Multi-view Matching for Unordered Image Sets,
or “How Do I Organize My Holiday Snaps?”

F. Schaffalitzky and A. Zisserman

Robotics Research Group
University of Oxford
{fsm,az}@robots.ox.ac.uk

Abstract. There has been considerable success in automated recon-
struction for image sequences where small baseline algorithms can be
used to establish matches across a number of images. In contrast in the
case of widely separated views, methods have generally been restricted
to two or three views.

In this paper we investigate the problem of establishing relative view-
points given a large number of images where no ordering information
is provided. A typical application would be where images are obtained
from different sources or at different times: both the viewpoint (position,
orientation, scale) and lighting conditions may vary significantly over the
data set.

Such a problem is not fundamentally amenable to exhaustive pair wise
and triplet wide baseline matching because this would be prohibitively
expensive as the number of views increases. Instead, we investiate how a
combination of image invariants, covariants, and multiple view relations
can be used in concord to enable efficient multiple view matching. The
result is a matching algorithm which is linear in the number of views.
The methods are illustrated on several real image data sets. The output
enables an image based technique for navigating in a 3D scene, moving
from one image to whichever image is the next most appropriate.

1 Introduction

Our objective in this work is the following: given an unordered set of images,
divide the data into clusters of related (i.e. from the same scene) image and
determine the viewpoints of each image, thereby spatially organizing the image
set. The need for solving this problem arises quite commonly. For example, the
image set may have been acquired by a person photographing a scene (e.g. a
castle or mountain) at various angles while walking back and forth around the
area. Or the set may be the response from a query to an image database (e.g. a
web search engine). Typical examples of such image sets are given in figures [
and [2

Much of the research on structure and motion recovery has concentrated
on image sequences, and there are two consequences of this: first, there is an
ordering on the image set, and it is natural to use this ordering, at least initially,
in the processing; second, it has allowed small baseline algorithms to be used

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2350, pp. 414-[431] 2002.
(© Springer-Verlag Berlin Heidelberg 2002

Multi-view Matching for Unordered Image Sets 415

Fig. 1. Fifteen images of the church in Valbonne, France.

Fig. 2. Fifteen images (from a set of 46) of Raglan Castle, Wales.

416 F. Schaffalitzky and A. Zisserman

between consecutive frames of the sequence. Many successful systems strongly
use this ordering [1I3/4] as a means of sewing together long feature tracks through
the sequence and generating initial structure and camera estimates. Given these
estimates further matches may then be sought between non-contiguous frames
based on approximate spatial overlap of the views [7J17].

In our case we do not have an ordering, so there is no natural sequence in
which to process the images, and also we cannot know a prior:i that between-
view motions are small. Consequently we will require wide baseline matching
methods [2TOT2TTTHT6/TRI2TI23124] to compute multiview relations. In prac-
tice, computing view clusters will be difficult because wide baseline matching is
difficult but in this paper we will see how far we can go by applying imperfect
wide baseline stereo techniques to multi-view data sets.

How to proceed? We could attempt to mimic the image sequence (ordered
set) processing paradigm and compute a fundamental matrix between all N-
choose-2 views (using a suitable wide baseline algorithm), then follow this by
computing trifocal geometry over all N-choose-3 views, and finally sew together
the resulting matches into tracks throughout our view set. Clearly we would
rather not do this as it will become prohibitively expensive as N increases — a
complexity of at least O(N?) for trifocal geometry and to this must be added
the cost of sewing together all three-view matches.

Instead we divide the problem into three stages: first (section [Z) we develop
an efficient indexing scheme based on invariant image patches. The output is a
table of features vs views, so that for each feature point its putative matches
over multiple views are known. The table at this stage will contain many am-
biguous (i.e. not one-to-one matches) and many erroneous matches. The overall
complexity of this stage is data dependent but the main parameter is the total
number of features in the data set, which is linear in the number of images.

In the second stage (section B) the quality of the matches is improved by a
number of global “clean-up” operations such as selective use of two-view and
three-view matching constraints. The output is a feature vs view table with
considerably more correct matches, and fewer incorrect matches. The complexity
of this stage, which is opportunistic, is linear in the number of views.

