
Batch Diffie-Hellmm Key Agreement Systems and their
Application to Portable Communications

Michael J. Beller Yacov Yacobi

Bellcore
New Jersey, U.S.A.

June 19, 1991

Abstract.
RSA (Rivest, Shamir and Adleman) is today’s most popular public key en-
cryption scheme. Batch-RSA (due to Fiat) is a method to compute many
(n/Zog;(n), where n is the security parameter) RSA decryption operations at
a computational cost approaching that of one normal decryption. It requires
that all the operations use the same modulus, but distinct, relatively prime
in pairs, short, public exponents. A star-like key agreement scheme could use
such a system to slash computational complexity at the center. We show a
real life example of such a system - secure portable telephony. Unfortunately,
in this system Batch-RSA cannot be employed effectively, due to a delay com-
ponent which arises from the nature of RSA key exchange. We show that
mathematical ideas similar to Fiat’s can lead to a Batch-Diffie-Hellman key
agreement scheme, that does not suffer such delay and is comparable in ef-
ficiency to Batch-RSA. We prove that with some precautions, this system is
as hard to break as RSA with short public exponent. In practice our method
improves processing time at the center by a factor of 6 to 17 when compared
to (non-batch) Dif€ie-Hellman schemes with full-size exponents and moduli in
the practical range. Smaller improvements (on the order of 1.6 to 3) are ob-
tainable when compared to a Diffie-Hellman scheme employing abbreviated
exponents.

1 Introduction

BSA (Rivest, Shamir and Adleman) [13] is today’s most popular public key encryption
scheme. Batch-RSA [7] is a method to compute many (n/log2(n), where n is the security
parameter, throughout logarithms are to the base 2) RSA decryption operations at a
computational cost approaching that of one normal decryption. It requires that
the operations use the same modulus, but distinct, relatively prime in pairs, short,
public exponents. A star-Ue key agreement scheme could use such a system to slash
complexity at the center. We show a real life example of such a system - secure portable
telephony. Unfortunately, in this system Batch-RSA can not be employed effectively,

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT ’92, LNCS 658, pp. 208-220. 1993
Q Spnnger-Verlag Berlin Heidelberg 1993

209

due to a delay component which arises from the nature of BSA key exchange. We then
show that mathematical ideas similar to Fiat's can lead to a Batch-Dfie-Hehm key
agreement scheme, that does not suffer such delay and is comparable in efficiency to
Batch-RSA. We prove that with some precautions, this system is as hard to break as
RSA with short public exponent.

In practice our method improves processing time at the center by about an order
of magnitude when compared to (non-batch) DifEe-Helhm schemes with full-size ex-
ponents and moduli in the practical range, Smaller improvements (on the order of 1.6
to 3) are obtainable when compared to a DiEe-Hellman scheme employing abbreviated
exponents.

Section 2 describes Fiat's original Batch-RSA method, in section 3 we describe
how we plan to use it with a Diffie-Hellman-like system, and in section 4 we analyze
the security of our proposed system. Section 5 of this paper describes a rnmner in
which the method of this paper can be applied to improve efliciency in a real portable
communications system (PCS), and quantifies the achievable improvement. Section 6
explains why batch RSA introduces unacceptable delays, and motivates batch DH.

2 Batch-RSA

Suppose we have to compute m;/'I mod N for i = o , l 1 2 , . . . , b - 1, where b is the
batch size, and the ei's are relatively small (and the inverses l /e; mod X(N) are large,
X(N) = (p - 1) - (q - 1)/2). The main idea of Batch-RSA is to compute first c n!:: m~"' mod N, where p = I-J::: e;, using a special efEcient binary tree structure,
to be described later. The second phase is to compute m G c'/P mod N , which is a
full size modular exponentiation (but the cost is spread over b computations). The last
phase is to break m mod N into its b separate components m~re ' mod N,
i = 0,1 ,2 , . . . , b - 1, which is the desired output of our computation. This is done using
the binary tree developed in the first step in a very acient way.

