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Abstract. This paper defines a generalization of Lamport’s Temporal Logic of
Actions. We prove that our logic is stuttering-invariant and give an axiomatization
of its propositional fragment. We also show that standard TLA is as expressive as
our extension once quantification over flexible propositions is added.

1 Background

Temporal logics are routinely used for the specification and analysis of reactive systems.
However, Lamport [10] has identified a shortcoming of standard linear-time temporal
logic (LTL): because it is based on a global notion of “next state”, it does not allow
to relate specifications written at different levels of abstraction. He has therefore main-
tained that specifications should be invariant under “stuttering”, that is, finite repetitions
of identical states, and has proposed the Temporal Logic of Actions (TLA) [12, 13, 6].
Characteristically, TLA formulas contain the “next-time” operator only in a restricted
form and can therefore not distinguish between stuttering-equivalent behaviors. Sev-
eral case studies have established TLA as a useful formalism for describing systems;
on the theoretical side, researchers have studied questions such as the description of
real-time and hybrid systems [3, 11], the representation of assumption-commitment
reasoning [4, 5], and the expressiveness of propositional TLA [18]. Moreover, Lamport
has developed a formal specification language TLA+ based on TLA.

Although TLA has been found to be expressively complete for stuttering-invariant
ω-regular languages [18], this does not necessarily imply that specifications can be ex-
pressed in a natural way. In fact, the syntactic restrictions imposed by Lamport that
ensure invariance under stuttering occasionally make it hard to express seemingly sim-
ple properties. For example, whereas the requirement “eventually P will be true, and Q
will hold at some later state” is expressed by the formula 3(P ∧ 3Q), as in standard
LTL, the analogous requirement “eventually action A will be performed, some time
later followed by action B” is not expressed as easily. Eventual occurrence of action
A is expressed by the formula 3〈A〉v, where A describes the action as a relation on
pairs of states, and v is (roughly speaking) the tuple of all state components of interest.
One might therefore expect to express the informal requirement above by a formula
such as 3

〈
A ∧ 3〈B〉v

〉
v
, but TLA does not allow temporal formulas to occur inside

an action formula (i.e., inside angle brackets). In some cases one can identify a state
formula pA that is true iff action A has happened sometime in the past: for example, A
might represent a request for a resource, and pA could be defined from the system’s log-
file. In those cases, we can express our requirement by the formula 3〈pA ∧ B〉v . This
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formula requires that eventually action B occurs with pA being true—hence A must
have occurred before. Observe, however, that the “point of reference” has changed with
respect to the informal statement of the requirement, and that action A is no longer
mentioned directly. If no suitable formula pA exists, we can “create” one using TLA’s
quantification over state variables, and write1

∃∃∃∃∃∃ pA : ¬pA ∧ 2[pA′ ≡ (pA ∨A)]v ∧3〈pA ∧B〉v

This formula defines pA to become true at the first occurrence of action A and then
remain true forever; it is an example for a so-called history variable [2]. Although the
formula can be shown to capture the informal requirement, it is certainly not natural.

Another concern that has not been resolved in a satisfactory way is the question of
proof systems, even for propositional TLA. Lamport [12] states a relative complete-
ness result for first-order TLA, subject to expressiveness assumptions similar to those
for Hoare logics, for specifications in so-called “normal form”. Formulas that deviate
from “normal form” specifications arise naturally when specifications are composed [4].
Abadi [1] has proposed an axiomatization of an earlier version of TLA, but it is not clear
whether his proof system can be adapted to the present-day TLA. This is in contrast to
standard propositional temporal logic (PTL) whose axiomatization has been well un-
derstood since a landmark paper by Gabbay et al [8]. Complete axiomatizations are
perhaps of rather academic interest; nevertheless they supply important information
about the principles that underly a given logic, and they can form the basis of practical
verification systems. For example, an accepted axiomatization would have helped us
with the mechanization of TLA in the generic interactive theorem prover Isabelle [15].

In this paper we argue that the two shortcomings of TLA identified above are in
fact related: we define the logic GTLA, which is a variant of TLA, but has a more lib-
eral syntax. For example, 3

〈
A ∧3〈B〉v

〉
v

is a GTLA formula. We prove that GTLA,
like TLA, is invariant under stuttering and provide a sound and complete axiomatiza-
tion, via two different presentations. Finally, we show that TLA and GTLA are equally
expressive once we add quantification over flexible propositions, preserving stuttering
invariance. More precisely, while TLA is a sublogic of GTLA, every GTLA formula
(possibly containing quantifiers) can be effectively translated to a quantified TLA for-
mula. We argue that GTLA is better suited for verification than TLA. The added flex-
ibility in expressiveness, which comes at no extra cost, may prove useful for writing
specifications.

The plan of the paper is as follows: section 2 defines GTLA and contains the proof
of stuttering invariance. Sections 3 and 4 introduce the first, heterogeneous version of an
axiomatization for GTLA; an alternative, homogeneous presentation is derived in sec-
tion 5. Section 6 compares the expressiveness of TLA and GTLA. Section 7 concludes
the paper. Throughout, we restrict ourselves to propositional (or quantified proposi-
tional) logics, although the logic is easily extended to a first-order language.

1 The formula becomes even more complex if A and B are allowed to occur simultaneously.
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2 A Generalized TLA

We define the syntax and semantics of propositional GTLA and prove that all formulas
are invariant under stuttering.

2.1 Syntax and Semantics

Assume given a denumerable set V of atomic propositions.

Definition 1. Formulas and pre-formulas of GTLA are inductively defined as follows.

1. Every atomic proposition v ∈ V is a formula.
2. If F, G are formulas then ¬F , F ⇒ G, and 2F are formulas.
3. If P is a pre-formula and v ∈ V then 2[P ]v is a formula.
4. If F is a formula then F and dF are pre-formulas.
5. If P, Q are pre-formulas then ¬P and P ⇒ Q are pre-formulas.

The pre-formulas of GTLA generalize the transition formulas (actions) of TLA. In
fact, propositional TLA can be defined similarly, except that clause (4) above should
then be changed to

4’. If v ∈ V is an atomic proposition then v and dv are pre-formulas.

We will use symbols such as F, G for formulas, P, Q for pre-formulas, and A, B for
either formulas or pre-formulas. Note that, as in TLA, we consider 2 and 2[ ]v to be
different operators, for each v ∈ V .

In the following we assume standard abbreviations such as true, ∧, ∨, ≡, and 6≡
(equivalence, non-equivalence) for both formulas and pre-formulas. For compatibility
with standard TLA syntax, we sometimes write v′ instead of dv when v is an atomic
proposition. For a finite set V = {v1, . . . , vn} ⊆ V of atomic propositions we let
2[P ]V denote the formula 2[P ]v1 ∧ . . . ∧ 2[P ]vn ; in particular, 2[P ]∅ equals true.
Stretching the notation even further, we write 2[P ]F (where F is any formula) for2

2[P ∨ ( dF ≡ F )]At(F ) where At(F ) ⊆ V denotes the set of atomic propositions
that occur in F . We write 3F for the formula ¬2¬F and 3〈P 〉v for ¬2[¬P ]v . Con-
sequently, 3〈P 〉{v1,...,vn} denotes 3〈P 〉v1 ∨ . . . ∨ 3〈P 〉vn , and 3〈P 〉F abbreviates
3〈P ∧ ( dF 6≡ F )〉At(F ). Finally, we let [P ]F and 〈P 〉F abbreviate the pre-formulas
P ∨ ( dF ≡ F ) and P ∧ ( dF 6≡ F ), respectively.