In the third stage (section M) a 3D reconstruction of cameras and points
is computed for connected sub-sets of views using the multiple view tracks.
The difficulty is that between some views there will be no matches because
the viewpoint footprints do not overlap or the images might even have been
taken from two different scenes. In either case, the set of input images should
be expected to split into clusters and the objective is to find those clusters, the
larger the better.

Once the cameras are computed the images can be viewed coherently by
embedding them in a VRML model, or by driving an image based renderer
directly from the estimated scene geometry.

Multi-view Matching for Unordered Image Sets 417

2 From Images to Multiview Matches

In this section our objective is to efficiently determine putative multiple view
matches, i.e. a point correspondence over multiple images.

To achieve this we follow the, now standard, approach in the wide baseline
literature, and start from features with viewpoint invariant descriptors. The
viewpoint transformations which must be considered are an affine geometric
transformation and an affine photometric transformation.

Features are determined in two stages: first, regions which transform covari-
antly with viewpoint are detected in each image, second, a vector of invariant
descriptors is then computed for each region. The invariant vector is a label for
that region, and will be used as an index into an indexing structure for matching
between views — the corresponding region in other images will (ideally) have
an identical vector.

These features are determined in all images independently. The descriptors
for all images are then stored in the indexing structure. Features with ‘close’
descriptors establish a putative multiple view match. These steps are described
in more detail in the following subsections.

Fig. 3. Invariant neighbourhood process. Left: close-up of original image. Middle: three
detected interested points, their associated scale indicated by the size of the circles.
Right: the corresponding affine-adapted neighbourhoods.

2.1 Covariant Regions

We use two types of features: one based on interest point neighbourhoods, the
other based on the “Maximally Stable Extremal” (MSE) regions of Matas and
Palecek [11]. Both features are described in more detail below. Each feature
defines an elliptical region which is used to construct an invariant descriptor.

Invariant neighbourhoods: In each image independently we compute interest
points, to each of which is associated a characteristic scale. The scale is computed
using the method of [I3] and is necessary in order to handle scale changes be-
tween the views. For each point we then attempt to compute an affine invariant

418 F. Schaffalitzky and A. Zisserman

neighbourhood using the method proposed by Baumberg [2]. The method is an
adaptive procedure based on isotropy of the second moment gradient matrix [§].
If successful, the output is an image point with an elliptical neighbourhood which
transforms co-variantly with viewpoint Similar neighbourhoods have been devel-
oped by Mikolajczyk and Schmid [I4].

For a 768 x 512 image the number of neighbourhoods computed is typically
2000 but the number depends of course on the image. See figure[3 for an example.
The computation of the neighbourhood generally succeeds at points where there
is signal variation in more than one direction (e.g. near “blobs” or “corners”).

To illustrate “what the computer sees”, figure dl shows just those parts of an
image which are in a support region of some invariant neighbourhood.

Fig. 4. The support regions used to compute invariants are shown here using original
image intensities. The representation is clearly dense and captures most of the salient
image parts while discarding smooth regions, such as the sky. The large “sea” in the
right-most image is a featureless lawn.

MSE regions: The regions are obtained by thresholding the intensity image and
tracking the connected components as the threshold value changes. A MSE region
is declared when the area of a component being tracked is approximately station-
ary. The idea (and implementation used here) is due to Matas and Palecek [11]
(see figure Blfor an example). Typically the regions correspond to blobs of high
contrast with respect to their surroundings. For example a dark window on a
grey wall. Once the regions have been detected we construct ellipses by replacing
each region by an ellipse with the same 2nd moments.

2.2 Choice of Invariant Descriptor

Given an elliptical image region which is co-variant with 2D affine transforma-
tions of the image, we wish to compute a description which is invariant to such
geometric transformations and to 1D affine intensity transformations. The choice
of descriptors we use is novel, and we now discuss this.

Invariance to affine lighting changes is achieved simply by shifting the signal’s
mean (taken over the invariant neighbourhood) to zero and then normalizing its
power to unity.

The first step in obtaining invariance to image transformation is to affinely
transform each neighbourhood by mapping it onto the unit disk. The process

Multi-view Matching for Unordered Image Sets 419

Fig. 6. Illustration of the invariant indexing stage. The query point is taken from the
second image (from the left) and the hits found in the index structure are shown in the
other images. Below each image is the corresponding affine normalized image patch.
Note that the patches are approximately rotated versions of each other. This shows
only four of the eight “hits” correctly found for this particular point.

is canonical except for a choice of rotation of the unit disk, so this device has
reduced the problem from one of affine invariance to computing rotational in-
variants of a scalar function (the image intensity) defined on the unit disk. This
idea was introduced by Baumberg in [2].