The binary tree: To simplify explanations we assume that b = Zk, for some k.
Create a complete binary tree where the leaves are labeled rr~,ml,rnz, ,. . . ,mb-1- A
path is identified with the corresponding binary sequence C*l C = {0,1}. We use
the symbol E to denote the string of length zero. fight sons are associated with 1, and
left sons with 0. We refer to any arc in the tree using the unique path leading to it,
i.e. q E Ck' , E' < E is the arc in depth k' from the root, which is approached when
traversing the tree from the root according to q. If q is of length k then it leads to a leaf
labeled mi s.t. 9 is the binary representation of i. Let z E C. qz denotes a sequence
composed of x concatenated to the right of q, i denotes the complement of x . Each arc
q has label Z(7). Arcs in the tree are labeled bottom-up according to the following rule.

fl;:;

0 Let q x be a path leading to a leaf associated with message m;, then l (@) = ei.

0 For r] E Xk', k' < k - 1, Z(qz) = l(qz0) - I(qz1).

21 0

The above labeling procedure is independent of the actual messages {mi}. It depends
on the exponents only, hence if those are fixed, this procedure may be done off line,
once and for all. Nodes in the tree contain data, which depend on both the messages
and the exponents. We refer to each node by the path leading to it. The data stored
node 77 is denoted d(q) . Initially the content of each leaf i is the correspondiag message
mi. The content of each node in the tree is computed bottom-up, after its S O ~ S were
computed using d(q) 5 d(qO)'(@) . d(ql)'(nl) mod N. It follows that the content of the
root is the desired d(a) E fl;:: rn;lC' mod N . This concludes the fist phase (see Fig-1).

d(c)'/P s nfs: m:"' mod N (second phase), we use the tree
(top-down) to break M into its components (third phase). This is done recursively as
follows .

Let 0,1,. . . , q - 1 be the leaves associated with the left son of the root (and q, Q t
1,. . . , b - 1 with the right son). Note that I(0) = n,9,-,' el, f(1) = nfz,' e;, and p = l (0)
Z(1). Using the Chinese Bemaindering algorithm [I] compute X, s.t. X E 0 mod e l , i =
0,. . . ,q - 1, and X G 1 mod e l , i = 9,. . . , b - 1. Here we use the fact that the e,'s are
relatively prime in pairs. From the construction of X it follows that X = 0 mod I(0) and
X = 1 mod f (I) , hence there exist XI and X, s.t. X = Z(1) .XI t 1 and X = I (0) .Xo.
Denote MO = n:iA m:'" mod N, and M1 2 nf:: m:/" mod N . For convenience we
use the shorthand lo , 1 1 , &,dl instead of l (O) , l (I) , . . . , etc. Since Mo z $ I p mod N, and
M1 E 4" mod N , we have dl E MF mod N and 4 Mi1 mod N . c s 4.4 mod N ,

is just Mo, hence Mo = M x / (g l - d p) mod N , and M I z M / M o mod N . The d's
were computed in phase I, and are stored in the nodes. The X's do not depend on the
messages and may be computed off-line. The process repeats recursively, until at the
leaves the desired output is reached (see Fig-2).

AS is shown in [7] the total complexity of a batch computation approaches that of
one full size exponentiation,

Using Batch-RSA together wi th Montgomery's modular reduct ion
Montgomery's modular reduction [Ill is very popular among public-key implementors
[6]; so we must address the question "can the two methods coexist?" The answer is
positive both theoretically and practically. Montgomery's method addresses additions
and multiplications, which comprise the bulk of the computation in Batch-RSA (and
Batch-DH, w h c h will be discussed later in the paper). The only operations which can
not be done using Montgomery's method are the two &visions that have to be done in
each node when going down the tree (phase 3). Asymptotically they are neghgible, and
practically they are small compared to the larger exponentiations done in each node.
The reason is the following: We have to do modular a b/cd, e f/a, where each of
6, c, d , f is given as a Montgomery number (i.e. a multiple of R = 2" mod N, where n
is the length in bits of the modulus). Let M (a . b) denote a Montgomery multiplication
of a and b, (i.e. M(ab) G abR-' mod N) . Here is a proposed procedure

