
gridlib: Flexible and Efficient Grid Management
for Simulation and Visualization!

Frank Hülsemann1, Peter Kipfer2, Ulrich Rüde1, and Günther Greiner2
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Abstract.ÿThisÿpaperÿdescribesÿtheÿgridlibÿproject,ÿaÿunifiedÿgridÿman-
agementÿframeworkÿforÿsimulationÿandÿvisualization.ÿBoth,ÿadaptiveÿPDE-
solversÿandÿinteractiveÿvisualizationÿtoolkits,ÿhaveÿtoÿmanageÿdynamic
grids.ÿTheÿgridlibÿmeetsÿtheÿsimilarÿbutÿnotÿidenticalÿdemandsÿonÿgrid
managementÿfromÿtheÿtwoÿsides,ÿvisualizationÿandÿsimulation.ÿOneÿim-
mediateÿadvantageÿofÿworkingÿonÿaÿcommonÿgridÿisÿtheÿfactÿthatÿtheÿvisu-
alizationÿhasÿdirectÿaccessÿtoÿtheÿsimulationÿresults,ÿwhichÿeliminatesÿthe
needÿforÿanyÿformÿofÿdataÿconversion.ÿFurthermore,ÿtheÿgridlibÿprovides
supportÿforÿunstructuredÿgrids,ÿtheÿre-useÿofÿexistingÿsolvers,ÿtheÿappro-
priateÿuseÿofÿhardwareÿinÿtheÿvisualizationÿpipeline,ÿgridÿadaptationÿand
hierarchicalÿhybridÿgrids.ÿTheÿpresentÿpaperÿshowsÿhowÿtheseÿfeatures
haveÿbeenÿincludedÿinÿtheÿgridlibÿdesignÿtoÿcombineÿrun-timeÿefficiency
withÿtheÿflexibilityÿnecessaryÿtoÿensureÿwideÿapplicability.ÿTheÿfunction-
alityÿ providedÿtheÿgridlibÿhelpsÿtoÿspeedÿupÿprogramÿdevelopmentÿ for
simulationÿandÿvisualizationÿalike.

1 Introduction

Thisÿarticleÿgivesÿanÿoverviewÿofÿtheÿgridlib1 grid management project, its aims
and the corresponding design choices [5], [6], [7], [8]. The gridlib combines grid
manipulation requirements of mesh based PDE-solvers and visualization tech-
niques into one single framework (library). Thus it offers developers of simula-
tion programs a common interface for the computational and graphical parts of
a project.

For interactive computer graphics, the efficient manipulation of grids and the
data attached has always been important. In the numerical PDE community, it is
the development of adaptive h-refinement algorithms in several space dimensions
that led to recognising grid management as a worthwhile task in its own right.

? This project is funded by a KONWIHR grant of the Bavarian High Performance
Computing Initiative.

1 This is a temporary name. Choices for the final name of the whole project are
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Despite the shared need to administer dynamically changing grids, there seems
to be little joint work. Many PDE-packages, such as deal.II2 or Overture3 for
example, include tools for the visualization of the results. However, these graph-
ics components are usually tied to the solver part of the package and as such,
they are too specific to be widely applicable. Likewise, although the numerous
visualization libraries available, such as AVS4 or VTK5 for example, obviously
display gridded data, they delegate the work of integrating the visualization into
the solver to the solver developers. This assumes that an integration is possible
at all, which is not obvious, given that some toolkits modify the submitted data
for optimisation purposes.