A state is a boolean valuation s : V → {tt, ff} of the atomic propositions. A behav-
ior σ = s0s1 . . . is an infinite sequence of states. For any i ≥ 0, we denote by σ|i the
suffix of σ starting at state si, that is, the sequence sisi+1 . . .. We now define what it
means for a (pre-)formula to hold of a behavior σ, written σ |= F or σ |≈ P .

Definition 2. The semantics of (pre-)formulas is given by the relation |≈, which is in-
ductively defined as follows:

2 This notation introduces an ambiguity when F ≡ v is an atomic proposition. However, both
possible interpretations are equivalent under the semantics of definition 2 below.
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σ |≈ v iff s0(v) = tt (for v ∈ V).
σ |≈ ¬A iff σ |≈ A does not hold.
σ |≈ A ⇒ B iff σ |≈ A implies σ |≈ B.
σ |≈ 2F iff σ|i |≈ F holds for all i ≥ 0.
σ |≈ 2[P ]v iff for all i ≥ 0, si(v) = si+1(v) or σ|i |≈ P .
σ |≈ dF iff σ|1 |≈ F .
For a formula F , we usually write σ |= F instead of σ |≈ F .

We say that a formula F is valid over a behavior σ iff σ|n |= F holds for all n ≥ 0.
Formula F follows from a set F of formulas (written F |= F ) iff F is valid over all
behaviors over which all formulas G ∈ F are valid. Finally, F is valid (written |= F )
iff it is valid over all behaviors, which is equivalent to saying that it follows from ∅.

Note that we have chosen the definition of floating validity, which is the traditional
definition for modal logics, rather than the alternative anchored validity, which Lam-
port [12] uses. It is well known that either choice leads to the same set of valid formulas,
although the consequence relation is different. We prefer floating validity because it is
usually easier to axiomatize.

We say that a (pre-)formula is tautological if it results from a propositional tautology
A of classical logic by consistently replacing atomic subformulas of A by formulas or
pre-formulas. It is easy to see that every tautological formula is valid.

2.2 Stuttering Invariance

Definition 1 allows the 2 operator to be applied only to formulas. For example, 2 dv
is not a pre-formula, although d2v is. Had we allowed pre-formulas to freely contain
outermost boxes, we would not obtain invariance under stuttering: consider, for exam-
ple, 2[2(p ⇒ dq)]p, which is not a GTLA formula, and the behaviors σ and τ , where
τ differs from σ only in the repetition of a single state, as illustrated by the following
diagram (where ∼ means “don’t care”):

σ : -

¬p

∼
p

¬q

∼
q

∼
q

τ : -

¬p

∼
p

¬q

p

¬q

∼
q

∼
q

Assuming the last state to repeat indefinitely, 2[2(p ⇒ dq)]p clearly holds of σ, but
not of τ .

We now formally define stuttering equivalence and prove that GTLA formulas do
not distinguish between stuttering equivalent behaviors.

Definition 3 (stuttering equivalence). Let V ⊆ V be a set of atomic propositions.

1. Two states s, t are called V -similar, written s 'V t iff s(v) = t(v) for all v ∈ V .
2. V -stuttering equivalence, again written 'V , is the smallest equivalence relation on

behaviors that identifies ρ◦ 〈s〉 ◦σ and ρ◦ 〈tu〉 ◦σ, for any finite sequence of states
ρ, infinite sequence of states σ, and pairwise V -similar states s, t, u.

3. Stuttering equivalence (written ') is V-stuttering equivalence.



1230 Stephan Merz

It follows that σ 'V τ implies σ 'W τ whenever W ⊆ V holds. In particular,
stuttering equivalence is the finest relation among all 'V . Let us list some elementary
facts about stuttering equivalent behaviors.

Proposition 4. Assume that σ 'V τ holds for behaviors σ = s0s1 . . . and τ = t0t1 . . ..

1. t0 'V s0.
2. For every n ≥ 0 there is some m ≥ 0 such that σ|n 'V τ |m and σ|n+1 'V τ |m+1.

Theorem 5 (stuttering invariance). For any GTLA formula F and any behaviors σ, τ
such that σ 'At(F ) τ , we have σ |= F iff τ |= F .

Proof. We simultaneously prove the following assertions by induction on the structure
of (pre-)formulas, for all behaviors σ = s0s1 . . . and τ = t0t1 . . ..

1. If σ 'At(F ) τ then σ |= F iff τ |= F .
2. If σ 'At(P ) τ and σ|1 'At(P ) τ |1 then σ |≈ P iff τ |≈ P .

We first consider the different cases in the definition of formulas F .

F ∈ V : The assertion follows from proposition 4.1, since s0(F ) = t0(F ).
¬F : immediate from the induction hypothesis.
F ⇒ G : Since At(F ) ⊆ At(F ⇒ G) and At(G) ⊆ At(F ⇒ G), the assumption

σ 'At(F⇒G) τ implies both σ 'At(F ) τ and σ 'At(G) τ . This observation,
together with the induction hypothesis, implies the assertion.

2F : By symmetry of 'At(2F ), it is enough to prove “if”. So assume that τ |= 2F ,
and let n ≥ 0 be arbitrary. Proposition 4.2 implies that there exists some m ≥ 0
such that σ|n 'At(2F ) τ |m. From τ |= 2F we conclude τ |m |= F , and therefore
σ|n |= F by induction hypothesis, since At(2F ) = At(F ).

2[P ]v : Again, we need only prove the “if” part. Assume that τ |= 2[P ]v, and let
n ≥ 0 be arbitrary. Choose m ≥ 0 such that σ|n 'At(2[P ]v) τ |m and also
σ|n+1 'At(2[P ]v) τ |m+1; proposition 4.2 ensures that m exists. Proposition 4.1
implies that sn(v) = tm(v) and sn+1(v) = tm+1(v). If tm(v) = tm+1(v), it
follows that sn(v) = sn+1(v), and we are done. Otherwise, by the assumption
τ |= 2[P ]v it follows that τ |m |≈ P , and the induction hypothesis (for assertion 2)
gives σ|n |≈ P because 'At(2[P ]v) ⊆ 'At(P ).