After computing M

hence, MX ,x/P &('lxl+l)/p. 0 d l l Q X o / P 1 ~ l d ~ & / p ~ But the last multiplicand

21 1

Begin

1. cd =M(c * d) ;

2. regular a 3 bled mod N; (result: non-Montgomery number)

3. regular e 3 f / a mod N; (result: a Montgomery number)

4. a = M (a . (Bz mod N)); (to get back a Montgomery number).

End
SO the cost of the (relatively small number of) divisions is d a t e d by a small factor

(2) for the loss of the advantage associated with the use of Montgomery’s reduction
method. Also added to each division is the cost of step 4 above.

There is some increased software complexity due to the need for both regular and
Montgomery numerical routines. However, this small increase in code size is not signrf-
icant in the central office application.

3 Batch Diffie-Hellman

In this section we show how the ideas of Batch-ILSA can be extended to support Batch
DifEe-Hellman. We use the example of a portable communications system which h a
many portable radio telephones (“portables”) accessing a central office via a matrix of
fixed access points called “ports”.

Let (S,, P,) be the secret and public keys, respectively, of portable i , i = 1,. . . ,n,
and let (SJ, Pi) be the secret and public key of a port j. The central facility is trusted by
all ports. (In section 5 we show that the fixed assignment of keys to p0rts-i.e. key j to
port j-is naive, and leads to an inefficient real-time system. Nonetheless, this example
is adequate for the purposes of this section.)

In the basic DifEe-Hellman [S] scheme there is some prime modulus, N, common
to the whole system, and some primitive element of G F (N) , denoted a, s.t. (Vi)[P, f
as* mod N], similarly, (tlj)[P(as; mod N] , and a session key between i and j is

SK,, as‘”; mod N, efficiently computable exclusively by i and j (or the center on
behalf of j). Many other variations exist. For example, sometimes it may be desirable
to choose a composite modulus [14] [9], and most of the time we need key distribution
systems that authenticate the users, and are dynamic [15].

In order for the central authority to be able to use Batch-DB we have to introduce
additional constraints.

First, the modulus should be a composite, with secret prime factorization (two
large primes) known only to the central facility, and such that factorization of N
is hard.

212

Second, the secret
relatively small e j ,

puted. This is SJ.
need e j < logz(n).

key of each port j , Si, is not chosen at random. Rather a
is chosen, and its multiplicative inverse modulo A(N), is com-
As before, PJ! E as; mod N . For modulus of size n bits we

Third,the ejs must be relatively prime in pairs.

NO new constraints are needed for the portable keys. They can be chosen with ab-
breviated secret exponents (130 bits seem currently secure) [16], or they can be identity
based systems [lo], or whatever. In that respect the system may be heterogeneous,
i.e. users may choose inexpensive portables (with abbreviated secret exponents), or
more expensive portables, with long secret exponents, and with the added convenience
of being identity based [lo]. This may be important if the cryptosystem is used for
additional applications, such as monetary transactions.

4 Security

The following lemma is well known.

Lemma 1: Let a and p be generators of the multiplicative groups 2; and Z;,
respectively, and let 7 E Z;, 7 G a mod p , 7 = p mod q, (i.e. 7 is obtained from a
and p using Chinese Remaindering). Then 7 generates a maximal cydic subgroup of
Z;, it is of size X = (p - 1)(q - 1) /2 (for our choice of p and q) , this cyclic subgroup,
denoted M is the Cartesian product of Zp' and Z i , and therefore is independent of the
choice of a a d p .