The gridlib is a joint effort of three groups to exploit the synergy offered
by one common grid management. The development is shared mainly between
a visualization- and a simulation group, while the third, from computational
fluid dynamics, provides valuable input from the users’ perspective. Although
the overall task of grid management is shared, the two communities, simulation
and visualization, put different emphasis on the features of a grid administration
software. The high performance computing community has demonstrated time
and again that it is willing to put runtime efficiency (as measured in MFLOPS)
above all other considerations. Visualization is a much more interactive process,
which has to be able to respond to the choices of a user with very low latency.
Consequently, visualization requirements result in higher emphasis on flexibility
than is the norm (traditionally) in the HPC context, willing to trade CPU per-
formance and memory usage for interactivity. This paper shows how the gridlib
meets the demands from both sides. After an overview of the gridlib system
architecture in Sect. 2, the topic of flexibility is discussed in Sect. 3. This is
followed by the efficiency considerations in Sect. 4, before the main points of the
paper are summed up in the conclusion in Sect. 5.

2 System Architecture of the gridlib

Theÿgridlibÿisÿaÿframeworkÿlibraryÿforÿtheÿintegrationÿofÿsimulationÿandÿvisualiza-
tionÿonÿadaptive,ÿunstructuredÿgrids.ÿItsÿinfrastructureÿservesÿtwoÿmainÿpurposes.
First,ÿitÿsupportsÿdevelopersÿofÿnewÿsimulationÿapplicationsÿbyÿprovidingÿsub-
systemsÿforÿI/O,ÿgridÿadministrationÿandÿgridÿmodification,ÿvisualizationÿand
solverÿintegration.ÿSecond,ÿitsÿparametrisedÿstorageÿclassesÿallowÿ(inÿprinciple)
theÿre-useÿofÿanyÿexistingÿsolvers,ÿevenÿthoseÿonlyÿavailableÿinÿbinaryÿformat.ÿFor
theÿspecialÿgroupÿofÿsolversÿthatÿdoÿnotÿperformÿgridÿmanagementÿthemselves,
theÿgridlibÿcanÿprovideÿplug-and-playÿfunctionality.

Thisÿhighÿlevelÿofÿintegrationÿisÿachievedÿbyÿthreeÿabstractionÿlevels:

2 deal.II homepage: http://gaia.iwr.uni-heidelberg.de/~deal/
3 Overture homepage: http://www.llnl.gov/CASC/Overture/overview.html
4 AVS homepage: http://www.avs.com
5 VTK homepage: http://public.kitware.com/VTK
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1.ÿTheÿlowestÿlevelÿoffersÿanÿinterfaceÿtoÿdescribeÿtheÿstorageÿlayout.ÿThisÿis
theÿpartÿofÿtheÿlibraryÿthatÿhasÿtoÿbeÿadaptedÿwhenÿintegratingÿanÿexisting
solver.

2.ÿTheÿlevelÿaboveÿimplementsÿabstractionÿofÿtheÿgeometricÿelementÿtype.ÿRe-
lyingÿonÿtheÿstorageÿabstraction,ÿitÿprovidesÿobjectÿorientedÿelementÿimple-
mentationsÿforÿtheÿhigherÿabstractionÿlevels.

3.ÿTheÿhighestÿ levelÿ offersÿ theÿ interfaceÿ toÿ operationsÿonÿ theÿwholeÿ grid.ÿ It
employsÿobjectÿorientedÿdesignÿpatternsÿlikeÿfunctorsÿforÿfrequentlyÿneeded
operations.

3 Flexibility

Theÿgridlibÿintendsÿtoÿbeÿwidelyÿapplicable.ÿFromÿaÿsimulationÿperspective,ÿthis
impliesÿ thatÿ theÿ userÿ shouldÿbeÿ ableÿ toÿ chooseÿ theÿ gridÿ typeÿandÿ theÿ solver
thatÿareÿappropriateÿforÿtheÿapplication.ÿForÿtheÿvisualizationÿtasks,ÿtheÿgridlib
mustÿnotÿassumeÿtheÿexistenceÿofÿanyÿdedicatedÿgraphicsÿhardware.ÿHowever,
ifÿdedicatedÿhardwareÿlikeÿaÿvisualizationÿserverÿisÿavailable,ÿtheÿuserÿshouldÿbe
ableÿtoÿdecideÿwhetherÿtoÿuseÿitÿorÿnot.ÿTheÿfollowingÿsubsectionsÿillustrateÿhow
theseÿaimsÿhaveÿbeenÿachievedÿinÿtheÿgridlibÿdesign.