Turning to assertion 2, we consider the cases in the definition of pre-formulas:

P a formula : immediate from the induction hypothesis for assertion 1.
dF : The assumption that σ|1 'At( dF ) τ |1 and the induction hypothesis for asser-

tion 1 imply σ|1 |= F iff τ |1 |= F , and therefore σ |≈ dF iff τ |≈ dF .
¬P, P ⇒ Q : analogous to the corresponding cases for formulas. *
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(ax0) ` F whenever F is tautological (pax0) |∼ P whenever P is tautological

(ax1) ` 2F ⇒ F (pax1) |∼ d¬F ≡ ¬ dF

(ax2) ` 2F ⇒ 2[2F ]v (pax2) |∼ d(F ⇒ G) ⇒ ( dF ⇒ dG)

(ax3) ` 2[F ⇒ dF ]F ⇒ (F ⇒ 2F ) (pax3) |∼ 2F ⇒ d
2F

(ax4) ` 2[P ⇒ Q]v ⇒ (2[P ]v ⇒ 2[Q]v) (pax4) |∼ 2[P ]v ≡ [P ]v ∧ d
2[P ]v

(ax5) ` 2[v′ 6≡ v]v (pax5) |∼ d
2F ⇒ 2[ dF ]v

(mp)
` F ` F ⇒ G

` G
(pmp)

|∼ P |∼ P ⇒ Q

|∼ Q

(sq)
|∼ P

` 2[P ]v
(pre)

` F

|∼ F
(nex)

` F

|∼ dF

Fig. 1. The proof system ΣGTLA.

3 An Axiomatization of GTLA

We now present a proof system ΣGTLA for GTLA and prove its adequacy. ΣGTLA is
based on two provability relations ` and |∼ for formulas and pre-formulas; we therefore
call ΣGTLA a heterogeneous proof system. An alternative “homogeneous” proof system
will be given in section 5. Figure 1 contains the axioms and rules that define ` and |∼.
We extend ` to a relation between sets of formulas and formulas by defining F ` F
iff ` F can be established from the axioms and rules of ΣGTLA if additionally ` G
is assumed for all formulas G ∈ F , and similarly define F |∼ P . Because we are
ultimately only interested in the relation ` for formulas, we do not allow pre-formulas
to occur in the set F of hypotheses.

Many of the axioms and rules of ΣGTLA are familiar from propositional linear-time
temporal logic [8, 9]. First observe that both ` and |∼ contain full propositional calculus.
Axiom (ax3) is a “stuttering-invariant” version of the induction axiom. Its formulation
relies essentially on the GTLA syntax that allows temporal formulas in the scope of
the 2[ ]v operator. Axiom (ax5) effectively asserts that the pre-formula P in 2[P ]v is
evaluated only when v changes value. Axiom (pax1) expresses that time is linear. We
cannot state an induction principle for formulas of the form2[P ]v because dP or d[P ]v
are not even pre-formulas. For this reason, (pax4) is stronger than its counterparts (ax1)
and (pax3). Axiom (pax5) asserts a form of commutativity for the dand 2 operators.
The rules (sq) and (nex) reflect the floating definition of validity. The necessitation rule

(alw)
` F
` 2F

is easily derived in ΣGTLA. Note also that the axioms (ax2), (ax4), (pax4), (pax5) and
the rule (sq) are easily generalized to versions where the “index” v is replaced by a
finite set V of atomic propositions, or by a GTLA formula.

Theorem 6 (Soundness). For any set F of formulas, F ` F implies F |= F .
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Proof. The proof is by induction on the assumed derivation of F from F , also proving
that F |∼ P implies that σ|n |≈ P holds for every n ≥ 0 and every behavior σ such that
all formulas in F are valid over σ. We only consider a few cases.

(ax3) It suffices to prove σ |= 2[F ⇒ dF ]F ⇒ (F ⇒ 2F ), for any formula F
and any behavior σ = s0s1 . . .. So suppose σ |= 2[F ⇒ dF ]F and σ |= F .
We prove σ|n |= F for every n ≥ 0, by induction on n. The base case being
trivial, assume that σ|n |= F . If sn 'At(F ) sn+1, we have σ|n 'At(F ) σ|n+1,
and theorem 5 ensures that σ|n+1 |= F . Otherwise, there is some v ∈ At(F )
such that sn(v) 6= sn+1(v), and the assumption σ |= 2[F ⇒ dF ]F implies that
σ|n |≈ (F ⇒ dF ) ∨ ( dF ≡ F ), hence again σ|n+1 |= F .

(pax5) Suppose σ |≈ d2F , that is, σ|n+1 |= F , for every n ≥ 0. We prove that
σ |= 2[ dF ]v . Let m ≥ 0 be arbitrary. The assumption ensures that σ|m+1 |= F ,
and therefore σ|m |≈ dF . This suffices.

(sq) Assume that F |∼ P , that σ is some behavior such that all formulas in F are
valid over σ, and that n ≥ 0. We need to prove that σ|n |= 2[P ]v. So let m ≥ 0
be arbitrary. By induction hypothesis, we know that σ|n+m |≈ P , and therefore
(σ|n)|m |≈ P . This suffices. *

We also have a version of the deduction theorem for ΣGTLA, as stated in the fol-
lowing theorem.

Theorem 7. For any set F of formulas, any formulas F, G, and any pre-formula P we
have F ∪ {F} ` G iff F ` 2F ⇒ G and F ∪ {F} |∼ P iff F |∼ 2F ⇒ P .

Proof. “if”: Assume F ` 2F ⇒ G. A fortiori, we have F ∪ {F} ` 2F ⇒ G. The
derived rule (alw) implies that F ∪ {F} ` 2F , and therefore we have F ∪ {F} ` G
by (mp). The second assertion is proven similarly.

“only if”: The proof is by induction on the assumed derivations of F ∪ {F} ` G and
F ∪ {F} |∼ P (simultaneously for all F and P ).

– If G is an axiom or G ∈ F , we have F ` G, and F ` 2F ⇒ G follows by
propositional reasoning. The same argument applies for the second assertion when
P is an axiom.

– If G is F , then F ` 2F ⇒ F is an instance of (ax1).
– If G results from an application of (mp) to previously derived formulas H ⇒ G

and H , then the induction hypothesis implies F ` 2F ⇒ (H ⇒ G) as well
as F ` 2F ⇒ H , from which we conclude F ` 2F ⇒ G by propositional
reasoning. The same argument holds for (pmp).

– Assume that G results from an application of (sq), say, G ≡ 2[Q]v . By induction
hypothesis, we have F |∼ 2F ⇒ Q, and we continue as follows:

(1) |∼ 2F ⇒ Q (ind.hyp.)

(2) ` 2[2F ⇒ Q]v (sq)(1)

(3) ` 2[2F ⇒ Q]v ⇒ (2[2F ]v ⇒ 2[Q]v) (ax4)

(4) ` 2F ⇒ 2[2F ]v (ax2)

(5) ` 2F ⇒ 2[Q]v (prop)(2)(3)(4)
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– If G results from an application of (pre), then by induction hypothesis we have
F ` 2F ⇒ G, and therefore also F |∼ 2F ⇒ G, by (pre).

