlike, for example,
a tactic-based theorem prover). However, this is a very narrow interpretation
of automation, since considerable human guidance and ingenuity is generally re-
quired to transform the original problem to a form where the final “push button”
automation can be applied. The transformation often requires: translating the
description of the problem from a programming or design notation such as C,
Java, Verilog, or UML into the input format of the tool concerned; extracting
the part of the overall description that is relevant to the problem or property
concerned; and reducing the extracted description to a form (e.g., finite-state)
consistent with the capabilities of the tool concerned.

Much current research aims to mechanize the manual steps in this process.
For example, methods based on backward slicing can yield just the part of a large
system specification that is relevant to a given property, and combinations of ab-
stract interpretation and partial evaluation can create a conservative finite-state
(or other special-form) approximation from a given program or specification.
Techniques employing decision procedures can calculate more precise property-
preserving abstractions. These methods work better if provided with invariants
of the program or specification concerned; such invariants can be calculated by
static analysis or by reachability analysis (a capability of most symbolic model
checkers) applied to another abstraction (the reachable states characterize the
strongest invariant of that abstraction; their concretization is an invariant—and
plausibly a strong one—of the original). This last suggests iterated application
of these techniques (one abstraction is used to calculate an invariant that helps
calculate another abstraction, and so on), which in turn suggests a blackboard

1T omit references due to lack of space; they are provided in a version available at
http://www.csl.sri.com/ rushby/fm99.html.



50 John Rushby

architecture in which a common intermediate representation is used to accumu-
late useful properties and abstractions of a design in a form that many different
tools can both use and contribute to. A common intermediate representation
also provides a way to support many source notations without inordinate cost.

The first of my prescriptions is to continue and extend this line of develop-
ment so that the human verification engineer will direct and select a sequence
of mechanized calculations, rather than manually create input for a single tool.
A radical element of this proposal is that it shifts the focus of formal analysis
from verification (or refutation) to the calculation of properties that can assist
further analyses: for example, a static analyzer will be used to calculate (rather
than verify) the range of values that a variable can assume, and a model checker
will be used to calculate an invariant rather than verify a property.

2.2 Mechanize More Powerfully

Traditional techniques for mechanized formal methods were based on interactive
theorem proving. As the role of automated deduction in this activity came to
be recognized as more closely resembling calculation in engineering than proof
in mathematics, so more powerful automation such as decision procedures came
to be accepted. But the overall pattern of activity was (and is) still that of
an interactively-guided proof, where the main activity is one of generating and
reducing subgoals to the point where they can be discharged by decision pro-
cedures or other automation. In contrast, techniques that combine automated
abstraction, invariant generation, and model checking in the manner outlined
above, even though they may be undertaken in the context provided by a the-
orem prover, have a rather different character: the steps are bigger, and fewer,
and are aimed at quickly reducing the problem to a single decidable subgoal.
The effectiveness of this approach depends on having techniques for “reduction”
(e.g., abstraction and invariant generation) and a decidable class of formulas
(e.g., p-calculus formulas over finite transition systems) that are well-suited to
the class of problems at hand.

Different classes of problems need different underlying capabilities in order
to use this “big step” approach. For example, translation validation and cer-
tain kinds of pipeline correctness arguments need massively efficient decision
procedures for the combination of propositional calculus with equality over un-
interpreted function symbols (whereas a traditional theorem prover will generally
provide a less efficient decision procedure for a richer combination of theories).

The second of my prescriptions is to develop and exploit new and highly
efficient decision procedures or other algorithmic techniques for pragmatically
useful combinations of theories. These need to be tens of thousands of times
faster, and to scale better, than the techniques employed in current verification
systems: the efficiency is to be gained by more precise targeting of the theories
to be decided, thereby allowing better data structures and better algorithms. As
suitable theories are identified and a customer base develops, an industry may
emerge to supply the necessary components, much as BDD packages and SAT
solvers are becoming commodities today.



Mechanized Formal Methods: Where Next? 51

2.3 Make Mechanized Formal Analysis Ubiquitous

Tools with the capabilities described in the last two sections can serve wider
purposes than classical verification or refutation. For example, they can be used
to support testing: either by generating test cases (e.g., using counterexamples
generated by a model checker for the negation of the property of interest), prun-
ing test cases (e.g., do not use tests that are provably satisfied by a conservative
approximation of the design), or by serving as a test oracle. Another example is
static analysis, where decision procedures can be used to increase the strength of
typechecking, or to improve the precision of slicing. And another example is use
of these techniques to examine security properties of mobile code (e.g., “proof
carrying code”).

Thus, my third prescription is to use mechanized logical calculation in all
aspects of software and hardware development: I suspect that almost every tool
used in development could be improved if it made some use of mechanized formal
analysis. We should aim to make our techniques ubiquitous throughout software
and hardware engineering; this particularly means that we should attempt to
serve all stages of the development lifecycle—from requirements analysis through
maintenance—and all classes of products (not just those deemed “critical”).

2.4 Adapt to Engineering Practice

Successful transition from research to practice is unpredictable, and especially
so where methodology, rather than technology, is concerned. While it is possible
that formally-based methods will become widespread (and the possibility will
surely be greater if they are supported by tools that offer compelling advantages
over those of other methods), a more plausible scenario uses tools made possible
by mechanized formal analysis to add value to existing (or modestly enhanced)
practices: this may mean finding more bugs, or higher-value bugs, more quickly
than otherwise, increasing the quality of test-cases, or verifying the satisfaction
of certain properties. These accomplishments are rather far from the proofs of
correctness that were among the original goals of formal methods, and from
the view that programming and hardware design should become mathematical
activities, but they are consistent with the way mathematics and calculation are
used in other engineering disciplines.

I suggest we envisage and work towards a scenario where designers (or special-
ist verification or test engineers) equipped with an eclectic knowledge of formal
methods and familiarity with several tools will turn to these methods and tools,
much as they currently turn to traditional tools such as test coverage analyz-
ers, when the need or opportunity arises. Only by adapting to existing “design
flows” and by coexisting with traditional tools and methods will our methods
have a chance to be assimilated into the normal state of practice. By develop-
ing the more powerful, flexible, and integrated mechanization suggested earlier,
I believe that formal methods of analysis could increase their value added and
reduce the cost incurred so significantly that they would then have a chance to
become a dominant part of that normal practice.



	Where Are We Now?
	Where Should We Go Next?
	Mechanize Everything
	Mechanize More Powerfully
	Make Mechanized Formal Analysis Ubiquitous
	Adapt to Engineering Practice