3.1 Unstructured Grids

Theÿscientificÿcommunityÿremainsÿdividedÿasÿtoÿwhatÿtypeÿofÿgridÿtoÿuseÿwhen
solvingÿPDEs.ÿAsÿaÿconsequence,ÿthereÿareÿnumerousÿdifferentÿgridÿtypesÿaround,
rangingÿfromÿ(block-)structuredÿoverÿhybridÿupÿtoÿunstructuredÿgrids,ÿeachÿof
themÿwithÿtheirÿadvantagesÿandÿproblemsÿandÿtheirÿproponents.ÿAÿgridÿsoftware
thatÿ intendsÿ toÿbeÿwidelyÿ applicableÿcannotÿexcludeÿanyÿofÿ theseÿ gridÿtypes.
Thus,ÿ theÿ gridlibÿ supportsÿ completelyÿ unstructuredÿ grids6,ÿwhichÿ includeÿ all
otherÿmoreÿspecialisedÿgridÿtypes.ÿFurthermore,ÿtheÿgridlibÿdoesÿnotÿmakeÿany
assumptionsÿaboutÿtheÿmeshÿtopologyÿnorÿtheÿgeometricalÿshapeÿofÿtheÿelements
involved.ÿCurrentlyÿsupportedÿareÿtetrahedra,ÿprisms,ÿpyramids,ÿoctahedraÿand
hexahedra.ÿTheÿgridlibÿisÿdesignedÿinÿsuchÿaÿwayÿthatÿotherÿshapesÿcanÿbeÿadded
easilyÿusingÿobjectÿorientedÿtechniques.

3.2 Integrating Existing Solvers

Asÿmentionedÿbefore,ÿ theÿgridlibÿsupportsÿtheÿre-useÿofÿexistingÿsolvers,ÿeven
thoseÿonlyÿavailableÿinÿbinaryÿform.ÿToÿthisÿeffect,ÿtheÿgridlibÿprovidesÿtheÿgrid
dataÿinÿtheÿ formatÿrequiredÿbyÿa ÿgivenÿsolver.ÿForÿexample,ÿthisÿcouldÿimply
storingÿtheÿgridÿdataÿinÿaÿparticularÿdataÿfileÿformatÿorÿarrangingÿcertainÿarrays
inÿmainÿmemoryÿtoÿbeÿpassedÿasÿargumentsÿinÿaÿfunctionÿcall.ÿClearly,ÿ forÿthis
approachÿtoÿwork,ÿtheÿinputÿandÿoutputÿformatsÿofÿtheÿsolverÿhaveÿtoÿbeÿknown.
Inÿthisÿcase,ÿtheÿintegrationÿinvolvesÿtheÿfollowingÿsteps:
6 One repeated argument against the use of unstructured grids in the scientific com-

puting community is their alleged performance disadvantage. We will return to this
point in Sect. 4.2.
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1. Implementation of the storage format for the element abstraction.
2. Creation of an object oriented interface, which can be inherited from a pro-

vided, virtual interface. This step effectively “wraps” a potentially procedu-
ral solver into an object oriented environment.

3. Link the solver together with the gridlib.

Note that in many cases, the second step can be performed automatically by
the compiler through the object-oriented template patterns already provided by
the gridlib. If the source code of the solver can be modified, the first two steps
can be combined, which results in the native gridlib storage format to be used
throughout.