The objective of invariant indexing is to reduce the cost of search by discard-
ing match candidates whose invariants are different. While two very different
features can have similar invariants, similar features cannot have very differ-
ent invariants. Conceptually, the “distance” in invariant space predicts a lower
bound on the “distance” in feature space. Our invariant scheme is designed so
that Euclidean distance between invariant vectors actually (and not just concep-
tually) provide a lower bound on the SSD difference between image patches. By
contrast Schmid [20] and Baumberg [2] both learn a distance metric in invariant
space from training data, which has the disadvantage of tuning the metric to
the domain of training data.

420 F. Schaffalitzky and A. Zisserman

We apply a bank of linear filters, similar to derivatives of a Gaussian, and
compute rotational invariants from the filter responses. The filters used are de-
rived from the family

Kmn(z,y) = (z +iy)" (x — iy)" G(z,y)

where G(z,y) is a Gaussian. Under a rotation by an angle 6, the two complex

quantities z = x + iy and Z = x — iy transform as z — ez and z — ez,
so the effect on K,,,, is simply multiplication by e*™~™¢_ Along the “diagonal”
given by m — n = const the group action is the same and filters from different
“diagonals” are orthogonal so if we orthonormalize each “diagonal” separately
we arrive at a new filter bank with similar group action properties but which is
also orthonormal. This filter bank differs from a bank of Gaussian derivatives
by a linear coordinates change in filter response space. The advantage of our
formulation is that the group acts separately on each component of the filter
response and doesn’t “mix” them together, which makes it easier to work with.
Note that the group action doesn’t affect the magnitude of filter responses but
only changes their relative phases. We used all the filters with m +n < 6 and
m > n (swapping m nd n just gives complex conjugate filters) which gives a
total of 16 complex filter responses per image patch.

Taking the absolute value of each filter response gives 16 invariants. The
inequality ||z| —|w|| < |z—w| guarantees (by Parseval’s theorem — the filter bank
is orthonormal) that Euclidean distance in invariant space is a lower bound on
image SSD difference. Unfortunately, this ignores the relative phase between the
components of the signal.

Alternatively, following [I3] one could estimate a gradient direction over the
image patch and artifically “rotate” each coefficient vector to have the same
gradient direction. This would give twice as many (32) invariants, but doesn’t
work well when the gradient is close to zero.

Instead, we find, among the coefficients for with p = m — n # 0 the one
with the largest absolute value and artificially “rotate” the patch so as to make
the phase 0 (i.e. the complex filter response is real and positive). When p > 1
there are p ways to do this (p roots of unity) and we just put all the p candidate
invariant vectors into the index table. The property of distance in invariant
space being a lower bound on image SSD error is also approximately true for
this invariant scheme, the source of possible extra error coming from feature
localization errors.

Summary: We have constructed, for each invariant neighbourhood, a feature
vector which is invariant to affine intensity and image transformations. Morever,
the Euclidean distance between feature vectors directly predicts a lower bound
on the SSD distance between image patches, obviating the need to learn this
connection empirically.

2.3 Invariant Indexing

By comparing the invariant vectors for each point over all views, potential
matches may be hypothesized: i.e. a match is hypothesized if the invariant vec-

Multi-view Matching for Unordered Image Sets 421

tors of two points are within a threshold distance. See figure [f] for illustration.
These are the “hits” in the indexing structure, and since each must be attended
to, the overall complexity depends at the very least on the total number of hits.

Indexing structure: The query that we wish to support is “find all points
within distance ¢ of this given point”. We take € to be one tenth of the image
dynamic range (recall this is an image intensity SSD threshold).

For the experiments in this paper we used a binary space partition tree,
found to be more time efficient than a k-d tree, despite the extra overhead.
The high dimensionality of the invariant space (and it is generally the case that
performance increases with dimension) rules out many indexing structures, such
as R-trees, whose performances do not scale well with dimension.