Assuming the base element, 7, for our CDH scheme is chosen according to lemma
1, we now give evidence to the security of our scheme, namely, if we acisume that RSA
with short public key is hard to break on the average, over the subset M , then SO is
CDH. This follows from Lemma 2, and the corollary which immediately foilows it.

Lemma 2: Composite Diftie-Hellman key agreement s & a e is at least as hard to
break on the average as RSA for half the messages (here we average over M).

Proof: Assume there exists an oracle AL, s.t. for all N,P,z,y A L (N , / ? , p " , p y)
Pry mod N , and let e
subgroup M of Zh, discussed in lemma 1.

z-' mod A (N) . Let 7 be the generator of the maximal cyclic

Given RSA cracking problem, defined by Input: N , e, c 5 me mod N , c E M (m 6 M
implies c E M by M'5 closure); Output: m. We use oracle to solve i t , as follows.

1. Find 7 E ZL, a generator of A4 (using the construction of Lemma 1).

2. Compute p = 7' mod N .

3. Call oracle AL(N,P,7,c).

213

The oracle's answer in the last step is m, because rn E M and hence (3y)[m 3 rY],

Once 7 is fixed, the above mapping is one to one, therefore, the reduction is measuxe

Q.E.D.

Corollary: The reduction of Lemma 2 does not depend on the length of e. The
case in which we are interested is CDH with short e. RSA with short public key reduces
to CDH with exactly one short inverse by the same construction.

L e m m a 3: Composite Dae-Hellman key agreement scheme, in which exactly one
of the exponents has a short inverse (< O (n)) is at most as hard to break on the average
(over all messages) as RSA with short public key.

Proof: Let AL2 be an oracle that solves RSA problem, where the public exponent
e is short (e < O (n)) , i.e. A L 2 (N , c, e) = m, s.t. me z c mod N. Given a CDH problem
defined by Input: N , a, a=, a'; Output: a'y mod N, where x-l e mod X(N) is short,
we use oracle AL2 to solve it as follows:

hence 7

preserving [2], and therefore preserves average case complexity.

f i x , c G f i g , m = pzY, where all these congruences are modulo N.

1. Find e l s.t. (aZ)' G a mod N (since e is short exhaustive search is feasible).

2. CaLI oracle ALZ(N,uY, e).

The answer of oracle AL2 is azY, as required.

In this reduction the mapping is one to one. Therefore, it is measure preserving [2] ,
and therefore preserves average case complexity.

Q.E.D.
Lemma 4: Composite Diffie-Hellman key agreement scheme, in which both expo-

nents have short inverses is easily breakable for 6/7r2 of the instances.

Proof: If both secret exponents (2, y) have short inverses (ei, e j) then, as before, the
adversary can find them by exhaustive search (raising the public keys to the power of e...
until he gets Q). Kin addition the two short inverses are relatively prime (happens with
probability 6/7rz, see a theorem by Di r ide t in Knuth II, pp. 324) the adversary can
break the system. First he finds a and b such that ae; + bej = 1, using extended Eudid's
gcd algorithm [l]. Multiplying this equation by zy we get ay + bz 5 zy mod X(N). It
follows that the adversary can compute the session key azY z (Q ") ~ . (a!')' mod N .

Q.E.D.

Of course, the reduction of Lemma 2 does not hold when both exponents have short
inverses.

5 System Considerations for Batch-Diffie-Hellman

The method of this paper can be used to improve the efficiency of network processing in
a Portable Communications System key agreement and authentication subsystem. An

21 4

example Portable Communications System is described in [4]. An example key agree-
ment and authentication protocol, involving Diffk-Hellman computations, and tuned
to the requirements of portable communications, is described in [3] as the last of the
candidate protocols described in that paper.

The general framework of the system is that portable telephones access the network
via a matrix of radio ports. Providing service involves establishing an encrypted, au-
thenticated channel in the initial phase. The enuyption is needed to protect the user's
privacy from eavesdroppers using radio scanners, and the authentication is needed to
protect the service provider from attempts to obtain service fraudulently (i.e. without
intent to pay for the call).