3.3 Visualization Pipeline

Inÿtheÿgridlib,ÿtheÿvisualizationÿisÿbasedÿonÿaÿattributedÿtriangleÿmeshÿwhich
inÿ turnÿ isÿderivedÿ fromÿ theÿoriginalÿdataÿorÿa ÿreducedÿ setÿ ofÿ it.ÿByÿworking
directlyÿonÿtheÿgridÿdataÿasÿprovidedÿbyÿtheÿgridÿadministrationÿcomponentÿof
theÿlibrary,ÿtheÿvisualizationÿsubsystemÿcanÿexploitÿgridÿhierarchies,ÿtopological
andÿgeometricalÿfeaturesÿofÿtheÿgridÿandÿtheÿalgorithmsÿforÿgridÿmanipulation.
Thisÿapproachÿprovidesÿaÿcommonÿfoundationÿforÿallÿvisualizationÿmethodsÿand
ensuresÿtheÿre-usabilityÿofÿtheÿalgorithmicÿcomponents.

Inÿtheÿvisualizationÿpipeline,ÿtheÿdataÿisÿrepresentedÿinÿtheÿfollowingÿformats:

1.ÿAsÿsimulationÿresultsÿonÿtheÿcomputeÿgrid
2.ÿAsÿdataÿonÿaÿmodifiedÿgridÿ(reduced,ÿprogressive,ÿchangedÿelementÿtypes,ÿ...)
3.ÿAsÿvisualizationÿgeometriesÿ(isosurfaces,ÿstreamÿlines,ÿ...)
4.ÿAsÿbitmapÿorÿvideoÿ(storedÿinÿaÿfileÿorÿdisplayedÿimmediately)

Theseÿstagesÿcanÿbeÿdistributedÿacrossÿseveralÿmachines.ÿInÿtheÿcontextÿofÿlarge
scaleÿsimulations,ÿaÿcommonÿdistributionÿofÿtasksÿinvolvesÿaÿcomputeÿnodeÿforÿthe
firstÿstep,ÿaÿvisualizationÿserverÿ forÿtheÿsecondÿandÿthird,ÿandÿlastly,ÿ theÿuser’s
workstationÿforÿtheÿforth.ÿForÿaÿgivenÿproject,ÿtheseÿthreeÿfunctions,ÿcompute
server,ÿvisualizationÿserverÿandÿfrontÿendÿworkstation,ÿhaveÿtoÿbeÿassignedÿto
theÿavailableÿhardware.ÿTheÿgridlibÿmakesÿprovisionsÿforÿdifferentÿconfigurations
thatÿhelpÿtheÿuserÿtoÿadequatelyÿmatchÿtheÿgivenÿhardwareÿtoÿtheÿtasks.ÿThe
followingÿfactorsÿinfluenceÿtheÿvisualizationÿpipeline:

1.ÿAvailabilityÿandÿperformanceÿofÿanÿinteractiveÿmodeÿonÿtheÿcomputeÿnode.
Thisÿisÿoftenÿanÿissueÿonÿbatch-operatedÿsuperÿcomputers.

2.ÿ Bandwidthÿandÿlatencyÿofÿtheÿinvolvedÿnetworks.
3.ÿAvailabilityÿandÿperformanceÿofÿaÿdedicatedÿvisualizationÿserver.
4.ÿ Storageÿcapacityÿandÿ(graphics-)ÿperformanceÿofÿtheÿfrontÿendÿworkstation.

Givenÿtheÿconcreteÿconfiguration,ÿitÿisÿtheÿuserÿwhoÿcanÿdecideÿhowÿtoÿtrade-
off requirementsÿforÿinteractionÿwithÿthoseÿforÿvisualizationÿquality.ÿConceptually,
theÿgridlibÿsupportsÿdifferentÿscenarios:
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–ÿRemoteÿrenderingÿonÿtheÿcomputeÿnode.ÿBeingÿbasedÿonÿtheÿcompleteÿsetÿof
highÿresolutionÿsimulationÿresults,ÿthisÿapproachÿyieldsÿtheÿmaximumÿvisual-
izationÿquality.ÿHowever,ÿonÿbatch-operatedÿmachines,ÿnoÿformÿofÿinteraction
isÿpossible.