2.4 Verification

Since two different patches may have similar invariant vectors, a “hit” match
does not mean that the image regions are affine related. For our purposes two
points are deemed matched if there exists an affine geometric and photomet-
ric transformation which registers the intensities of the elliptical neighbourhood
within some tolerance. However, it is too expensive, and unecessary, to search
exhaustively over affine transformations in order to verify every match. Instead
we compute an approximate estimate of the local affine transformation between
the neighbourhoods from the characteristic scale and invariants. If after this
approximate registration the intensity at corresponding points in the neighbour-
hood differ by more than a threshold, or if the implied affine intensity change
between the patches is outside a certain range, then the match can be rejected.
Table [shows the time taken by, and the number of matches involved in, this
process.

Table 1. Typical timings for the initial stages on a 2.0GHz Xeon processor. Most of the
time is taking up by querying the index table, although it is an empirical observation
that the majority of multi-tracks are small. Verification by correlation typically removes
30% of the putatives matches.

Valbonne| Raglan
Total number of features 39544| 402622
Intra-image hashing (ms) 8130| 159400

Distintive features 37628| 384068
Inter-image hashing (ms) 30760(2513520
Number of matches 14349| 717721
Correlation (ms) 6930| 313530
Number of matches 9168| 332063

The outcome of the indexing and verification stages is a large collection of
putative “multi-tracks”; a multi-track is simply the set of matches resulting from

422 F. Schaffalitzky and A. Zisserman

a query to the index table. A multi-track thus gives rise to a number of feature
track hypotheses by selecting a subsets with at most one feature taken from each
image. The index table matches two features if they merely “look” similar up
to an affine transformation, so the possible putative tracks contain many false
matches (e.g. one corner of a window in one image will match all the corner
of the window in another image). To reduce the confusion, we only consider
features which are “distinctive” in the sense that they have at most 5 intra-
image matches. Thus, we use within-image matching (a process that is linear in
the number of views) to reduces the cost inter-matching.

For the 15-image Valbonne sequence, the result of hashing and verification
is summarized in table[[. Each entry counts the number of putative two-view
matches implied by the list of multi-tracks. Note, this is only a picture of the
feature vs view data structure; one could also generate from it an N x N x N
table of 3-view match counts, or 4-view match counts etc.

~
-

clkoocoococoocoocoococoooolRr

4‘91234367891011121314
0/0 106 103 98 99 86 7427 84 65 90 67 54 51 83
0 0174105104 67 7634 77 74 80 95 69 63 67

0 0169103108 8634101 77 74 94 55 59 61
0146 164 114 28 84105 58 92 52 35 61
0 0 0 013511142113111 74101 65 62 83
0 0 0 0 016137 86107 95 52 33 56
0 0 0 062135155 96 66 52 63
0 00 67 46 32 27 33 25 43
0 0 0141104117 68 81 74 8
00 0 0 77141 72 54 64 9
0258204 126 77 10
0 0217123 83 11
0 0 0148 81 12
0 0 0 018 13
00 0 0 0 14

@
&

ccocococcocoocococRooow
N
iS5

Soo
o
o
ccocoococcooocoocoRooow

=
&

ccocococcoococdiocoooo|e

=

cooo
o
o

oo
oo
oo
oo
ccoccocococficococoocoo|m
=
ccocococorRo@cocoooo|e

Ccocoococooococooo oo
ccocococococoocoo 300w

ccoococcooocoococoooo
»

(

0
0
0
0
0
0

=
Sooccoo
cooccoo
cocooccoo

0
0
0
0
0

cococo
cococco
cococo

Fig. 7. Left: Number of initial two-view connections found between the view of the Val-
bonne image set. Right: Number of new two-view connections found (see section [3:3)).

The problem now is that there are still many false matches. These can be re-
solved by robustly fitting multi-view constraints to the putative correspondences
but to do so naively is prohibitively expensive since the number, say, of funda-
mental matrices is quadratic in the number of views. Instead, we will use the
table to guide a heuristic for singling out pairs of views which it will be worth
spending computational effort on.

For each pair of views that we do single out, we want out algorithm to have
the best chance of working. This is the subject of the next section.

3 Improving the Multiview Matches

Given the putative multiple matches of section [2 our objective in this section
is to build up a sufficient number of correct point matches between the views
in order to support camera computation over a significant sub-set of the views.
The computation of cameras from these matches is then the subject of section El

Our task here then is to “clean-up” the multiple view matches: remove erro-
neous and ambigous matches and add in new correct matches.