During operation, the portable units make reqnests for service (e.g. to originate
or answer a 4). Each of these requests begins by employing a protocol to establish
a private and authenticated channel. The protocol requires the network to perfom a
Difh-Hellman exponentiation. It is necessary for the network to perfom these com-
putations quickly, so as not to unduly delay the user's access to service (and increase
the holding time of the radio channel and network resources). Since there will often
be many users requesting service at the same time, we can make use of the method of
this paper to perform a number of DifEe-Hellman computations in parallel, and thereby
increase the effectiveness of the processing power available in the network. This can
ultimately decrease the cost of providing the PCS service.

The primary issue to be addressed is how much improvement can be obtained.
The fist question to ask is "how can we ensure that when requests come in, they can
be processed in a batch?" One naive method (mentioned in section 3) is to assign
a Merent ej to each port. However, we can not ensure that there will always be
exactly one service request available from each of the ports. Thus, this system would
require an enormous (impractical) precomputation phase. This is because the method
requires us to precompute a "tree" for each possible combination of exponents we wish
to process simxltaneously. A system with many ports will require a number of trees
proportional to the n d e r of combinations of the ports taken b at a time, where b is
the optimal batch size. Any fixed assignment of ej 's to network equipment will either
have enormous precomputation, or will be inefficient at obtaining the maximum batch
size for processing, if it is still to provide the required response time.

For
example, for a given exponent length, we have an optimum batch size b. We choose b
exponents ej . When finished processing the previous batch of requests, the cryptoserver
looks in its request queue. I t scoops up b requests from the queue (assuming they are
present-we discuss this issue later in this section) and assigns to each request one of the
exponents e,. The network immediately sends out the (precomputed) corresponding
public keys Q ' / ~ J , and any other required information such as a certificate associated
with the assigned public key, to each of the requesters. While the requesters do their
Diffie-Hellman computations, the network will process these b computations in a batch.
This "dynamic erponent" approach is not usable with Batch-RSA, as will be shown in

Thus we propose to dynamically assign ej 's on a request-by-request basis.

21 5

the next section.

What is the improvement which can be obtained with this method? As shown in the
complexity section above, if we assume a n-bit modulus with n-bit exponents l /e j , this
allows improvement by a factor of n/log;(n). However, currently some DifEe-Hellman
systems use abbreviated exponents. It is considered that the current best algorithm
for breaking Dae-Hellman systems with abbreviated exponents is due to Pollard (the
“Lambda Method of Catching Kangaroos” [12]). B y eramining the relationship of
the complexity of ‘katching a Kangaroo” vs. the difliculty of factoring using the best
algorithm available (the number field sieve [8]), we come up with the following formula
for the required length I (in bits) of an abbreviated exponent as a function of modulus
N.

By algebraic manipulation, we can get the %ifen exponent size for abbreviated
DifEe-HelIman exponents as a function of modulus N. The o(1) in the formula refers
to a small constant, values for which have been estimated at between 0.1 and 10. In
our comparisons, we use values of o(l)=O, and o(l)=l . The value 0 gives the shortest
abbreviated exponents (and therefore, by comparison, casts the method of this paper
in the most negative light). The value o(l)=l represents comparison to a more typical
(conservative) system, and was chosen because it leads to an abbreviated exponent
size of around 190 bits for a 512-bit modulus, which is currently considered to be an
acceptable abbreviated exponent size for that modulus size.

To make our comparison, we take the exponent size obtained from the above formula,
and divide it by the complexity value for Batch-Diffie-Hellman computations n / b =
Zog2(n) obtained m Section 2 (because the batch method performs b exponentiations
for the cost of one full n-bit exponentiation). The results are tabulated in Table1 for
some interesting values of n. (Where n is equal to Zog(N), i.e. the number of bits in the
modulus N). The table shows gain figures, as well as the corresponding short exponent
lengths for o(l)=O and o(l)=l.