–ÿPostprocessingÿofÿtheÿsimulationÿresultsÿonÿtheÿcomputeÿnodeÿandÿsubsequent
transferÿofÿaÿreducedÿdataÿsetÿtoÿtheÿvisualizationÿserverÿorÿfrontÿend.ÿOnce
theÿ simulationÿ resultsÿ areÿ available,ÿ thisÿ strategyÿoffersÿ theÿmaximumÿof
interactionÿ inÿdisplayingÿtheÿ resultsÿbutÿplacesÿhighÿdemandsÿ theÿ servers
andÿtheÿnetworks,ÿasÿevenÿreducedÿdataÿsetsÿcanÿstillÿbeÿlargeÿinÿabsolute
terms.

–ÿLocalÿ renderingÿofÿ remotelyÿ generatedÿvisualizationÿgeometries.ÿTheÿ user
experiencesÿ(subjective)ÿfastÿresponseÿtimesÿbutÿcanÿonlyÿworkÿonÿaÿgiven
numberÿofÿdataÿsets.ÿThisÿapproachÿallowsÿhighÿvisualizationÿqualityÿbut
requiresÿfastÿnetworksÿandÿhighÿstorageÿfacilities.

–ÿTwoÿstageÿrendering.ÿFirst,ÿtheÿuserÿdeterminesÿtheÿvisualizationÿparameters
(viewÿpoint,ÿcutÿplane,ÿ...ÿ)ÿonÿaÿreducedÿqualityÿset,ÿthenÿtransfersÿtheseÿpa-
rametersÿtoÿtheÿcomputeÿnode,ÿwhereÿtheyÿwillÿbeÿusedÿforÿremoteÿrendering
atÿmaximumÿquality.

Supportingÿ allÿ theseÿ scenariosÿ isÿ ongoingÿwork.ÿSeveralÿ componentsÿ have
alreadyÿbeenÿimplemented.ÿProgressiveÿmeshÿtechniquesÿallowÿtoÿtradeÿvisual-
izationÿqualityÿforÿfasterÿresponseÿtimeÿ(resolutionÿonÿdemand),ÿseeÿ[5].ÿSlice-
andÿisosurfacesÿgeometriesÿcanÿbeÿcomputedÿandÿdisplayedÿviaÿvariousÿrendering
options,ÿseeÿ[8].ÿTheÿmostÿgenerallyÿapplicableÿrendererÿisÿaÿsoftware-onlyÿimple-
mentation,ÿwhichÿisÿusefulÿonÿmachinesÿwithoutÿdedicatedÿgraphicsÿhardware.ÿIt
canÿbeÿrunÿtransparentlyÿinÿparallelÿonÿanyÿmultiprocessorÿmachineÿwithÿMPI
support.ÿFigureÿ1 ÿillustratesÿ theÿdataÿflowÿ forÿtheÿparallelÿ softwareÿrenderer.
TheÿalternativeÿisÿtunedÿforÿhardwareÿacceleratedÿOpenGLÿenvironments.ÿThus
theÿgridlibÿletsÿtheÿuserÿchooseÿaÿcompromiseÿbetweenÿvisualizationÿqualityÿand
interaction.

4 Efficiency

Thisÿsectionÿintroducesÿtheÿtwoÿmainÿfeaturesÿofÿtheÿgridlibÿthatÿareÿusefulÿinÿthe
developmentÿofÿhighÿperformanceÿsolvers,ÿforÿwhichÿmaximumÿruntimeÿefficiency
isÿimportant.ÿTheseÿtwoÿfeaturesÿareÿtheÿprovisionÿofÿgridÿadaptationÿtechniques
andÿtheÿconceptÿofÿhierarchicalÿhybridÿgrids.