The matching constraint tools at our disposal range from semi-local to global
across the image. Semi-local constraints are on how sets of neighbouring points

Multi-view Matching for Unordered Image Sets 423

transform (for example a similar photometric or geometric transformation), and
global are the multi-view relations which apply to point matches globally across
the image (such as epipolar and trifocal geometry). These constraints can be
applied at various points and order in a matching strategy, and can be used
both to generate new matches and to verify or refute existing matches.

The strategy we employ here is to improve the matches between selected view
pairs. There are three steps (1) select view pair, (2) grow additional matches, (3)
compute the epipolar geometry to reject incorrect matches. These three steps
are described below.

However, it is important to note that in improving matches between a par-
ticular view pair has consequences for the matches between other pairs of images
(by tracking a feature from view to view) in the view set. This is a key point
because it means that a linear number of operations results in improvements
that naively would require quadratic, or cubic etc time.

3.1 Growing Matches

Given a verified match between two views, the estimated affine transforma-
tion between the patches can be refined using direct photometric registration
(similar to the Lucas-Kanade [9] algorithm) with correction for affine intensity
changes. This verification is expensive as it involves a six-parameter (four geo-
metric and two photometric) numerical optimization which is carried out using
the Levenberg-Marquardt algorithm. Even a special-purpose implementation of
this is quite slow and it is unwise to apply it indiscriminantly.

Once computed, the fitted local intensity registration provides information
about the local orientation of the scene near the match; for example, if the camera
is rotated about its optical axis, this will be reflected directly by cyclo-rotation in
the local affine transformation. The local affine transformation can thus be used
to guide the search for further matches. This idea of growing matches [16] enables
matches which have been missed as hits, perhaps due to feature localization
errors, to be recovered and is crucial in increasing the number of correspondences
found to a sufficient level.

Growing is the opposite of the approach taken by several previous re-
searchers [20/25], where the aim was to measure the consistency of matches
of neighbouring points as a means of verifying or refuting a particular match.
In our case we have a verified match and use this as a “seed” for growing. The
objective is to obtain other verified matches in the neighbourhood, and then use
these to grow still further matches etc.

We use the estimated affine transformation provided by the initial verified
match to guide the search for further matches (see figure B) which are then
verified in the standard manner. Figure[d demonstrates that many new matches
can be generated from a single seed.

424 F. Schaffalitzky and A. Zisserman

image 1 image 2

\ A _/%-
Fig. 8. Illustration of the use of local registration to guide the search for further
matches.

Fig.9. A seed match (left) and the 25 new matches grown from it (right).

3.2 Robust Global Verification

Having grown matches the next step is to use fundamental matrix estimation be-
tween pairs of views with a sufficient number of matches. This is a global method
to reject outlying two-view matches between each pair of views. A novelty here
is to use the affine transformations between the patches in the computation, by
imposing the constraint that points transferred under the affine transformation
agree with the fundamental matrix in an infinitesimal neighbourhood. The con-
sequence is that only 3 points are needed for each RANSAC sample, as opposed
to 7 if only the position of the point is used [6].

3.3 Greedy Algorithm

The next objective is to efficiently select pairs of views to process using two-view
matching constraints in order to “clean up” the putative matches in the feature
vs view table. Our approach will be to construct a spanning tree on the set of
images in the data set. How do we select the edges of the tree? Starting from
the pair of images with the most putative two-view matches, we robustly impose
the epipolar constraint and then join up those images in the graph. Then we do
the same for the pair of images with the highest number of two-view matches,
subject to the constraint that joining those images will not create a cycle in the
graph. If there are N images, the spanning tree will have N — 1 edges so this
process is linear in the number of views.

Figure [[0] shows the spanning tree obtained in this way and table [0 shows
the difference between the number of two-view matches before and after this
process has been applied to the Valbonne data set. It can be seen that in all
cases considered, the number of matches increased, sometimes significantly. Once
the spanning tree has been constructed, we delete any edges corresponding to
fewer than 100 matches. In the Valbonne example, this has no effect but in

Multi-view Matching for Unordered Image Sets 425

R iprie
o

Fig. 10. Two-view connections found between the views of the Valbonne image set.

—_

the Raglan data set it causes the graph to break into 11 connected components
corresponding to distinct scenes, or views of the same scene that were difficult
to match. In the next stage, each such component is treated separately.