Gain Factor
(bits)

2048 17
Factors foi

Abbreviated Emonent Gain Factor 1
o(1) = 0 o(1) = 1

Exp. Size I Gain I Em. Size I Gain

171 262 2.6
231 1.9 353 2.9

Batch-DH Over Other DH Systems.

From the table, one can see that the method of this paper can give a factor of 6
improvement over Diffie-HP.llman with full-sized exponents and 512-bit modulus. The
factor increases to 17 with a 2048-bit modulus. In comparison to a Dif%e-Hellman system

216

with minimum-sized abbreviated exponents (corresponding to o(1) = O) , the method of
this paper gives a factor of 1.6 improvement with a 512-bit modulus. As modulus sizes
increase, the improvement factor &o increases, reaching 2.0 near 2000 bit-modulus
size. For more conservative abbreviated exponents (corresponding to ~ (l) = l), the
method of this paper gives improvements from 2.4 for 512-bit modulus, reaching 3.0
neat 2000-bit modulus size. It is noted that any improvements made in attacking DH
with abbreviated exponents will increase the attractiveness of the method of this paper.

It is noted that Fig-3 shows maximum possible improvement figures for this method.
In order to achieve this maximum, there must be at least b requests waiting for service
whenever the cryptoserver looks in its queue. In reality the requests for service are not
evenly spaced in time (they’re better modeled by a Poisson process). Thus, it wi l l be
diflicdt to =sure that the server always sees 6 inputs in the queue, while also maintaining
some reasonable performance constraint on the delay between service requests and their
associated responses.

One way to mitigate this somewhat is to precompute not just batches of size b,
but also b / Z , b / 4 , etc. This will at least allow some improvement over straight n-bit
exponentiation for those cases where fewer than b requests are in the queue. One cau-
tion is that, a3 the batch size gets below 4 , it may be more efficient to use standard
abbreviated-exponent DH. Given the processing scenario we’ve developed, we can read-
ily switch back and forth between techniques, only using the parallel method when it
is advantageous; &ciency is not very high when there are few requests i t does not
matter, so long as the installed computational power is not exceeded.

6 Why not Batch-RSA?

Batch-DH and Batch-RSA are comparable in real-time computational requirements.
However, in this section we show that, when used for key agreement in a system where
response time is important (e.g. the Portable Communications system described above),
Batch-RSA introduces unacceptable delays. As war explained in the previous section,
the use of Batch-RSA or Batch-DH requires dynamic assignment of exponents to service
requests in order to make the precomputation manageable while maintaining appropri-
ate response time.

TO use Batch-RSA, j has to use the same modulus Nj with different short exponents
e,’s (there is no security hole here). The corresponbg secret exponents d,’s are full
size (In order to minimize complexity in the portable unit, we would use a mediumsized

With RSA, the network must send its public key to the portable. The portable then
muyp t s information using the public key, and sends results to the network. The network
then computes the inverse function. Thus there is a random delay (dependent on the
response time of the portable unit) between the network transmitting its public key
information, and the time when the network could begin its secret computation. With
DH, however, there is no such random delay. h e d i a t e l y upon receipt of a public-key

4).

21 7

fiom the portable, the network can begin computation of the secret operation.

Thus, if batch methods are used, DH will allow the network to define a batch and
compute it d at once. RSA, on the othez hand, will require the network to defme a
batch, send out information, and wait for all the portable units involved in the batch
to return responses before it cazl begin computation. This will reduce everyone's per-
formance unacceptably (by making the response time for all members of the batch
dependent on the slowest-responding portable in the batch). Therefore, Batch-RSA is
not usdid for key agreement protocols in a Portable Communications System.

