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Abstract. The strength of a cryptographic function depends on the amount of
entropy in the cryptovariables that are used as keys. Using a large key length
with a strong algorithm is false comfort if the amount of entropy in the key is
small. Unfortunately the amount of entropy driving a cryptographic function is
usually overestimated, as entropy is confused with much weaker correlation
properties and the entropy source is difficult to analyze. Reliable, high speed,
and low cost generation of non-deterministic, highly entropic bits is quite
difficult with many pitfalls. Natural analog processes can provide non-
deterministic sources, but practical implementations introduce various biases.
Convenient wide-band natural signals are typically 5 to 6 orders of magnitude
less in voltage than other co-resident digital signals such as clock signals that
rob those noise sources of their entropy. To address these problems, we have
developed new theory and we have invented and implemented some new
techniques. Of particular interest are our applications of signal theory, digital
filtering, and chaotic processes to the design of random number generators. Our
goal has been to develop a theory that will allow us to evaluate the effectiveness
of our entropy sources. To that end, we develop a Nyquist theory for entropy
sources, and we prove a lower bound for the entropy produced by certain
chaotic sources. We also demonstrate how chaotic sources can allow spurious
narrow band sources to add entropy to a signal rather than subtract it. Armed
with this theory, it is possible to build practical, low cost random number
generators and use them with confidence.

Introduction

RNGs (Random Number Generators) are hardware and/or software sources that
supply bits (or numbers) that ideally are statistically independent. In this paper we
will talk solely about analog RNGs, that is, RNGs whose initial source of entropy is
analog noise. As such, these RNGs are non-deterministic. In contrast, PRNGs
(pseudo-random number generators) are deterministic in that their output is
completely determined from their initial state or “seed”.

RNGs are used to generate independent bits for cryptographic applications such as
key generation or random starting states, where it is vital that the key or state cannot
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be predicted or inferred by the adversary. They are also used as hashing or blinding
factors in various signature schemes, such as the Digital Signature Standard.

Our RNGs have employed either thermal or shot noise, and have been
implemented in both discrete and integrated forms. Other RNGs have been driven by
sources such as: vacuum tube shot noise, radioactive decay, neon lamp discharge,
clock jitter, and PC hard drive fluctuations.

We further define these RNGs as hybrid RNGs since they comprise an analog
noise source followed by digital post-processing. The post-processing greatly
enhances the entropy (statistical independence) of the output, usually at the cost of an
acceptable reduction in bit-rate. The post-processing could also be termed digital
nonlinear filtering or lossy compression. Finally, we further class the RNGs as either
chaotic or non-chaotic.

Reliable, high speed, and low cost analog random number generation of highly
entropic bits is a hard problem. This is because practical noise sources are a few
microvolts while other co-resident, typically fast-transitioning digital signals are
several volts. Even greatly attenuated interference from these deterministic sources
can rob the RNG output of most or all of the entropy that a cryptographic application
may depend on. Amplification and sampling of noise signals can further degrade the
entropy because the amplifiers are inevitably band-limited, and sampling thresholds
are typically biased. By applying some results from chaotic processes and signal
theory we have been able to overcome the problems mentioned above, producing
reliable, high-speed, low-cost, highly entropic RNGs whose performance is supported
by strong theory.

In particular, we study the effect of filtering on sampled analog noise sources. We
demonstrate that under ideal conditions, a relatively narrow-band noise source can be
used to produce a perfectly uncorrelated bit-stream. Seeking more practical solutions,
we demonstrate how simple digital feedback processes can be used to improve RNG
statistics and to nullify the effects of certain spurious noise sources. Finally, we
demonstrate how digital feedback, directly interacting with a chaotic amplifier, can
produce a noise source that coerces other spurious noise sources to contribute their
entropy to the main source, rather than rob that source of its entropy. We prove a
lower bound for the amount of entropy per bit that such a chaotic source will produce,
we calculate the probability density function for the source, and we discuss how to
use this source to compress n bits of entropy into a vector of length n.

We believe that the results provided here can help designers include high quality,
stand-alone, non-deterministic RNGs in low-cost crypto-modules and ICs.