In summary, we have described a method for singling out particular views
for processing which allows us to split the data set into subsets that are likely
to be related. The complexity of all stages is linear in the number of views.
This process is of course sub-optimal compared to enforcing epipolar constraints
between all pairs of images but on the data sets tried, it gives almost comparable
performance.

4 From Matches to Cameras

The objective now is to compute cameras and scene structure for each of the
components from the previous section separately. Our sub-goal is to find many
long tracks (i.e. correspondences across many views) as this is likely to correlate
with large a baseline, and a large baseline increases the chance of a successful
reconstruction. To achieve this we use a greedy algorithm.

Since we wish to use the reconstruction as a means of spatially organizing the
views we require a metric (or at least quasi-affine [5]) reconstruction, and we use
the standard approach of first computing a projective reconstruction, followed
by auto-calibration [6] using the constraint that the camera has square pixels.

Estimating cluster geometry: In general the cluster of views we are faced
with will not have many complete tracks across them, which makes it necessary
to compute structure for a sub-set of views first and then enlarge to more views
using common scene points. The question is how to select the initial sub-set of
views.

Our approach is to order the views in each component, again greedily, by
starting with the pair with the most matches and sequentially adding in the
next view with the largest number of matches, subject to it being adjacent to a
view already included. Now we have an ordering on our image set.

426 F. Schaffalitzky and A. Zisserman

We next look at the initial subsequences of length two, three, four, ... in
each ordered image set and compute the number of tracks that can be made
across the whole subsequence. We take the longest subsequence with at least
25 complete tracks and then use the 6-point algorithm from [19] to robustly
compute projective structure for the subsequence, bundle and then sequentially
re-section the remaining cameras into the reconstruction, bundling [22] as we go.
The process of selecting a subsequence is linear in the number of views but, of
course, structure estimation with repeated bundle adjustment is not.

For the Valbonne sequence, the ordering of the views and the number of
complete tracks is shown in table 21

Table 2. As the number k of views used increases, the number of complete tracks
(those seen in all views) decreases. The number of reconstructed points tends to increase
initially, then plateau and eventually decrease. A compromise must be reached.

k |views tracks|points
2 11,12 377 377
319,11,12 94| 423
46,9,11,12 52| 666
515,6,9,11,12 33| 869
6 |3,5,6,9,11,12 18| 1072
712,3,5,6,9,11,12 11| 1208
812,3,4,5,6,9,11,12 8| 1200
91,2,3,4,5,6,9,11,12 6 1319

For the resectioning it is important to have Euclidean reconstruction because
when image overlap is small the scene is often nearly flat so one needs to make
calibration assumptions in order to be able to re-section the cameras. We assume
square pixels.

Overall we have moved from a sparse “backbone” of good two-view matches
(end of section @) to a “weaving” together of the views [7IT7] via the computed
structure. Instead of sparse connections between pairs of views we now have a
global view of our data set, facilitated by being able to quickly look up relation-
ships in the feature vs view table.

4.1 Results

In the case of the Valbonne image set the views have sufficient overlap to form
a single cluster, but the Raglan image set splits into three clusters of size eight,
five and two.

Valbonne: This is a 15 image set, and cameras are computed in a single recon-
struction over all the views, shown in figure [Tl

Multi-view Matching for Unordered Image Sets 427

Raglan: This is a set of 46 images which breaks into several clusters, the largest
consisting of 8 views. Some such clusters are shown if figures [12] and

5 Algorithm Summary

The strategy involves hypothesizing matches (the hash table) with hypotheses
being refuted, verified or grown based on progressively more global image neigh-
bourhood and multiple view constraints.

1. Detect two types of feature independently in each image, and compute their in-
variant descriptors.
2. Use hashing (followed by correlation, but no registration) to find initial putative
matches and make a table counting two-view matches.
3. Greedy spanning tree growing stage:
a) Choose the pair 7, j of images with the largest number of matches, subject to
i, j not already being in the same component.
b) Apply full two-view matching to images ¢ and j, that is:
i. Increase correlation neighbourhood sizes if this improves the score.
ii. Intensity based affine registration.
iii. Growing using affine registrations.
iv. Robustly fit epipolar geometry.
¢) Join images ¢ and j in the graph.
d) Repeat till only one component is left.
4. Form connected components of views as follows:
a) Erase from the spanning tree all edges corresponding to fewer than 100
matches.
b) Greedily grow connected components as before; this induces an ordering on
the images in each component.
¢) From each ordered component, choose the largest initial subsequence of images
with at least 25 complete tracks.
d) Compute (Euclidean) structure for that subsequence.
e) Re-section the remaining views into the reconstruction in order, bundling the
structure and cameras at each stage.