7 Conclusions

We have shown how the techniques of Batch-RSA can be expanded to support Batch-
DSe-Hellman. We have also shown that Batch-DifEe-H- can be used to reduce
processing requirements of a central public-key cryptoserver in a portable communi-
cations system by a factor of 6 to 1 7 over a DiiTie-&lI~nan system with full-sized ex-
ponents. Improvements on the order of 1.6 to 3 are obtainable when compared to
a Dfie-Hellman scheme employing abbreviated exponents. We have noted that the
benefit of Batch Diffie-Hellman increases with new advances in attacks against Dime-
Hellman with abbreviated exponents. We have also shown that it is not feasible to
employ Batch-RSA to obtain similar improvements in a key-agreement system where
response time is important.

8 Acknowledgement

We wish to thank R d i Heiman and Arjen K. Lenstra for reviewing this paper, and
for their many helpful comments, and to anonymous referee for hs important criticism
regarding our evidence of security.

References

[I] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Aiidysis of Computer Alg*
rithrns, Addison Wesley, 1974.

(21 Ben-David, S., Chor, B., Goldreich, O., Luby, M., On the Theory of Average Care
plexity, Proc. STOC 1989, pp. 204-216.

[3] M. J . Beller, L. F. Chang, Y . Yacoli, Prlvacy and Authcnbication 011 a Portable Cornmu-
nications System, IEEE Globecorn '91 Conference Proceedings, Phoenix, December 1991.

[4] D. c. COX, Portable Digital Radio Conununications-An Approach lo Tether-less ACCW,
IEEE Communications Magazine, Vol. 27, NO. 7, July 1989.

[5] W. Difie and M.E. Hellman, New directions in cryptography, IEEE Trans. on Inform.
Theory, vol. IT-22, pp. 664-654, Nov. 1976.

21 8

[6] S.R Dusse and B.S. Kaliski, A Cryptograpbic Library for the Motorola DSP56000, Ad-
vances in Cryptology: Proceedings of Eurocrypt ’90, I.B. Damgard (Ed.), LNCS 473,
Springer Verlag, May 1990, pp. 230-243.

[7] A. Fiat: Batch MA, Proc. Crypto’89, pp 175-185.

[8] A.K. Lenstra, Private communication.

[9] K.S. McCurley, A key distribution system equivdent to factoring, J . Cryptology, ~ 0 1 . 1,
no. 2, 1988.

[lo] U.M. Maurer and Y. Yacobi Non-interactive Public Key Cryptography Proc. Eurocrypt’91.

[ll] P.L. Montgomery, Modular Multiplication Without Trial Division, Math of Computation,
Vol. 44, 1985, pp. 51S521.

[12] J.M. Pollard, Monte Car10 Methods for Index Computation (mod P) , Math, Cornp. 32
(1978), 918-924.

[13] R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and
public-key cryptmystem, Communications of the ACM, vol. 21, pp. 120-126, 1978.

[14] 2. Shmuely, Composite Dime-Hellman public-key generating systems are hard to break,
T R 356, CS Dept., Technion, Feb. 1985.

[15] Y. Yacobi, A key distribution “paradox”, Proc. CRYPT0’90 Santa Barbara, CA, Aug.
11-15, 1990.

[16] Y. Yacobi, Discrek-Log With Compressible Exponenk Proc. CRYPTO’SO, Santa Barbara,
CA, Aug. 11-15, 1990.

21 9

PHASE I:

PHASE 11:

c l / p = l l c o m ’ / ~ ~ &/ea&/e3 mQ 1

Figure 1: Phases I and I1 of Batch-RSA

220

PHASE 111:

Continue recursively, with different X, XO, XI

in each level. d’s and X’s a r e

Figure

precomputed.

2: Phase III of Batch RSA

	Introduction
	Batch-RSA
	Batch Diffie-Hellman
	Security
	System Considerations for Batch-Diffie-Hellman
	Why not Batch-RSA?
	Conclusions
	Acknowledgement
	References