1 Signal Theory Applied to RNGs

We begin by showing that it is possible to produce very good, random bit sequences
of completely independent values by carefully filtering and sampling a non-white
natural noise source. We show how bandwidth limitations reduce to bit-rate
limitations. A classic natural random number generator is modeled as follows:
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WGN n(t) c w(t) s x(t)

Fig. 1. Classic Random Number Generator

WGN is Stationary White Gaussian Noise that we assume is wide-band and low-
power (such as thermal or shot noise). H is the transfer function of a band-limited
amplifier. C is a comparator or quantizer function, and S is a sampling process that
samples every interval of length T.

Generally one can find wide-band, low-power white noise sources, but to work
with them considerable amplification is needed. An inevitable limitation of bandwidth
results. The signal x(t) is expressed in terms of the Dirac delta function &t):

x(1) = Y, w(t)s(t- k) (1
k

summing over all integers k. The Fourier Transform of x(t) is then

XM= Ix(t)e'ﬂ”‘fdt = E w(t)o(t- kz-)e-jszdt _ zw(kr)e-jhkr{ )

Using the Poisson summation formula on the last expression, we get:

1
X(f)-;ZW(f—k/r) 3)

For the moment, ignore the effect of the quantizer, and note that if the shape of W is
completely determined by the filtering of the amplifier H, we can arrange that
W(f) =0 for |f] > 1/t by selecting the sampling rate to match the amplifier’s rolloff.
In addition, if the amplifier characteristic is equalized so that W(1/2-f) = W(1/2+1),
then the right hand side of Equation (3) is a constant, indicating white noise, and
therefore x(t) will be completely uncorrelated. Again, if we ignore the effects of the
quantizer, then by the Gaussian assumption we can conclude that the values x(nt) are
independent. We have shown that we can apply the Nyquist rule of thumb: “Make the
sampling rate about twice the bandwidth,” and we have shown that we can carefully
filter a stationary Gaussian narrowband noise source to completely eliminate
correlation. Nyquist theory refers to sampling theorems in hybrid analog and digital
systems where the goal is to eliminate the effects of aliasing and to reduce
intersymbol interference. We have shown that it applies just as well to sampled noise
signals where the performance criterion is intersymbol correlation. It is also clear
from the above analysis that if the original noise source is non-white, an equalizer W
can be still be designed so that the sum in Equation (3) is constant.

Recall that the effect of the quantizer has thus far been ignored. The theory is much
more involved for most common quantizers. We will treat one common and useful
case in the next section.



222 D.P. Maher and R.J. Rance
2 Practical and Simple Examples

In order to economically manufacture a good natural random number generator, we
have to use some simpler digital filtering techniques, shooting for less than Nyquist
precision. We show how simple digital filtering and sampling techniques can reduce
correlation. Some examples of RNGs with and without digital post-processing can be
found in Murry [1], Bendat [2], Boyes [3], Castanie [4], and Morgan [5].

Referring to Figure 1, we assume w(t) has zero mean with a power spectral density
function W (f), and we use a simple two-pole amplifier with non-Nyquist filtering. W
() rolls off from a flat spectrum at f, and f,, the lower and upper cutoff frequencies of
the amplifier. Let us also consider the effect of the quantizer function C. Here we
assume that C is an infinite clipper. That is, C assigns the value +1 to a positive
voltage and -1 to a negative voltage. We also assume the comparator has a bias with
an offset voltage A. Let x=x(nt). We are interested in values: u =E[x, ],
p ()=E[x,-x,]- The latter can be expressed in terms of
P, (1) =E[w(t)-w(t+ 7)]. The mean of the process x is a straightforward error

function approximated by = 0.4 A/c (when the offset is small enough compared to
the signal power), and with the aid of Price’s theorem [6], the autocorrelation function
can be expressed in closed form as:

“4)