– If G ≡ dH results from an application of (nex), then the induction hypothesis
yields F ` 2F ⇒ H . Rule (nex) shows F |∼ d(2F ⇒ H), and we obtain
F |∼ d2F ⇒ dH by (pax2) and (pmp). The conclusion F |∼ 2F ⇒ dH follows
with the help of (pax3). *

The following are some derived theorems of ΣGTLA, which will be used later.
Derivations of these theorems can be found in the full version of this paper [14].

(T1) ` 2F ≡ 22F (T2) ` 2[P ]v ≡ 22[P ]v
(T3) ` 2[[P ]v]v ≡ 2[P ]v (T4) ` 2[P ]v ⇒ 2[[P ]v]w
(T5) ` 2[[P ]w]v ⇒ 2[[P ]v]w (T6) ` 2F ⇒ 2[ dF ]v
(T7) |∼ 2F ≡ F ∧ d2F (T8) |∼ d(F ∧G) ≡ dF ∧ dG

By rule (pre), every provable formula is also provable as a pre-formula. An impor-
tant result for ΣGTLA shows that the converse is also true. This can be shown by a
careful analysis of the derivations in ΣGTLA; the full proof is given in [14].

Theorem 8. For any set F of formulas and any formula F :

F ` F iff F |∼ F iff F |∼ dF

4 Completeness of ΣGTLA

We will now prove the completeness of ΣGTLA. Let us first note that GTLA, just as
PTL, is not compact:

Example 9. Let F = {2[vi ⇒ v′i+1]vi ,2(vi ⇒ w) : i ≥ 0}. It is easy to see that
F |= v0 ⇒ 2w, but we can clearly not derive F ` v0 ⇒ 2w, because this would
require the infinitary invariant 2

∨
i≥0 vi.

We can therefore only hope for completeness when F is a finite set, and by theo-
rem 7 it is enough to show that |= F implies ` F .

Our completeness proof follows the standard approach [9] of constructing a model
for a finite and consistent set of formulas. To do so, we have to assemble information
about pre-formulas as well as formulas. Nevertheless, the critical step in the proof is to
show that all the essential information is contained in the formulas used for the con-
struction; this is due to the fact that the assumptions in a derivation F ` F do not
contain pre-formulas. For a set G of formulas and pre-formulas, we denote by GF the
set of all formulas contained in G. We also use G to denote the conjunction of all (pre-)
formulas in G; it will always be clear from the context whether we refer to the set or the
(pre-)formula.

A set G is called inconsistent if |∼ ¬G, otherwise it is called consistent. Note that if
G is consistent and A is any formula or pre-formula, one of the sets G∪{A} or G∪{¬A}
is again consistent.
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We inductively define a set τ(A) for any formula or pre-formula A, as follows:

τ(v) = {v} τ(¬A) = {¬A} ∪ τ(A)
τ(A ⇒ B) = {A ⇒ B} ∪ τ(A) ∪ τ(B) τ(2F ) = {2F} ∪ τ(F )
τ(2[P ]v) = {2[P ]v, v, dv} ∪ τ(P ) τ( dF ) = { dF}

For a set G, we define τ(G) as the union of all τ(A), for all (pre-)formulas A contained
in G. Note that our definitions ensure that τ(G) is finite whenever G is finite.

We say that G is complete if it contains either A or ¬A, for every (pre-)formula A
from τ(G). Observe that for every finite and consistent G there exist only finitely many
finite, consistent, and complete G∗ ⊇ G, since τ(G) is itself finite; we call any such G∗
a completion of G. We note the following elementary facts about complete sets. The
proofs of assertions 1 and 3 are standard, whereas the second assertion follows from the
first and theorem 8 by propositional reasoning, since G ⇒ GF holds for any set G by
(ax0).

Proposition 10.

1. Assume that G is finite and consistent, and that G∗1 , . . . ,G∗n are all the different
completions of G. Then |∼ G ⇒ G∗1 ∨ . . . ∨ G∗n.

2. Assume thatF is a finite and consistent set of formulas, and that G1, . . . , Gn are all
the different completions of F . Then ` F ⇒ GF

1 ∨ . . . ∨ GF
n .

3. Assume that G is consistent and complete and that A, B are (pre-)formulas.
(a) If A ∈ G, B ∈ τ(G) and ` A ⇒ B or |∼ A ⇒ B then B ∈ G.
(b) If A ⇒ B ∈ τ(G) then A ⇒ B ∈ G iff A /∈ G or B ∈ G.

We now define a set σ(G) of formulas that, intuitively, transfer information from
one state of the model under construction to the next one.

σ1(G) = {F : dF ∈ G} σ2(G) = {¬F : ¬ dF ∈ G}
σ3(G) = {2F : 2F ∈ G} σ4(G) = {¬2F : ¬2F ∈ G, F ∈ G}
σ5(G) = {2[P ]v : 2[P ]v ∈ G}
σ6(G) = {¬2[P ]v : ¬2[P ]v ∈ G and

P ∈ G or {v, dv} ⊆ G or {¬v,¬ dv} ⊆ G}
σ(G) = σ1(G) ∪ σ2(G) ∪ σ3(G) ∪ σ4(G) ∪ σ5(G) ∪ σ6(G)

Lemma 11. Assume that G is finite.

1. |∼ G ⇒ dσ(G).
2. If G is consistent, then so is σ(G).

Proof. 1. By (T8), it is enough to show |∼ G ⇒ dF , for every formula F ∈ σ(G).
We distinguish the different cases in the definition of σ(G).

– For F ∈ σ1(G), we have dF ∈ G, so the assertion follows by (pax0).
– If F ≡ ¬G ∈ σ2(G), then ¬ dF ∈ G, and the assertion follows using (pax1).
– If F ≡ 2G ∈ σ3(G), we have 2G ∈ G; use (pax3) to prove the assertion.
– If F ≡ ¬2G ∈ σ4(G), the definition ensures |∼ G ⇒ G ∧ ¬2G, and the

assertion follows by (T7), (pax1), and propositional logic.
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– For F ≡ 2[P ]v ∈ σ5(G), use (pax4) to prove the assertion.
– If F ≡ ¬2[P ]v ∈ σ6(G), the definition and (pax0) yield G ⇒ [P ]v ∧ ¬2[P ]v ,

and the assertion follows by (pax4) and (pax1).
2. If σ(G) is inconsistent, we have |∼ ¬σ(G). By rule (nex), we obtain |∼ d¬σ(G).

Using axiom (pax1) and propositional logic, assertion (1) implies |∼ ¬G, that is, G
is inconsistent. *

Given a finite and consistent set F of formulas, we inductively define a graph T (F)
of sets of pre-formulas as follows:

– All different completions of F are nodes of T (F), called the roots of T (F).
– If G is a node in T (F) then its successors are all different completions of σ(G).

It follows that every node G is finite, consistent, and complete. Also, the sub-graph
of T (F) that consists of all nodes reachable from the successors of G is just T (σ(G)).

Lemma 12. Assume that F is a finite and consistent set of formulas.