5.1 Discussion, Conclusion, and Future Work

We have achieved our aim of constructing an O(N) method of organizing an
unordered image set. The algorithm is greedy but performs reasonably well.
There are still plenty of issues to be addressed, though:

Three-view constraints: Applying two-view matching constraints exhaus-
tively is expensive because there are O(NN?) pairs of images and each computa-
tion is independent of the other. For three-view matching constraints there is a
qualitative difference, which is that while there are O(N?) triples of images, the
outcome of outlier rejection for one triplet can affect the outcome for another
triplet (if the triplets share two views). Essentially, the RANSAC robust fitting
is able to terminate more quickly as the number of mismatches is reduced. Em-
pirically, it has been observed that the robust fits speed up towards the end of
the set of triplets.

428 F. Schaffalitzky and A. Zisserman

This is an example of how structure constraints reduce complexity of match-
ing; quantifying when estimated structure is reliable enough to be used for guid-
ing the matching is an important problem.

Once a spanning tree has been formed (e.g. by our greedy method) it might
be beneficial to run a multi-view structure constraint filter “along” the tree to
clear up bad matches. For example, at each vertex of the tree one could apply
a filter to the vertex and its neighbours. The complexity of this would still be
linear in the number of views.

\\\ % c ¥

4

\ i

Fig.11. VRML model of the scene computed for the Valbonne image set. Note that
the distribution of images in the computed scene reflects the impression of proximity,
adjacency etc that one gets by looking at the original images. There number of 3D
scene points is 1034.

Cleaning up the matches: The initial match candidates produced by the
indexing structure are based on appearance alone so when trying to form tracks
across a few images one is easy prey for mismatched features. The larger the
set of images, the greater the risk of false matches. Applying two- or three-
view matching constraints can help illuminate the global picture, though. For
example, if we believe in the results of two-view matching between image A and
B and between image B and C then we can infer matches between image A and
C and also reject matches between these images that were previously putative.
The practical difficulty with this sort of approach is knowing when estimated
two- or three-view can be trusted for inference with and when it can’t.

Image based viewer: Although our aim is to compute the cameras, and
results are given for this below, if our only requirement is an approximate spatial
organization (in terms of relations such as “to-the-left-of”, or “a-close-up-of”),

Multi-view Matching for Unordered Image Sets 429

'--%

Fig. 12. The largest cluster (8 views), for the Raglan image set, showing the interior
of the hexagonal keep.

Fig. 13. Two smaller clustesr (5 views and 2 views) from the Raglan image set, the
left one showing the exterior of the keep and the right one showing the top of the keep.
Ideally the latter should have been connected to the 8-view cluster of views.

then simply computing homographies between the views and organizing the
results with a spherical topology, will suffice. This is a sufficient basis for an
image based navigator.

Variations and extensions: Our framework could be specialized (in transfor-
mation) by reducing the degree of invariance of the interest point neighbourhood
descriptors (e.g. from affine to similarity only) or generalized (in scene type) by

430 F. Schaffalitzky and A. Zisserman

including other types of invariant descriptor, e.g. those developed by [1221/23]
24].

Other heuristics: Section Bl outlined one strategy for obtaining sufficient
multiview matches, and are now looking at other methods to quickly find sub-
sets of hits that are likely to yield good structure estimates which can then
be brought in earlier to guide matching, such as the voting techniques used by
Schmid [20].

To conclude, we have achieved our objective of spatially organizing an un-
ordered image set, and have set up a framework which is applicable to large data
sets. We are currently investigating if the scheme can be extended as far as, say,
video shot-matching where there can be thousands of shots in a single movie.

Acknowledgements. This paper is dedicated to Richard Szeliski. We are very
grateful to Jiri Matas for supplying the MSE region code and to Andrew Fitzgib-
bon for his assistance with the structure-from-motion engine used for the exper-
iments. The Valbonne images were provided by INRIA Sophia, and the Raglan
images by Julian Morris. Funding was provided by Balliol College, Oxford, and
EC project Vibes.