2 1l
P (7)== Sin"(p, ()4 !
where

fexp(-27f,7)~ fexp(-Z f, ) S
f‘b - fz\

p.(1)=

For a typical selection of components for a low cost RNG as modeled above, we get
unsatisfactory mean and correlation values even if we very carefully isolate the RNG
components from spurious noise sources. Thus we are motivated to use some simple
digital filtering techniques. First, suppose we follow the sampler in Figure 1 with a
simple feedback loop, where the analog noise source below contains the sampler:

I
ANALOG | %n ™ Ya ;i z,
SOURCE Yy
D >

Fig. 2. Digital Processing

We note that if the delay D is one clock cycle then ¥: = l_ll X; . After a short period of

time, W, is going to be extremely small even if the x;’s are highly biased and strongly
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correlated. This is clearly true when the x; are independent. More generally, we can
show thatE[y,]— 0 almost as quickly as (Px(1)+ ﬂf)'/2 — 0, depending on the
characteristics of w(t)’s autocorrelation function, p (7), which we assume is

asymptotically well-behaved and monotonically decreasing (as in the case of the two
pole filter we have assumed). The difficulty here is that the autocorrelation p,()=p,

is unacceptable. Note that the effect of the feedback loop is just to shift values of
lower order statistics to higher order statistics. Now consider the sequence z,. We
sample the output w, at a rate f. = f/r where f, is the sampling rate producing x,. Let
the function D delay the feedback by d clock cycles, then

E[ijj-k] = E[(erxrj-dxtj-2d' : ')(Xr(j-k}xr(_i-k)-d' -l (6)

We choose d to be relatively prime to r. Then when d does not divide k, we see that
there are no duplications in the subscripts in the above expression, and so there are no
symbolic cancellations of the x values, and so p (k) is the expectation of the product
of a large number of samples of x which grows larger as n grows large. As for the
case when d divides k: If we set m=k/d, then

E[ijj-k] = E[yrjyr(j-k)] = E[erxrj»d er-(rm-l]d] (7)

Therefore, this correlation is the expectation of the product of rm bits each spaced d
apart. This works very well with a decreasing autocorrelation function for w(t). In

cases where the acf p(7) decreases slowly, then the value of d. should be increased

to compensate. Heuristically, we are taking the expectation of the product of many =1
values spaced far apart in time. For a typical acf, increasing the spacing will effect an
exponential reduction in expectation, and increasing the number of bits will also cause
an exponential drop. Thus increasing d and r serve to reduce the expectation
synergistically and powerfully. Both of these techniques are novel. With reasonable

assumptions on n(t) and w(t), we can show that ‘ P,(l)‘ < Bn( oy f) given B, :
n/2 8
B, (p,u*)=) a,u"*p ®
k=0
a, =2 k1/((2)rr?) 9)

The actual closed form expressions for p (7) are difficult to analyze asymptotically.
We use Price’s theorem [6] to calculate the autocorrelation function of the output of
the infinite clipper, and our expressions include a determinant of an autocorrelation
matrix whose entries are values of the autocorrelation function for the process n(t) at
times nt (see Figure 1 again). For the example where n(t) is flat noise filtered by a
two-pole filter the autocorrelation function magnitude, |p,@#)|, is eventually
monotonically decreasing, and thus we can estimate bounds for p, (k). Overall, the key
to improving the statistics is selection of the sampling rates S and S’ as we show next.
Thus, we can produce a sequence z, with zero mean (after a brief transient), and
unnoticeable correlation. In fact, the bound given above also provides a measure of
independence in that [log(l - E[xX,...x,])| bounds the average mutual information
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between bits z, and z_,. Thus, this system approximates a sequence of equiprobable
mutually independent (Bernoulli) samples of events from a sample space {1, -1}
which can be produced using simple components with very modest performance
characteristics.

