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Abstract. Changes in the angle of illumination incident upon a 3D
surface texture can significantly change its appearance. These changes
can affect the output of texture features to such an extent that they
cause complete misclassification. We present new theory and experi-
mental results that show that changes in illumination tilt angle cause
texture clusters to describe Lissajous’s ellipses in feature space. We
focus on texture features that may be modelled as a linear filter followed
by an energy estimation process e.g. Laws filters, Gabor filters, ring and
wedge filters. This general texture filter model is combined with a linear
approximation of Lambert’s cosine law to predict that the outputs of
these filters are sinusoidal functions of illuminant tilt. Experimentation
with 30 real textures verifies this proposal. Furthermore we use these
results to show that the clusters of distinct textures describe different el-
liptical paths in feature space as illuminant tilt varies. These results have
significant implications for illuminant tilt invariant texture classification.
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1 Introduction

It has been shown that changes in the angle of illumination incident upon a 3D
surface texture can change its appearance significantly as illustrated in Fig. 1.
Such changes in image texture can cause complete misclassification of surface
textures [1]. Essentially the problem is that side-lighting, as used for instance
in Brodatz’s texture album [2], enhances the appearance of surface texture but
produces an image which is a directionally filtered version of the surface height
function. Furthermore as the theory developed by Kube and Pentland [3] pre-
dicts, the axis of this filter is a function of the illumination’s tilt angle 1 . This is
1 In the axis system we use, the camera axis is parallel to the z-axis, illuminant tilt is
the angle the illuminant vector makes with the x-axis when it is projected into the
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Fig. 1. Two images of the same surface texture sample captured using different illu-
minant tilt angles

unfortunate as many texture classifiers employ directional filters in their feature
measures [4]. It is not surprising therefore that rotation of the directional filter
formed by the illumination function can cause conventional image-based texture
classifiers to fail dramatically. Hence the objective of this paper is to present
theory and experimental results that allow the behaviour of texture features in
classification space to be predicted as a function of the illumination’s angle of
tilt. This provides both an insight into the behaviour of existing classifiers and
a basis for the development of tilt invariant classifiers.

Very little work has been published on this subject with the exception of
[5] which presents an informal proof that texture feature means are sinusoidal
functions of the illumination’s tilt angle. Dana, Nayer, van Ginneken and Koen-
derink established the Columbia-Utrecht database of real world surface textures
which they used to investigate bidirectional texture functions [6]. Later they
developed histogram [7,8] and correlation models [9] of these textures. Leung
and Malik developed a texture classification scheme that identifies 3D ’textons’
in the Columbia-Utrecht database for the purposes of illumination and view-
point invariant classification [10,11]. Neither of these papers is concerned with
developing a theory for the tilt response of texture features. In this paper we:

1. present formal theory for the behaviour of texture feature means that also
provides expressions for the coefficients of these sinusoidal functions;

2. provide experimental data from thirty real textures 2 that support this the-
ory;

3. use this theory to show that the behaviours of texture clusters follow super-
elliptical trajectories in multi-dimensional feature spaces; and finally

x, y plane, and illuminant slant is the angle that the illuminant vector makes with
the camera axis.

2 We have not used the Columbia-Utrecht database as the illumination was held con-
stant while the viewpoint and orientation of the samples were varied during data
capture.
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4. show experimental results in 2D feature space that support the conjecture
that changes in illumination tilt cause texture clusters to follow behaviours
that may be described by Lissajous’s ellipses.

We focus on the group of texture features classified as ’filtering approaches’ by
Randen [4] such as Gabor, Laws, and ring/wedge filters. These features may
be described as a linear filter followed by an energy estimation function. This
general feature model is combined with a linearised version of Lambert’s cosine
law due to Kube and Pentland [3]. The result is theory that may be used to
predict the behaviour of texture features as a function of illuminant tilt. This
theory is presented in the next section, after which we describe results derived
from experiments with 30 textures.