1. T (F) contains only finitely many different nodes G1, . . . ,Gn.
2. Assume that G1, . . . ,Gn are all the different nodes in T (F).

(i) |∼ GF
i ⇒ G1 ∨ . . . ∨ Gn (for i = 1, . . . , n).

(ii) |∼ GF
1 ∨ . . . ∨ GF

n ⇒ d(GF
1 ∨ . . . ∨ GF

n ).
(iii) ` F ⇒ 2(GF

1 ∨ . . . ∨ GF
n ).

Proof. 1. The completions of a finite set G only contain – possibly negated – pre-
formulas from the set τ(G), which is also finite. On the other hand, the only pre-
formulas in σ(G) that are possibly not in τ(G) are of the form F or ¬F such that G
contains dF or¬ dF , hence the number of doperators decreases, which is possible
only finitely often. Therefore, only finitely many different (pre-)formulas occur in
T (F), hence T (F) can contain only finitely many different nodes.

2. (i) Let i ∈ {1, . . . , n} be arbitrary, and consider the set F ′ of formulas from which
the node Gi was constructed—either the initial set F or the set σ(G′) where G′ is a
predecessor of G in T (F). Proposition 10.1 implies |∼ F ′ ⇒ G1∨ . . .∨Gn because
all consistent completions of F ′ are contained in T (F). Since Gi is a completion
of F ′, it follows that F ′ ⊆ GF

i , hence we have ` GF
i ⇒ F ′ by (ax0), and therefore

the assertion.
(ii) We first note |∼ Gj ⇒ dσ(Gj), for every node Gj of T (F), by lemma 11.
Proposition 10.2 ensures` σ(Gj) ⇒ GF

1 ∨. . .∨GF
n . Applying rule (nex) and (pax2),

we obtain |∼ Gj ⇒ d(GF
1 ∨ . . . ∨ GF

n ), for every j, hence also |∼ G1 ∨ . . . ∨ Gn ⇒
d(GF

1 ∨. . .∨GF
n ). The assertion follows with the help of (i) and propositional logic.

(iii) Let I denote the formula GF
1 ∨ . . . ∨ GF

n . Assertion (ii) and rule (sq) imply
` 2[I ⇒ dI]I , hence ` I ⇒ 2I by axiom (ax3). On the other hand, proposi-
tion 10.2 implies ` F ⇒ I, and the assertion follows. *

We will construct a model forF from the paths in T (F). Let us call a pathG0,G1, . . .
complete iff it satisfies the two following conditions, for every i ≥ 0:
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– If ¬2F ∈ Gi then ¬F ∈ Gj for some j ≥ i.
– If ¬2[P ]v ∈ Gi then for some j ≥ i, ¬P ∈ Gj and either {v,¬ dv} ⊆ Gj or
{¬v, dv} ⊆ Gj .

Lemma 13. Assume that F is a finite and consistent set of formulas. Then T (F) con-
tains a complete path starting at some root.

Proof. We first prove that for every node G of T (F) and any formula F such that
{¬2F, F} ⊆ G there is some nodeH in T (σ(G)) that contains¬F . Suppose not. Then,
in particular, every root W of T (σ(G)) contains ¬2F and F (because F ∈ τ(σ(G))
and W is a completion of σ(G)), hence ¬2F ∈ σ(W). Inductively, it follows that
{¬2F, F} ⊆ H holds for every node H of T (σ(G)). Let G1, . . . ,Gn be all nodes of
T (σ(G)), and let I denote the formula GF

1 ∨ . . . ∨ GF
n . Then (ax0) gives I ⇒ F ,

which proves I ` 2F , using rule (alw). By theorem 7, we conclude ` 2I ⇒ 2F .
Lemma 12.2(iii) yields ` σ(G) ⇒ 2F , but on the other hand we have ` σ(G) ⇒ ¬2F
because ¬2F ∈ σ(G). Therefore, σ(G) and (by lemma 11.2) also G is inconsistent, and
a contradiction is reached.

Similarly, we show that there is some node H in T (σ(G)) that contains ¬P and
either {v,¬ dv} or {¬v, dv} whenever ¬2[P ]v ∈ G and either P ∈ G or {v, dv} ⊆
G or {¬v,¬ dv} ⊆ G. Suppose not. Then an argument analogous to the one above
establishes that every node H contains P or {v, dv} or {¬v,¬ dv}. By axiom (pax0),
this shows |∼ H ⇒ [P ]v. Lemma 12.2(i) implies |∼ I ⇒ [P ]v, and by (ax1) and (pre),
a fortiori |∼ 2I ⇒ [P ]v. Using rule (sq) and (ax4), this shows ` 2[2I]v ⇒ 2[[P ]v]v,
and (T3) implies that ` 2[2I]v ⇒ 2[P ]v. But as above we have ` σ(G) ⇒ 2I, and
thus also ` σ(G) ⇒ 2[2I]v by (ax2), which proves ` σ(G) ⇒ 2[P ]v . On the other
hand, we know ` σ(G) ⇒ ¬2[P ]v by assumption and reach a contradiction.

These two claims ensure that for every node G in T (F) that contains either ¬2F or
¬2[P ]v there exists some node G′ reachable from G that satisfies the condition from the
definition of a complete path. For if G itself does not satisfy the condition, the formula
is contained in σ(G), hence T (σ(G)), which is just the subgraph of T (F) whose roots
are the sons of G, contains a node as required.

The assertion is now proved by fixing some order on the finite set of formulas ¬2F
and ¬2[P ]v that occur in T (F) and an iterative construction that constructs a complete
path piecewise by repeatedly considering the eventuality formulas in the chosen order.
The details of this construction are standard [8, 9]. *

Lemma 14. Assume thatF is a finite and consistent set of formulas and that G0,G1, . . .
is a complete path in T (F). For every i ≥ 0, the following assertions hold:

1. If dF ∈ τ(Gi) then dF ∈ Gi iff F ∈ Gi+1.
2. If 2F ∈ τ(Gi) then 2F ∈ Gi iff F ∈ Gj for all j ≥ i.
3. If 2[P ]v ∈ τ(Gi) then 2[P ]v ∈ Gi iff for all j ≥ i, P ∈ Gj or {v, dv} ⊆ Gj or
{¬v,¬ dv} ⊆ Gj .

Proof. 1. If dF ∈ Gi then F ∈ σ(Gi) and therefore F ∈ Gi+1, which is a completion
of σ(Gi).
If dF /∈ Gi then ¬ dF ∈ Gi (because Gi is complete), so ¬F ∈ σ(Gi), and again
¬F ∈ Gi+1. The consistency of Gi+1 implies F /∈ Gi+1.
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2. Assume 2F ∈ Gi. Then we have F ∈ τ(Gi), and because of ` 2F ⇒ F (ax1)
and proposition 10.3, it follows that F ∈ Gi. Moreover,2F ∈ σ(Gi) and therefore
2F ∈ Gi+1. Inductively, we conclude that F ∈ Gj holds for all j ≥ i.
Conversely, if F ∈ Gj for all j ≥ i then the definition of a complete path and
the consistency of the Gj ensure that ¬2F ∈ Gi cannot hold. The assumption
2F ∈ τ(Gi) and the fact that Gi is complete imply 2F ∈ Gi.