4.1 Grid Adaptation

Adaptiveÿh-refinementÿtechniques,ÿusuallyÿbasedÿonÿerrorÿestimators,ÿhaveÿat-
tractedÿ considerableÿ interestÿ inÿ theÿ numericalÿPDEÿcommunityÿ overÿtheÿ last
twentyÿyears,ÿsee,ÿforÿinstance,ÿ[2],ÿ[1].ÿForÿmanyÿapplications,ÿtheseÿtechniques
areÿwell-establishedÿandÿreliableÿerror-estimatorsÿareÿavailableÿ[1],ÿ[9],ÿ[3].ÿByÿpro-
vidingÿfunctionsÿforÿtheÿuniform,ÿadaptiveÿorÿprogressiveÿsubdivisionÿandÿcoars-
eningÿofÿtheÿmesh,ÿtheÿgridlibÿisÿaÿwell-suitedÿplatformÿforÿtheÿimplementationÿof
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execute on supercomputer
or on workstation

Partition

Partition Simulation Visualization

FramebufferI/O Subsystem

Simulation Visualization

Rendering

Rendering

Fig. 1. Data flow for the parallel software renderer: The renderer processes the dis-
tributed simulation results concurrently before merging the individual parts together
into the final picuture. The diagram emphasises the various stages in the visualization
pipeline that can be assigned to the available hardware.

h-refinement algorithms. The user need only specify a criterion that marks the
grid cells to be subdivided. The gridlib’s refinement algorithm performs the sub-
division and ensures that the resulting grid is consistent and that hanging nodes
are avoided (red-green refinement). For subdividing tetrahedra, the algorithm of
Bey [4] has been chosen because of the small number of congruency classes it
generates.

Provided that the user contributes a sharp error estimator, the gridlib fea-
tures make it easy to generate solution adapted unstructured grids. Such grids
are the essential tool to improve the accuracy of the solution for a given number
of grid cells.

4.2 Efficiency Limits of Unstructured Grids and What to Do about It

It is important to note that adaptive refinement of unstructured grids (alone)
cannot overcome the problem of low MFLOPS performance when compared to
(block-)structured approaches.

The performance problem of solvers on unstructured grids results from the
fact that the connectivity information is not available at compile time. Hence the
resulting program, although very flexible, requires some form of book-keeping
at run time. In structured codes, the connectivity is known at compile time
and can be exploited to express neighbourhood relations through simple index
arithmetic.

The following, deliberately simple example illustrates the difference between
the two approaches. Given the unit square, which is discretised into square cells
of side length h using bi-linear elements. An unstructured solver “does not see”
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the regularity of the grid and hence has to store the connectivity data explicitly.
In pseudo code, an unstructured implementation of a Gauss-Seidel step with
variable coefficients in the unstructured solver reads as follows:

for i from first vertex to last vertex:

rhs = f(i)

for j from 1 to number_of_neighbours(i)

rhs = rhs - coeff(i,j)*u(neighbour(i,j))

u(i) = rhs/coeff(i,i)

Contrast this to a structured implementation (assuming that this ordering
of the for-loops is appropriate for the programming language):

for i from first column to last column:

for j from first row to last row:

u(i,j)=(f(i,j)-c(i,j,1)*u(i-1,j-1)-c(i,j,2)*u(i-1,j)

-c(i,j,3)*u(i-1,j+1)-c(i,j,4)*u(i+1,j-1)

-c(i,j,5)*u(i+1,j) -c(i,j,6)*u(i+1,j+1)

-c(i,j,7)*u(i,j+1) -c(i,j,8)*u(i,j-1))/c(i,i)

The work as measured in floating point operations is the same in both im-
plementations, but their run-time performance differs significantly as the second
version, being much more explicit, lends itself much better to compiler optimi-
sation than the first one. On one node (8 CPUs) of a Hitachi SR8000 at the
Leibniz Computing Centre in Munich, the MFLOPS rate of the (straightfor-
ward) structured version is a factor of 20 higher than the one of the similarly
straightforwardly implemented unstructured algorithm.

The gridlib introduces the concept of hierarchical hybrid grids to overcome
the performance penalty usually associated with unstructured grids while re-
taining their geometric flexibility.