2 Theory

This section derives an expression for the mean value of a texture filter as a func-
tion of the illumination’s tilt angle. The features are modelled simply as a linear
filter followed by an energy estimation process as described in the introduction.
First, however, we give a short derivation of the linear illumination model that
is necessary for the development of the theory.

2.1 A Linearised Model of Lambert’s Cosine Law

We assume that the surface has Lambertian reflection, low slope angles, and that
there is no significant shadowing or inter-reflection. Ignoring the albedo factor
Lambert’s cosine rule may be expressed as:

i(x, y) =
− cos(τ) sin(σ)p(x, y) − sin(τ) sin(σ)q(x, y) + cos(σ)√

p2(x, y) + q2(x, y) + 1
(1)

where:

i(x, y) is the radiant intensity;
p(x, y) is the partial derivative of the surface height function in x direction;
q(x, y) is the partial derivative of the surface height function in y direction;
τ is the tilt angle of the illumination; and
σ is the slant angle of the illumination respectively.

For p and q � 1 we can use a truncated Taylor’s series to linearise this equation
to:

i(x, y) = − cos(τ) sin(σ)p(x, y) − sin(τ) sin(σ)q(x, y) + cos(σ)

Transforming the above into the frequency domain and discarding the constant
term we obtain:

I(ω, θ) = [− cos(τ) sin(σ) i ω cos(θ) − sin(τ) sin(σ) i ω sin(θ)]H(ω, θ)
⇐⇒ I(ω, θ) = −i ω sin(σ) cos(θ − τ)H(ω, θ) (2)

where:
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I(ω, θ) is the Fourier transform of the image intensity function;
H(ω, θ) is the Fourier transform of the surface height function; and
(ω, θ) are polar frequency coordinates.

In this paper it is more convenient to express equation 2 in its power spectrum
form:

I(ω, θ) = ω2cos2(θ − τ)sin2(σ)H(ω, θ) (3)

where:

I(ω, θ) is the image power spectrum; and
H(ω, θ) is the surface power spectrum.

Equations 2 and 3 are similar to the model first expressed by Kube & Pentland
in [3]. In the context of this paper the most important feature of this model is the
cos(θ − τ) factor, which predicts that the imaging function acts as a directional
filter of the surface height function.

2.2 The Output of Linear Texture Filters and Their Features

We define a Linear Texture Feature as a linear filter followed by a variance
estimator[4]. The process formed by applying such a feature to an image is as
shown in Fig. 2. Since the model of the illumination process (equation 3) is
also linear we may exchange it with the linear filter (Fig. 3). We use A(ω, θ) to
represent the notional power spectrum of the output of the linear texture filter
applied directly to the surface height function.
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Thus to determine the mean output of a Linear Texture Filter we simply
have to apply Kube’s model in the form of equation 3 to A(ω, θ) and develop an
expression for the variance of the subsequent output.

The mean output of a linear texture feature is the variance of the output
o(x, y) of its linear filter:

f(τ) = VAR(o(x, y)) (4)

If we assume that o(x, y) has a zero mean and that O(ω, θ) is its power spectrum
expressed in polar co-ordinates then we may express equation 4 as:

f(τ) =

∞∫
−∞

∞∫
−∞

O(ω, θ) du dv

⇐⇒ f(τ) =

∞∫

0

2π∫

0

ω O(ω, θ) dθ dω (5)

Using equation 3 we can express O(ω, θ) as follows:

O(ω, θ) = |F(ω, θ)|2ω2cos2(θ − τ)sin2(σ)H(ω, θ)
⇐⇒ O(ω, θ) = ω2cos2(θ − τ)sin2(σ)A(ω, θ) (6)

where:

F(ω, θ) is the transfer function of the linear filter; and
A(ω, θ) = H(ω, θ)|F(ω, θ)|2

Substituting equation 6 into equation 5 we obtain:

f(τ) =

∞∫
−∞

ω3sin2(σ)

2π∫

0

cos2(θ − τ)A(ω, θ) dθ dω (7)

In a previous paper [5] we used an informal argument to show equation 7 is a
sinusoidal function of τ . However, in this paper we make a simple trigonometrical
substitution.