References

1. S. Avidan and A. Shashua. Threading fundamental matrices. In Proc. ECCYV,
pages 124-140. Springer-Verlag, 1998.

2. A. Baumberg. Reliable feature matching across widely separated views. In Proc.
CVPR, pages 774-781, 2000.

3. P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended
image sequences. In Proc. ECCV, LNCS 1064/1065, pages 683-695. Springer-
Verlag, 1996.

4. A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open
image sequences. In Proc. ECCV, pages 311-326. Springer-Verlag, Jun 1998.

5. R. Hartley, L. de Agapito, E. Hayman, and I. Reid. Camera calibration and the
search for infinity. In Proc. ICCV, pages 510-517, September 1999.

6. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521623049, 2000.

7. R. Koch, M. Pollefeys, B. Heigl, L. Van Gool, and H. Niemann. Calibration of
hand-held camera sequences for plenoptic modeling. In Proc. ICCV, pages 585—
591, 1999.

8. T. Lindeberg and J. Garding. Shape-adapted smoothing in estimation of 3-d depth
cues from affine distortions of local 2-d brightness structure. In Proc. ECCV, pages
389-400, May 1994.

9. B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proc. of the 7th International Joint Conference on
Artificial Intelligence, pages 674-679, 1981.

10. J. Matas, J. Burianek, and J. Kittler. Object recognition using the invariant pixel-
set signature. In Proc. BMVC., pages 606—615, 2000.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Multi-view Matching for Unordered Image Sets 431

J. Matas, O. Chum, and T. Urban, M. an Pajdla. Distinguished regions for wide-
baseline stereo. Research Report CTU-CMP-2001-33, Center for Machine Percep-
tion, K333 FEE Czech Technical University, Prague, Czech Republic, November
2001.

J Matas, M Urban, and T Pajdla. Unifying view for wide-baseline stereo. In
B Likar, editor, Proc. Computer Vision Winter Workshop, pages 214222, Ljubl-
jana, Sloveni, February 2001. Slovenian Pattern Recorgnition Society.

K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points.
In Proc. ICCV, 2001.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In
Proc. ECCYV. Springer-Verlag, 2002.

P. Pritchett and A. Zisserman. Matching and reconstruction from widely separated
views. In R. Koch and L. Van Gool, editors, 3D Structure from Multiple Images of
Large-Scale Environments, LNCS 1506, pages 78-92. Springer-Verlag, Jun 1998.
P. Pritchett and A. Zisserman. Wide baseline stereo matching. In Proc. ICCV,
pages 754-760, Jan 1998.

H. S. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topology
inference and local to global alignment. In Proc. ECCV, pages 103—-119. Springer-
Verlag, 1998.

F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture matching and wide
baseline stereo. In Proc. ICCV, Jul 2001.

F. Schaffalitzky, A. Zisserman, Hartley, R. I., and P. H. S. Torr. A six point solution
for structure and motion. In Proc. ECCYV, pages 632-648. Springer-Verlag, Jun
2000.

C. Schmid and R. Mohr. Local greyvalue invariants for image retrieval. [IEEE
PAMI, 19(5):530-534, May 1997.

D. Tell and S. Carlsson. Wide baseline point matching using affine invariants
computed from intensity profiles. In Proc. ECCV. Springer-Verlag, Jun 2000.

W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment:
A modern synthesis. In W. Triggs, A. Zisserman, and R. Szeliski, editors, Vision
Algorithms: Theory and Practice, LNCS. Springer Verlag, 2000.

T. Tuytelaars and L. Van Gool. Content-based image retrieval based on local
affinely invariant regions. In Int. Conf. on Visual Information Systems, pages
493-500, 1999.

T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local,
affinely invariant regions. In Proc. BMVC., pages 412—-425, 2000.

Z. Zhang, R. Deriche, O. D. Faugeras, and Q.-T. Luong. A robust technique for
matching two uncalibrated images through the recovery of the unknown epipolar
geometry. Artificial Intelligence, 78:87—119, 1995.

	Introduction
	From Images to Multiview Matches
	Covariant Regions
	Choice of Invariant Descriptor
	Invariant Indexing
	Verification

	Improving the Multiview Matches
	Growing Matches
	Robust Global Verification
	Greedy Algorithm

	From Matches to Cameras
	Results

	Algorithm Summary
	Discussion, Conclusion, and Future Work