The main idea behind the hierarchical hybrid grids is to deal with geomet-
ric flexibility and computing performance on different grid levels. The coarse
grid levels are in general unstructured and ensure the geometric flexibility of
the approach. The coarse grids are nested in the sense that the finer ones are
generated through uniform or adaptive refinement from the coarser ones. The
finest unstructured grid is assumed to resolve the problem domain adequately
and is therefore referred to as the geometry grid. The fine grids, on which the
computations are to be carried out, are generated through regularly subdividing
the individual cells of the geometry grid. Figure 2 illustrates the concept.

As shown above, it is essential for high floating point performance that the
implementation of the computing algorithms takes the regular structure of the
compute grid within each cell of the geometry grid into account. Given that the
compute grid is only patchwise regular, some fraction of the computations still
require unstructured implementations. Obviously, the finer the compute grid,
the more the overall floating point performance is dominated by the contribution
from the structured parts.

The following discussion confirms this expectation for a vertex based algo-
rithm like Gauss-Seidel. Let Nc be the number of vertices in the (unstructured)
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Fig. 2. Bottom left: coarsest base grid, bottom right: geometry grid after one unstruc-
tured refinement step, top row: compute grids after two regular subdivision steps of
the respective coarse grids below

geometry grid and Nf be the number of vertices in the structured refinements.
The unstructured algorithm achieves Mc MFLOPS while the structured part
runs at Mf MFLOPS. Under the assumption that Nop, the number of float-
ing point operations per vertex, is the same for both grid types (as it was in
the Gauss-Seidel example above), then the execution time of one Gauss-Seidel
iteration over the compute grid is given by

Nc ×Nop

Mc
+

Nf ×Nop

Mf
. (1)

Dividing the total number of operations, Nop × (Nc + Nf ), by this execution
time, one finds the MFLOPS value for the whole grid, M say, to be

M =
(Nc +Nf )×McMf

NcMf +NfMc
. (2)

Introducing the fine to coarse ratio i

i =
Nf

Nc
⇐⇒ Nf = i×Nc
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and the speed-up factor s for structured implementations over unstructured ones

s =
Mf

Mc
⇐⇒ Mf = s×Mc,

M is given by

M =
s(i+ 1)

s+ i
Mc, (3)

which for i→∞ tends to

lim
i→∞

M = lim
i→∞

s(i + 1)

s + i
Mc = sMc = Mf . (4)

Inÿotherÿwords,ÿprovidedÿtheÿstructuredÿpartÿ isÿsufficientlyÿlarge,ÿtheÿfloating
pointÿperformanceÿonÿaÿhierarchicalÿhybridÿgridÿisÿdominatedÿbyÿitsÿstructured
part,ÿwhileÿretainingÿtheÿgeometricÿflexibilityÿofÿitsÿunstructuredÿcomponent.

Theÿinterfaceÿtoÿtheÿhierarchicalÿhybridÿgridsÿisÿstillÿunderÿconstruction.ÿHow-
ever,ÿasÿtheÿexperienceÿfromÿtheÿHitachiÿshows,ÿtheÿspeed-upÿfactorÿs canÿbeÿas
largeÿasÿ20.ÿThisÿshowsÿthatÿtheÿextraÿworkÿofÿtuningÿtheÿalgorithmÿtoÿtheÿreg-
ularityÿofÿtheÿgridÿinsideÿtheÿcoarseÿgridÿcellsÿisÿwellÿworthÿtheÿeffort.

5 Conclusion

Theÿ paperÿ presentedÿ theÿ mainÿ featuresÿ ofÿ theÿ gridÿ managementÿ framework
gridlib.ÿ Itÿcombinesÿtheÿgridÿmanagementÿ requirementsÿofÿboth,ÿvisualization
andÿsimulationÿdevelopers,ÿintoÿaÿsingleÿframework.ÿByÿprovidingÿsubsystemsÿfor
frequentlyÿneededÿtasksÿinÿPDEÿsolvers,ÿsuchÿasÿI/O,ÿadaptiveÿgridÿrefinement
and,ÿofÿcourse,ÿvisualization,ÿtheÿgridlibÿhelpsÿtoÿspeedÿupÿtheÿdevelopmentÿof
suchÿprograms.