Using:

cos2(x) = 1/2 (1 + cos(2x)) and cos(x − y) = cos(x)cos(y) + sin(x)sin(y)

gives:

f(τ) =

∞∫

0

ω3sin2(σ)

2π∫

0

1/2 [1 + cos(2θ)cos(2τ) + sin(2θ)sin(2τ)]A(ω, θ) dθ dω

= a + b cos(2τ) + c sin(2τ)
= a + d cos(2τ + φ) (8)
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where:

a = 1/2 sin2(σ)

∞∫

0

ω3

2π∫

0

A(ω, θ) dθ dω

b = 1/2 sin2(σ)

∞∫

0

ω3

2π∫

0

cos(2θ)A(ω, θ) dθ dω

c = 1/2 sin2(σ)

∞∫

0

ω3

2π∫

0

sin(2θ)A(ω, θ) dθ dω

d =
√

b2 + c2, φ = arctan(c/b)

The above parameters (a, b etc.) are all functions of illuminant slant (σ) and
A(ω, θ), which is itself a function of the surface height function and the linear
texture filter. None of them is a function of illuminant tilt (τ). Thus equation 8
predicts that the output of a texture feature based on a linear filter is a sinusoidal
function of illuminant tilt 3 with a period π radians.

2.3 Behaviour in a Multi-dimensional Feature Space

As texture classifiers normally exploit the output of several features it is im-
portant to investigate the behaviour of texture features in multi-dimensional
decision space.

If two different features are derived from the same surface texture, the results
can be plotted in a two-dimensional x, y feature space. Using our sinusoidal
prediction we obtain the general behaviour:

x = f1(τ) = a1 + b1 cos(2τ + φ1)

y = f2(τ) = a2 + b2 cos(2τ + φ2)

Since the frequency of the two cosines is the same these two equations form two
simple harmonic motion components. Therefore the trajectory in 2D feature
space is in general a Lissajous ellipse.

There are two special cases. If the surface is isotropic and the two filters
are identical except for a difference in direction of 90◦, the mean value and the
oscillation amplitude of the two features are the same and the phase difference
becomes 180◦. Thus we predict that the scatter plot for isotropic textures and
two identical but orthogonal filters is a straight line.
3 In the case of A(ω, θ) being isotropic (for instance if both the surface and the filter
are isotropic) the response will degenerate to a sinusoid of zero amplitude, i.e. it will
be a constant (straight-line) function of τ . However, if an isotropic filter is applied
to a directional surface then A(ω, θ) will not be isotropic and the tilt response will
be a sinusoidal function of tilt.
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If the surface is isotropic and the two filters are identical except a difference
in direction of 45◦, the mean value and the oscillation amplitude of the two
features are again the same but the phase difference is now 90◦. In this case we
predict that the scatter plot is a circle.

The line and the circle are the two special cases of all possible curves. In the
general case of two or more filters the result is an ellipse or super-ellipse.

2.4 Summary of Theory

In this section we derived a formula of the behaviour of texture features as a
sinusoidal function of illuminant tilt. The parameters of this equation f(τ) =
a+ d cos(2τ + φ) are dependent on the height map of the surface and the linear
texture filter. We also predicted that the resulting figure in a multi-dimensional
feature space is a super-ellipse.

3 Assessing the Validity of the Sinusoidal Output
Prediction

The theory in the previous section predicts that the outputs of texture features
derived from linear filters are sinusoidal functions of the illuminant tilt angle
and share a common form:

f(τ) = a + d cos(2τ + φ) (9)

The purpose of this section is to present results from a set of experiments that
were designed to assess the validity of this proposition. We used 30 different real
surfaces and filtered them with six Gabor and two Laws filters. Two different
slant angles were used and this resulted in a total of 324 datasets. Each dataset
was assessed to see how closely it followed a sinusoidal function of 2τ using a
goodness of fit error metric.