3. Assume 2[P ]v ∈ Gi. Then {P, v, dv} ⊆ τ(Gi), and by |∼ 2[P ]v ⇒ [P ]v (pax4)
and proposition 10.3, the assertion follows for j = i using the completeness and
consistency of Gi and propositional logic. Moreover,2[P ]v ∈ σ(Gi) and therefore
2[P ]v ∈ Gi+1. Inductively, the assertion follows for all j ≥ i.
Conversely, if P ∈ Gj or {v, dv} ⊆ Gj or {¬v,¬ dv} ⊆ Gj holds for all j ≥ i,
the consistency of the Gj implies that there can be no j ≥ i such that ¬P ∈ Gj

and either {v,¬ dv} ⊆ Gj or {¬v, dv} ⊆ Gj . Therefore, using the definition of a
complete path, it follows that ¬2[P ]v ∈ Gi cannot hold, hence 2[P ]v ∈ Gi. *

We now have all the bits and pieces to construct a model for a finite and consistent
set F from T (F).

Lemma 15. For every finite and consistent setF of formulas there is a behavior σ such
that σ |= F holds for all F ∈ F .

Proof. Assume that F is a finite and consistent set of formulas. Construct T (F) and
choose some complete path G0,G1, . . . that starts at some root of T (F); such a path
exists by lemma 13. Now define the behavior σ = s0s1 . . . by si(v) = tt iff v ∈ Gi, for
every v ∈ V .

By induction on the structure of (pre-)formulas, we prove that for all (pre-)formulas
A and all i ≥ 0, if A ∈ τ(Gi) then σ|i |≈ A iff A ∈ Gi.

Because of F ⊆ G0 and F ∈ τ(F) = τ(G0) for every F ∈ F , this in particular
implies σ |= F for all formulas F ∈ F .

The inductive proof of the assertion is again standard; we only give a few cases:

2[P ]v : Assume 2[P ]v ∈ τ(Gi). Therefore, either2[P ]v ∈ Gi or ¬2[P ]v ∈ Gi. In the
former case, lemma 14.3 implies that, for all j ≥ i, P ∈ Gj or {v, dv} ⊆ Gj or
{¬v,¬ dv} ⊆ Gj . By induction hypothesis and lemma 14.1, this implies that, for
all j ≥ i, σ|j |≈ P or sj(v) = sj+1(v), and therefore σ|i |≈ 2[P ]v .
If ¬2[P ]v ∈ Gi, then the definition of a complete path ensures that for some j ≥ i,
we have ¬P ∈ Gj and either {v,¬ dv} ⊆ Gj or {¬v, dv} ⊆ Gj , and the induction
hypothesis and lemma 14.1 ensure σ|i |≈ ¬2[P ]v .

dF : Assume dF ∈ τ(Gi). By lemma 14.1, dF ∈ Gi iff F ∈ Gi+1 iff (by induction
hypothesis) σ|i+1 |≈ F iff σ|i |≈ dF . *

Theorem 16 (Completeness). For every formula F , if |= F then ` F .

Proof. Assume |= F . Then σ |= ¬F holds for no behavior σ, and lemma 15 implies
that {¬F} is inconsistent, that is |∼ ¬¬F , from which ` F follows by theorem 8.1 and
propositional logic. *
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(hx0) F whenever F is tautological (hx7) 2[P ]v whenever P is tautological

(hx1) 2F ⇒ F (hx8) 2[ d¬F ≡ ¬ dF ]v

(hx2) 2F ⇒ 2[F ]v (hx9) 2[ d(F ⇒ G) ⇒ ( dF ⇒ dG)]v

(hx3) 2F ⇒ 2[ d2F ]v (hx10) 2[2[P ]v ⇒ [P ]v]w

(hx4) 2[F ⇒ dF ]F ⇒ (F ⇒ 2F ) (hx11) 2[P ]v ⇒ 2[ d2[P ]v ]w

(hx5) 2[P ⇒ Q]v ⇒ (2[P ]v ⇒ 2[Q]v) (hx12) 2[[P ]v ∧ d
2[P ]v ⇒ 2[P ]v]w

(hx6) 2[v′ 6≡ v]v (hx13) 2[ d2F ⇒ 2[ dF ]v]w

(hmp) F, F ⇒ G h` G (alw) F h` 2F

Fig. 2. The proof system Σh
GTLA.

5 A Homogeneous Axiomatization

The system ΣGTLA is based on the auxiliary relation |∼ besides the relation ` that we
are really interested in. One may argue that one could instead simply translate proposi-
tional (G)TLA to PTL and use any standard PTL proof system. Still, proofs may then
contain PTL formulas such as 2 dF that are not even pre-formulas of GTLA. We now
show that it is possible to eliminate the auxiliary relation |∼ and define a “homogeneous”
axiomatization of GTLA based on a single provability relation h`. The key observation
is that in ΣGTLA, a derived pre-formula can only be used via rule (sq) in the derivation
of a formula. It therefore suffices to “box” the axioms (pax0)–(pax5) and rephrase (pre),
(nex), and (pmp) accordingly. The proof system Σh

GTLA shown in figure 2 is based on
this idea and some further simplifications. The following theorems and rules can be
derived in Σh

GTLA; again, we refer to the full version [14] of this paper.

(H1) 2[P ]v,2[P ⇒ Q]v
h` 2[Q]v (H2) F

h` 2[F ]v
(H3) 2[P ⇒ Q]v,2[Q ⇒ R]v

h` 2[P ⇒ R]v
(H4) 2[[P ]v ⇒ P ]v (H5) 2[2F ⇒ d2F ]v

Again, it is easy to derive analogues of these rules where the “index” v is replaced by a
finite set of atomic propositions, or by a GTLA formula.

We now prove that the two provability relations agree (where F h` F is defined in
the obvious way). In particular, Σh

GTLA is also sound and complete. It is therefore a
matter of taste and convenience which axiomatization to use. The homogeneous proof
system is aesthetically more satisfactory, but the heterogeneous system may be easier
to use. (This is why the completeness proof was given for ΣGTLA.)

Theorem 17. For any set F of formulas and any formula F , F ` F iff F h` F .

Proof. “only if”: By induction on the length of the assumed derivation in ΣGTLA, we
prove thatF h` F wheneverF ` F and thatF h` 2[P ]v, for all atomic propositions
v, whenever F |∼ P , for any pre-formula P .