Theÿarticleÿdescribedÿtheÿmainÿfeaturesÿofÿtheÿgridlibÿfromÿtheÿtwoÿperspec-
tivesÿofÿflexibilityÿandÿ(run-time)ÿefficiency.ÿThroughÿitsÿsupportÿofÿunstructured
gridsÿandÿnumerousÿcellÿgeometries,ÿtheÿgridlibÿisÿwidelyÿapplicable.ÿInÿcaseÿa
particularÿcellÿgeometryÿisÿnotÿalreadyÿincluded,ÿtheÿobject-orientedÿdesignÿofÿthe
gridlibÿensuresÿthatÿtheÿuserÿcanÿaddÿtheÿrequiredÿobjectÿeasily.ÿ Itÿwasÿshown
howÿexistingÿsolvers,ÿthatÿdoÿnotÿincludeÿanyÿgridÿmanagement,ÿcanÿbeÿcombined
withÿtheÿgridlib,ÿsoÿthatÿtheseÿsolvers,ÿtoo,ÿcanÿbenefitÿfromÿtheÿvisualizationÿfa-
cilitiesÿofÿ theÿ framework.ÿForÿtheÿvisualizationÿofÿ largeÿscaleÿsimulations,ÿ the
gridlibÿsupportsÿdifferentÿhardwareÿscenarios,ÿfromÿwhichÿtheÿuserÿcanÿchoose
toÿmeetÿtheÿproject-specificÿrequirementsÿconcerningÿvisualizationÿqualityÿand
interactivity.ÿItsÿprovisionÿofÿalgorithmsÿforÿtheÿconsistent,ÿadaptiveÿsubdivision
ofÿunstructuredÿgridsÿinÿthreeÿspaceÿdimensionsÿmakesÿtheÿgridlibÿanÿidealÿplat-
formÿforÿimplementingÿandÿexperimentingÿwithÿadaptiveÿh-refinementÿmethods.
ToÿcloseÿtheÿgapÿinÿMFLOPSÿperformanceÿbetweenÿunstructuredÿandÿstructured
grids,ÿtheÿgridlibÿintroducesÿtheÿconceptÿofÿhierarchicalÿhybridÿgrids.ÿThisÿap-
proachÿemploysÿaÿhierarchyÿofÿtwoÿdifferentÿgridÿtypesÿonÿtheÿdifferentÿlevelsÿto
combineÿtheÿadvantagesÿofÿtheÿunstructuredÿgridsÿ(geometricÿflexibility)ÿwith
thoseÿofÿstructuredÿonesÿ(highÿfloatingÿpointÿperformance).ÿTheÿcoarseÿlevelsÿare
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madeÿupÿofÿnested,ÿunstructuredÿgrids.ÿTheÿpatchwiseÿstructuredÿgridsÿonÿthe
finerÿlevelsÿareÿconstructedÿthroughÿrepeatedÿregularÿsubdivisionÿofÿtheÿcellsÿof
theÿfinest,ÿunstructuredÿgrid.ÿAdaptingÿtheÿalgorithmÿtoÿtakeÿtheÿgridÿstructure
intoÿaccountÿincreasedÿtheÿfloatingÿpointÿperformanceÿofÿaÿGauss-Seidelÿiteration
insideÿtheÿpatchesÿonÿaÿHitachiÿSR8000ÿbyÿaÿfactorÿofÿtwenty.ÿTheÿpromiseÿofÿthe
approachÿisÿthereforeÿevident.ÿHowever,ÿmoreÿworkÿinÿspecifyingÿuserÿinterfaces
forÿtheÿhierarchicalÿhybridÿgridsÿamongÿotherÿthingsÿhasÿtoÿbeÿdone.
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