In this section we summarise the results using a histogram of the values of
this error metric and present upper quartile, median and lower quartile results.
First however, we will briefly describe the image-set, the texture features, and
the error metric.

3.1 The Image-Set

Thirty physical texture samples were used in our experiments. 512x512 8-bit
monochrome images were obtained from each sample using illumination tilt an-
gles ranging between 0◦ and 180◦ degrees incremented by either 10◦ or 15◦ degree
steps. All textures were illuminated at a slant angle of 45◦. In addition six sur-
faces were also illuminated at a slant angle of 60◦. The final dataset contains
over 600 images. Table 1 contains one example image of every texture.
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3.2 The Texture Features

Gabor filters [12] have been very popular in the literature so we have used six
texture features of this type. In addition two Laws filters [13] were also used as
they are extremely simple to implement, are very effective, and were one of the
first sets of filters to be used for texture classification.

Gabor Filters. We use the notation typeFΩAΘ to denote a Gabor filter with
a centre frequency of Ω cycles per image-width, a direction of Θ degrees, and
of type complex or real. Five complex Gabor filters (comF25A0, comF25A45,
comF25A90, comF25A135, comF50A45) together with one real Gabor filter (re-
alF25A45) were implemented. All of the Gabor filters were implemented in the
frequency domain.

Laws Filters. Laws [13] developed a set of two-dimensional FIR filters derived
from three simple one-dimensional spatial domain masks.

L3 = (1,2,1) =⇒ “level detection”
E3 = (-1,0,1) =⇒ “edge detection”
S3 = (-1,2,-1) =⇒ “spot detection”

Laws reported that the most useful filters were a set of 5x5 filters which he
obtained by convolving, and transposing his 3x1 masks. We have used two here:
L5E5 and E5L5.

L5E5 = L5T ∗ E5 = (L3 ∗ L3)T ∗ (L3 ∗ E3) =




−1 −2 0 2 1
−4 −8 0 8 4
−6 −12 0 12 6
−4 −8 0 8 4
−1 −2 0 2 1




The E5L5 mask is simply the transpose of L5E5. These filters were implemented
in the spatial domain and post-processed with a 31x31 variance estimator.

3.3 The Error Metric

The output of each filter/texture combination was plotted against illuminant
tilt angle τ . According to the preceding theory each of these graphs should be
a sinusoidal function of 2τ (equation 9). As we do not have the surface height
functions we cannot directly calculate the parameters of these equations. We
therefore compute the best fit sinusoid for each graph using Fourier analysis for
the angular frequency 2 radians/radian 4 . To determine how close a dataset
is to our theoretical prediction we calculate an error metric: the mean squared
difference between the experimental data and their corresponding best-fit esti-
mates.
4 As the x-axis is the tilt angle which may be measured in either radians or degrees,
the period may be expressed as either π radians or 180◦. Corespondingly the angular
frequency may be expressed as fracπ90 radiansdegree or as 2 radiansradian.
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3.4 Results (1D)

Figure 4 provides a graphical summary of our results. It is a histogram of the er-
ror metrics obtained from the experiments. It shows an asymmetric distribution
in which errors range from 0.01, signifying an extremely good fit, up to three out-
liers at around 0.29. Figure 5 shows the behaviour of two complex Gabor filters
over the complete range of thirty textures. It also contains the median, upper,
and lower quartile lines (at 0.036, 0.056 and 0.024 respectively) determined over
all of the results.

In order to provide an insight into what these error values mean we have se-
lected twelve sample graphs for display. Four results closest to the median error,
four results closest to the lower quartile, and the four closest to the upper quar-
tile, have been selected to represent typical, good, and poor results respectively.
These are shown in figure 6, figure 7, and figure 8 respectively.