A More Complete TLA 1239

If F is from F or if it is an instance of (ax0), (ax1), (ax3), (ax4) or (ax5) then the
assertion holds trivially because these axioms are also contained in Σh

GTLA. Axiom
(ax2) is derived in Σh

GTLA as follows:

(1) 2[2F ⇒ d2F ]F (H5)

(2) 2F ⇒ 22F (1)(hx4)(mp)

(3) 22F ⇒ 2[2F ]v (hx2)

(4) 2F ⇒ 2[2F ]v (prop)(2)(3)

If the last step in the derivation of F ` F is an application of (mp) to previously
derived formulas G and G ⇒ F then by induction hypothesis we have F h` G and
F h` G ⇒ F , so F h` F follows by rule (hmp).
If the last step in the derivation of F ` F is an application of (sq) to some previ-
ously derived pre-formula P (so F is 2[P ]v) then by the induction hypothesis for
the second assertion we already have F h` 2[P ]v .
The second assertion is trivial if the last step in the derivation of F |∼ P is an
instance of (pax0), (pax1), (pax2) or (pax5) because ΣGTLA contains correspond-
ing axioms. The case of (pax3) is taken care of by (H5). As for (pax4), it could
obviously be replaced by

(pax4a) |∼ 2[P ]v ⇒ [P ]v
(pax4b) |∼ 2[P ]v ⇒ d2[P ]v
(pax4c) |∼ [P ]v ∧ d2[P ]v ⇒ 2[P ]v

without changing the set of pre-formulas derivable in ΣGTLA. The axioms (hx10)
and (hx12) directly correspond to (pax4a) and (pax4c), so it remains to consider the
case of (pax4b):

(1) 2[P ]v ⇒ 2[ d2[P ]v]w (hx11)

(2) 2[2[P ]v ⇒ 2[ d2[P ]v]w]w (H2)(1)

(3) 2[2[ d2[P ]v]w ⇒ [ d2[P ]v]w]w (hx10)

(4) 2[2[P ]v ⇒ [ d2[P ]v]w]w (H3)(2)(3)

(5) 2[[ d2[P ]v]w ⇒ d2[P ]v]w (H4)

(6) 2[2[P ]v ⇒ d2[P ]v]w (H3)(4)(5)

Considering the rules, the case of (pmp) is handled by the induction hypothesis and
(H1). If the last step in the derivation of F |∼ P is an application of (pre), then P

is actually a formula and has already been derived, so we may assume F h` P by
induction hypothesis. We obtain F h` 2[P ]v by (H2).
If the last step is an application of (nex), then P is dF , for some previously derived
formula F , and by induction hypothesis we may assume F h` F . We continue as
follows:
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(1) F (ind.hyp.)

(2) 2F (alw)(1)

(3) 2[ d2F ]v (2)(hx3)(hmp)

(4) 2[ d2F ⇒ 2[ dF ]v]v (hx13)

(5) 2[2[ dF ]v]v (H1)(3)(4)

(6) 2[2[ dF ]v ⇒ [ dF ]v]v (hx10)

(7) 2[[ dF ]v]v (H1)(5)(6)

(8) 2[ dF ]v (7)(H4)(H1)

“if”: The proof is again by induction on the assumed derivation ofF h` F . The cases of
(hx0), (hx1), (hx4), (hx5), and (hx6) are trivial because ΣGTLA contains the same
axioms. For (hx7), (hx8), (hx9), (hx10), (hx12), and (hx13), the proof uses the
corresponding axioms of ΣGTLA and rule (sq). For (hmp) and (alw), the assertion
follows from the induction hypothesis and rules (mp) and (alw), which is a derived
rule in ΣGTLA.
The axiom (hx2) is derived in ΣGTLA as follows:

(1) |∼ 2F ⇒ F (ax1)(pre)

(2) ` 2[2F ⇒ F ]v (sq)(1)

(3) ` 2[2F ]v ⇒ 2[F ]v (2)(ax4)(mp)

(4) ` 2F ⇒ 2[2F ]v (ax2)

(5) ` 2F ⇒ 2[F ]v (prop)(3)(4)

The derivation of (hx3) is similar, using (pax3) instead of (ax1). The derivation of
(hx11) is very similar to that of (T4) and is omitted. *

6 Quantification and Expressiveness

We have remarked in section 2 that propositional TLA is a sublanguage of GTLA whose
pre-formulas are restricted to boolean combinations of primed and unprimed proposi-
tion symbols. On the other hand, GTLA can be considered as a sublanguage of PTL by
removing the distinction between formulas and pre-formulas and considering2[P ]v as
a short-hand notation for the PTL formula 2(P ∨ ( dv ≡ v)). Lamport’s intention in
introducing TLA was to allow the implementation relation between two descriptions of
systems, even at different levels of abstraction, to be represented by model inclusion on
the semantic side, and by validity of implication inside the logic [13]. Theorem 5 gives
a formal expression to this intention, so GTLA satisfies Lamport’s requirement.

Does GTLA add any undesired expressiveness to TLA? We will now show that this
is not the case by proving that TLA and GTLA become equi-expressive once we add
quantification over atomic propositions.

We introduce two auxiliary relations on behaviors that are used in a stuttering-
invariant semantics of quantification over atomic propositions.
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Definition 18. For v ∈ V we define the relations =v and ≈v on behaviors as follows:

1. Two behaviors σ = s0s1 . . . and τ = t0t1 . . . are equal up to v, written σ =v τ if
si(w) = ti(w) for all i ≥ 0 and w ∈ V , except possibly v.

2. The relation≈v, called similarity up to v, is defined as≈v = (' ◦ =v ◦ '), where
' is stuttering equivalence and ◦ denotes relational composition.

Proposition 19.

1. For any v ∈ V , the relations =v and ≈v are equivalence relations.
2. ('V ◦ ≈v) = (≈v ◦ 'V ∪{v}), for any v ∈ V and V ⊆ V .

We now extend GTLA by quantification over atomic propositions. Conceptually, ex-
istential quantification corresponds to the hiding of state components in specifications.
Following Lamport, we use a bold quantifier symbol ∃∃∃∃∃∃ to emphasize that its semantics
is non-standard, which helps to preserve stuttering invariance.

Definition 20 (∃∃∃∃∃∃ -GTLA).

1. Formulas and pre-formulas of ∃∃∃∃∃∃ -GTLA are given inductively as in definition 1,
except by adding the following clause:
6. If F is a formula and v ∈ V then ∃∃∃∃∃∃ v : F is a formula.

2. The semantics of ∃∃∃∃∃∃ -GTLA is obtained by adding the following clause to defini-
tion 2.

σ |= ∃∃∃∃∃∃ v : F iff τ |= F holds for some τ ≈v σ.

For a formula F ≡ ∃∃∃∃∃∃ v : G, we define the set At(F ) as At(G) \ {v}, since v be-
comes bound by the quantifier. Our definition of the semantics of quantification agrees
with that of Lamport [12] who motivates it by showing that a naive definition would not
preserve stuttering invariance. In fact, ∃∃∃∃∃∃ -GTLA is again insensitive to stuttering:

Theorem 21. For any ∃∃∃∃∃∃ -GTLA formula F and behaviors σ, τ such that σ 'At(F ) τ ,
we have σ |= F iff τ |= F .