Suppose we use a Western Electric WE-459G noise diode as the WGN source. It’s
output is 0.8 uV/sqrt(Hz) with a power spectral density that is flat +2 dB from 100 Hz to
500 kHz. We use a comparator with offset of A= 10 mV, and an amplifier with voltage
gain of 100 and a flat transfer function from 100 Hz to 10 kHz. The mean will then be L
= 0.05. For a sampler S with frequency f = 10 kHz, then the two-pole amplifier model
above predicts all covariances between x; and x,,; for j between 1 and 50 to be on the
order of 10” down to 10”. Applying the loop model, we “oversample” with f, = 30 kHz,
and then set the second sampler frequency to f. = 10 kHz. Thus r=3, and we choose a
delay of 256 bits. The output sequence z, then has zero mean, and all correlations are 0,
except p,(k) = (0.05)™ for k = 256m.

In general, our experience shows that the above structure works extremely well
under the assumption that we are reasonably faithful to the model, and we are careful
to isolate the analog source from coupling effects from the digital filter components
and other on-board components. This latter requirement is either difficult or
expensive to satisfy, but it turns out that the same techniques mentioned above
employing a double-loop topology will mitigate the effects of such coupling.

3 Reducing Coupling Effects by a Double Loop

Measured statistics on the output of an implemented single-loop RNG showed a small
mean bias. This result violated the above theory and we attributed this effect to
coupling from the high-level digital output into the analog noise source. Coupling
between the digital output and analog input is denoted by €. Since the digital output is
5 to 6 orders of magnitude larger than the analog noise levels, the coupling effect will
be significant in practical designs and will place a bias on the y,, independent of the
sub-sampling ratio. This places a fundamental upper limit on the output entropy.
However, this limit can be surmounted by placing two loops in tandem:

ANALOG
NOISE
SOURCE

Fig. 3. Double-Loop Coupling

The second loop exponentially mitigates the € coupling effect and that the first loop
will similarly reduce the €, coupling effect. In the first case, we can model the noise
source and first loop as a single noise source with some mean bias induced by €. The
second loop will greatly enhance the bit independence as shown in the single-loop
RNG analyses in the preceding sections. In the second case, the mean bias on the
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noise source output induced by & will just be treated as another noise source bias by
the first loop. In fact, we have found that two loops are enough; three or more loops
produce similar results. Again, this result is novel.

No mean bias was observed at the output of a dual-loop RNG. We have
implemented this dual-loop RNG in a single IC that includes fault-tolerance and
testability features. The performance of this device bears out the theory.

4 Chaotic RNG

This section departs from the above theory in that it treats a radically different type of
RNG termed a chaotic RNG. Due to the great disparity between analog noise and
digital signal levels, it is difficult (expensive) to ensure that interference of
undesirable (low entropic) character will not dominate the analog noise source output.
This dominance would nullify the beneficial effects of the various techniques
described above. To free ourselves of this constraint, and other constraints imposed
by other low-entropic interferers such as 1/f noise, we developed a chaotic RNG. The
chaotic RNG has the advantageous property of accepting all noises, good and bad,
and extracting their entropies. We discovered this idea by observing that the LSBs of
high-resolution A/Ds tend to yield independent bits, regardless of the statistical nature
and amplitude of the “desired” signal being converted. High resolution A/Ds require
much hardware; this hardware can be sharply minimized by implementing the A/D in
a loop with a 1-bit quantizer:

ANALOG CLOCK
SUM COMPARATOR
ANALOG ¢ OUTPUT
NOISE ><> P RHP POLE BITS
SOURCE A D Q >

Fig. 4. Chaotic RNG

The selection of the RHP (right-half-plane) pole and the clock frequency determine
the loop gain, A, of the “A/D”. A standard, radix-2 A/D can be implemented by setting

the loop gain at 2 and by setting the “analog noise source” to a fixed voltage.

Setting A to unity and replacing the “fixed voltage” by a time-varying signal
implements a sigma-delta modulator. Finally, increasing A to somewhere between 1 and
2, and replacing the “time varying signal” with an analog noise source creates a chaotic

RNG.