Fig. 4. Histogram of error metric values for the goodness of fit of sinusoidal functions
to feature/tilt angle graphs. Low values, e.g. the eight occurrences of 0.01, indicate
that very good sinusoidal fits were obtained for those graphs of feature output against
illuminant tilt angle. High values, e.g. the three outliers around 0.28 indicate a bad fit

What is evident from these results is that even filter/texture combinations
with ’poor’ error metrics (shown in figure 8) follow the sinusoidal behaviour quite
closely. This is all the more surprising considering how many of our textures
significantly violate the ’no shadow’ and ’low slope angle’ assumptions. Textures
michael1 and michael5 for instance obviously contain many shadows and high
slope angles (see table 1) yet the tilt responses shown in figure 8 show that they
are still approximately sinusoidal.
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Fig. 5. Bar-chart of error metric values for the complex Gabor filters F25A45 &
F25A135 showing how the goodness of fit varies over the different texture samples.
The dashed lines show the median, upper and lower quartile values. Sample images of
the textures and7 to rock1 are shown in the table 1.

Fig. 6. Four datasets with error metrics closest to the median error of 0.036. (Each
plot shows how one output of one feature varies when it is repeatedly applied to the
same physical texture sample, but under varying illuminant tilt angles. Discrete points
indicate measured output and the curves show the best-fit sinusoids of period 2τ)
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Fig. 7. The four datasets closest to the lower quartile (0.024)

Fig. 8. The four datasets closest to the upper quartile (0.056)



300 M. Chantler et al.

Fig. 9. The behaviour of six textures in the comF25A0/comF25A45 feature space
together with the best fit ellipses (each point on an ellipse denotes a different value of
illuminant tilt)

3.5 Results (2D)

Given that the 1D results show that a large number of feature/texture combina-
tions follow a sinusoidal function of tilt, then the behaviour of cluster means in
a multi-dimensional feature space should be of a super-elliptical form. In order
to provide additional evidence for this proposition we plotted the results in a
number of 2D feature spaces. We used the parameters derived from the best-fit
sinusoids to determine the equations of the ellipses in these 2D spaces.

Figure 9 shows one of these sets of plots. The behaviours of cluster means of
six textures in the F25A0/F25A45 feature space are shown together with their
best fit ellipses. Because in this case the filters are identical except a difference
in direction of 45◦, the curve of the isotropic surface rock1 is a circle.

It can be seen that the ellipses of different textures cross each other showing
that illumination tilt invariant classification using a simple linear classifier is not
possible.
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Table 1. One image of each of the thirty sample textures

and1(zoomed) and2(zoomed) and3(zoomed)

and4(zoomed) and5(zoomed) and6(zoomed)

and7(zoomed) bigdir45 iso45

radial45 rock45 slab45

slate45 stri45 twins45

wood chips1 card1



302 M. Chantler et al.

beans1 rock1 stones2

michael1 michael2 michael3

michael4 michael5 michael6

michael7 michael8 michael9

4 Conclusions

We have presented new theory and new experimental results that support our
proposal that the means of texture features derived from linear filters are sinu-
soidal functions of illuminant tilt (τ). That is:

f(τ) = a + d cos(2τ + φ)

As these behaviours are of the same frequency, but differ in amplitude and phase,
they form a set of simple harmonic components. The trajectories of cluster means
therefore describe Lissajous’s figures in a two dimensional feature space, and in
general follow super-elliptical trajectories in multidimensional feature spaces.

What is perhaps most surprising is that the empirical results agree well with
these theoretical predictions given that many of our samples clearly violate the
low-slope-angle and no-shadow assumptions.
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These results explain why texture classifiers can fail when the tilt angle is
changed and suggest that, given suitable training data, this behaviour may be
exploited for the design of tilt invariant texture classifiers.
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