Proof. Extending the proof of theorem 5, we need only consider the case of a quantified
formula F ≡ ∃∃∃∃∃∃ v : G. So assume that σ |= F and that τ 'At(F ) σ. Choose some behav-
ior ρ ≈v σ such that ρ |= G, by the definition of σ |= ∃∃∃∃∃∃ v : G. Then τ ('At(F ) ◦ ≈v) ρ,
and by proposition 19 it follows that τ (≈v ◦ 'At(F )∪{v}) ρ, which in turn implies
τ (≈v ◦ 'At(G)) ρ, because'At(F )∪{v} ⊆ 'At(G). Hence, there exists some behavior
π such that τ ≈v π and π 'At(G) ρ. By induction hypothesis it follows that π |= G,
and thus τ |= F as required. *

The semantics of quantified formulas is defined for ∃∃∃∃∃∃ -GTLA in the same way as
for TLA. It is therefore immediate that quantified propositional TLA is again a sublogic
of ∃∃∃∃∃∃ -GTLA. We now show that the two logics are equally expressive by effectively
constructing an equivalent (quantified) TLA formula for every ∃∃∃∃∃∃ -GTLA formula.

Theorem 22. For every ∃∃∃∃∃∃ -GTLA formula F there is a TLA formula FTLA such that
for every behavior σ, σ |= F iff σ |= FTLA.
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Proof. In a first step, eliminate all quantified subformulas of F by successively choos-
ing a fresh atomic proposition u for every (innermost) subformula ∃∃∃∃∃∃ v : G of F , and
replacing F by ∃∃∃∃∃∃u : 2(u ≡ ∃∃∃∃∃∃ v : G) ∧ F ∗, where F ∗ is obtained from F by replacing
the subformula ∃∃∃∃∃∃ v : G by u. It is easy to see that the resulting formula is equivalent to
the original formula F .

If F does not contain any quantified subformulas except those introduced above,
the final formula F ∗ and every formula G in ∃∃∃∃∃∃ v : G is translated as follows: choose a
new atomic proposition vH for every (topmost) non-atomic formula H such that H or
dH occurs inside a subformula 2[P ]v . If vH1 , . . . vHn are all the atomic propositions

added in this way, replace the formula G under consideration by the TLA formula

∃∃∃∃∃∃ vH1 , . . . vHn : 2(vH1 ≡ H1) ∧ . . . ∧2(vHn ≡ Hn) ∧G†

where G† results from G by replacing Hi by vHi , dHi by v′Hi
, and all remaining pre-

formulas du by u′.
For example, if F is the formula

2[2v ⇒ d∃∃∃∃∃∃w : 2[u ⇒ d2w]u]v

the first step produces

∃∃∃∃∃∃ x : 2(x ≡ ∃∃∃∃∃∃w : 2[u ⇒ d2w]u) ∧ 2[2v ⇒ dx]v

and FTLA is the TLA formula

∃∃∃∃∃∃x : 2(x ≡ ∃∃∃∃∃∃w, y : 2(y ≡ 2w) ∧ 2[u ⇒ y′]u) ∧ ∃∃∃∃∃∃ z : 2(z ≡ 2v) ∧ 2[z ⇒ x′]v

Given a behavior σ = s0s1 . . ., define the behavior τ = t0t1 . . . such that, for all
i ≥ 0, si and ti agree on all propositions, except possibly on vH1 , . . . vHn , and where
ti(vHj ) = tt iff σ|i |= Hj . The assertion now follows from the following fact, which
is proved by structural induction: For any subformula H of G, σ|i |= H iff τ |i |= H†

where H† is obtained from H in the same way as G† is obtained from G. *

For the GTLA formula 3
〈
A ∧ 〈B〉v

〉
v

considered in section 1, the procedure out-
lined in the proof of theorem 22 produces the TLA formula

∃∃∃∃∃∃x : 2(x ≡ 〈B〉v) ∧3〈A ∧ x〉v

7 Conclusion

The logic GTLA defined in this paper is a variant of Lamport’s Temporal Logic of
Actions. Like TLA, its formulas do not distinguish between behaviors that are stutter-
ing equivalent. However, GTLA removes some apparently unnecessary restrictions on
the syntax of formulas. We have also shown that the propositional fragment of GTLA
admits a complete and reasonably simple axiomatization. In fact, our proof systems
ΣGTLA and Σh

GTLA are much simpler than Abadi’s axiomatization [1] of a previous
version of TLA. We have been careful to adhere to TLA as closely as possible. In
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particular, every TLA formula is a GTLA formula, and the two logics are equally ex-
pressive once we add (stuttering-invariant) quantification over flexible proposition sym-
bols, as proposed by Lamport. By Rabinovich’s result of expressive completeness for
TLA [18], it follows that ∃∃∃∃∃∃ -GTLA is expressively complete for all stuttering-invariant
ω-languages definable in the monadic second-order theory of linear orders. We believe
that GTLA is a more natural explanation of TLA’s concepts. The difference between
TLA and GTLA lies in the fact that in GTLA, formulas and pre-formulas are defined
by mutual induction, whereas the syntax of TLA is defined in succeeding layers. In par-
ticular, GTLA allows temporal formulas to occur inside the2[ ]v operator. The fact that
such formulas can already expressed in TLA via quantification over flexible variables
(cf. the proof of theorem 22) is easily overlooked in the original definition of TLA.
It will remain to be seen whether the added flexibility of GTLA is useful for writing
system specifications.

There are alternative definitions of stuttering-invariant temporal logics. The easiest
way to obtain invariance under stuttering is to interpret the doperator of PTL not as
referring to the immediate successor state, but to the first state in the future that differs
in the valuation of some proposition (and to let dF be true if no such state exists). The
resulting logic is axiomatized by a minor variant of the standard PTL proof system,
and it is “globally” stuttering-invariant with respect to ', but not “locally” with respect
to 'At(F ), as determined by the formula under consideration. Unfortunately, “global”
stuttering invariance is not enough to represent implementation by model inclusion.
Another example for a globally stuttering-invariant logic is Pnueli’s TLR [17]. The
logic MTL defined by Mokkedem and Méry [16] is “locally” stuttering-invariant, but
the authors did not prove a completeness result. On the other hand, one could obtain
an axiomatization of TLA or GTLA by interpreting their formulas in PTL. However,
this approach breaks when it comes to quantified formulas, due the stuttering-invariant
definition of the semantics for ∃∃∃∃∃∃ (see also [18]).

GTLA is easily extended to a first-order logic where atomic propositions are re-
placed by atomic predicate-logic formulas, except for the “subscripts” v in formulas
2[P ]v, which should then be state variables. (The generalization to arbitrary terms can
be introduced as a short-hand notation as we have done in this paper.) Of course, one
cannot hope for full completeness of first-order GTLA. Nevertheless, the ability to rea-
son about the propositional fragment, together with some simple rules about (rigid)
quantification has turned out to be extremely useful in the application of standard linear-
time temporal logic, and we believe the same to be true for TLA.
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