Electrical engineers are taught, almost from birth, to avoid poles in the right half
plane. However, the loop’s negative feedback creates a stable overall response that
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circumvents the RHP instability. We chose an RHP pole design since it provided the
simplest implementation using discrete parts. In particular, the RHP pole comprises
an OP-AMP (operational amplifier), capacitor, and a few resistors:

Fig. 5. RHP Pole Circuit

Referring back to Figure 4, we can immediately draw up an equation describing the
evolution of voltage at the OP-AMP’s output. We will call the normalized RHP pole
output voltage, at sample time nT, b_. Note that this voltage at time (n+1)T is a linear
combination of the voltage at time n, b,, the sign of the voltage at time n, sgn[b,],
thermal noise, g, and interference, s, . The first term is the initial state for the RHP
filter, and the latter three terms are inputs accumulated by the RHP filter during the
[nT, (n+1)T] period. The RHP pole will increase its initial state over this time period
by a factor of A. After normalization, the voltage is described as

b,,=4b, - sgn[bn]+ g+ s, (10)

For convenience, we will often use c, as shorthand for sgn[b,] .

4.1 What Is Chaos?

Chaos can be described as a response that grows exponentially larger with time due to
an arbitrarily small perturbation. A good introductory description to chaos is
Schuster [7]. Note that its title is “Deterministic Chaos”. In fact, it is the marriage of
(analog) deterministic chaos with an analog noise source that engenders a potent
random number generator.

Mathematically, a positive Lyapunov exponent defines chaos. In discrete time, the
Lyapunov exponent is defined as the averaged logarithm of the absolute value of gain
each cycle. For our chaotic RNG, the gain A is constant, so the Lyapunov exponent is
In(A) . Since A > 1, the exponent is positive, verifying chaos.
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4.2 Other Chaotic RNGs

Bernstein [8] and Espejo-Meana [9] describe two (of many) possible implementations
of chaotic RNGs. Of the two, Espejo-Meana is the most similar to the implementation
described here.

4.3 Why Is Chaos Good for Random Number Generation?

Chaos guarantees that any noise contribution, no matter how small and how buried in
deterministic interference, will ultimately significantly effect the output bits since the
noise’s effect increases exponentially. This means that we can greatly relax the
isolation requirements on the analog noise source. As long as the deterministic or
low-entropic interference does not lower the Lyapunov exponent by causing OP-AMP
saturation, chaotic operation will occur. In fact, we built the above circuit with both
analog and digital circuitry powered by the same +5V supply (which also powered
much other digital circuitry). We observed no interference with chaotic operation.

This RNG employs the simplest possible topology for a chaotic RNG implemented
in discretes, has a constant Lyapunov exponent, and is therefore (relatively) easily
analyzed. In Appendix A, we calculate a lower bound on the output bit entropy,
expressed in bits:

1 _ 11
H, = (N—l)logz(A)— 5]082(4' Az}r logz(ag} 1.77 (an

Here N denotes the number of successive output bits collected and o, denotes the
noise standard deviation. Note that for large N,

H, = Nlogz(A) (12)

We have implemented this chaotic RNG and have verified that its output entropy
approximates this lower bound to the precision we could measure. The output entropy
is guaranteed in the sense that it will always be greater than the bound expressed in
Equation 11, independent of any non-saturating interfering signal. This is a very
important property for an RNG. In contrast, typical non-chaotic designs are plagued
with very difficult isolation issues, tight tolerance on parameter matches, or clock
phase-locking. Chaotic designs are often plagued with regions with negative
Lyapunov exponents. Finally, both chaotic and non-chaotic designs can often be very
difficult to analyze.

4.4 Output Whitening

The derivation in Appendix A suggests a particular form of post-processing to
provide independence. Specifically, we proved that the two sides of Equation 13 are
asymptotically equal:

N-1

" (13)

AFe, = Z]A I E A*s,

k=0 k=0 k=0
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where ¢, = sgn[b,] and the s, denote the interfering signal(s). The LHS comprises a
quantizer that represents accurately a Gaussian random variable with some mean
arising from the interference. The post-processor can then re-express the LHS as a
binary number, which will comprise a standard binary-weighted A/D converter.
Selecting a (large) subset of the bits of this binary number will yield a nearly
independent bit-stream. Heuristically, the MSBs are not independent since they are
heavily influenced by the signal’s distribution. Also, the LSBs after some point
cannot convey any additional entropy, since only N log,(A) bits of entropy are
available. Thus at this point, these LSBs become deterministically related to the prior
bits. This leaves us with a mid-range of bits that are independent. Of course other
whitening methods such as post-processing via a hash function or DES are always
valid.

4.5 Concluding Remarks on Chaotic RNG

We believe that the following are novel with regard to this type of chaotic RNG: use
and implementation of RHP pole, calculation of entropy lower bound, realization that
this lower bound is independent of external interference, form of whitening filter, and
the derivation of a probability distribution.
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Appendix: Entropy Calculation

Equation (10) is cast into an equivalent form by applying the filter g A*k(.) :
k=0
(v~ = 14
AW l)bN:AbOJrZ:A*k(gkJrs,(—ck) (14)
k=0
Due to the negative feedback via the {c }, |b|<1 for all n. Thus the RHS above is
bounded in amplitude by A™" . In other words, with maximum error A™",

N-1 N-1 N-1
D Ate, mAby+Yy. A's)Y  Ag, (15
k=0 k=0 k=0

For fixed N, the RHS of Equation (A2) is the sum of:

1. The initial condition, Ab,

2. A possibly large term due to the extraneous interference called S: o

3. A zero-mean Gaussian random variable:
G= Z AiAgk
We cannot rely on Ab, and S to supply entropy, at least entropy that is unknown to
an adversary who is attempting to break a cryptosystem. The initial condition b, may
be largely deterministic if it is defined as the initial value of b, just after the circuitry
has been powered-up or supplied with a clock. Moreover, b, may be correlated to the
previous exercise of the RNG, thereby reducing its entropy. Since we cannot specify
what entropy that S will have that is unknown to the adversary, we will assume
conservatively that S is deterministic. Therefore, for the remainder of this argument,
we conservatively model the RHS of Equation (15) as a Gaussian random variable
with mean (Ab, + S) and standard deviation
o (16)

g

N1-47

O; =

The LHS of Equation (15) is the (scaled) quantized value of the RHS in the sense
that the {c } assume values of {-1,1} which can be mapped into binary ones and
zeros. The quantizer defined by the set {c } has the property that it represents the
RHS of this equation with a maximum error of A™" . There is an infinite set of
quantizers that have this same property. Generally, these quantizers would have
different entropies. The minimum-entropy quantizer with this property is one with as
few quantization steps as possible, namely one that uniformly spans [-1, +1] with step
size 2A™". The entropy of this minimum-entropy quantizer is thus a lower bound on
entropy of the {c,} quantizer. We calculate this lower bound here:

Divide the [-1, +1] range into 2M levels, M positive and M negative. Then, to a
high accuracy since M is very large,

A" a7
2

M=~
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The entropy (in nats) of this quantizer is

i3 i-i) (18)
1 e"P[‘ £0A)/f] e"P[‘ £0A)/12]

M
H, =-2 In
. ; V2 oo M V2 oo M

i denotes the mean value of the RHS of Equation (A2): ;= (Ab, +S)M - The tails of

the Gaussian pdf have been ignored since o,

., 1s small. Expanding the natural
logarithm in Equation (18) gives

i=1

M
H_ =2 In(M)+In(v2 .
nats Z N oM n(M)+ n(ﬁ O'c,)"' 202 M>

The first two terms in the brackets are independent of i1 and equivalently pre-multiply
the summation operator. The weighting function, exp(-) is just a pdf which sums to
oneﬂ The last term in the brackets, when summed, very closely approximates the

following integral where ~ _ AL/[ —Abg+ S

exp[_ (x- f)z] 7 (20)
§ e,
o 2z o, L 207,

The integral approximates unity due to the small 6,. Therefore, the entropy is
H,.,.= ln(M)+ln<\/2ﬂ' O'G)+1 (21)

Substituting for 6, and M from Equations (16) and (17), and converting to bits yields

1 _ 22
H, = (N-1)log,(4)- Elogz(l- AZ)F logz(ag} 1.77 (22)

I Again ignoring the tails of the Gaussian since . is small
g g g G
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